中華民國第56屆中小學科學展覽會作品說明書

國中組 生活與應用科學科

佳作

030804

源源不絕

---以環溫變化設計生態池汙水淨化系統

學校名稱:臺中市立居仁國民中學

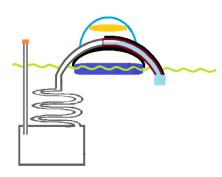
作者:

國二 柯尚妤

國二 賴以芸

國二 羅子苓

指導老師:


蔡明致

李敏瑜

關鍵詞:環溫變化、蒸餾水

摘要

根據統計,全球有 6.63 億人口缺乏乾淨的飲用水,非洲婦女們每 天約有 1/4 的時間在挑水。為了幫助他們,設計了無負擔且高效能的 汙水淨化系統。為了使汙水能更快蒸發,維持高溫並產生溫差變化, 因此使用照光無死角的透明壓克力半圓球,中間放入有聚焦功能的菲 涅爾透鏡,底下再放上黑色平底鋁鍋吸熱導熱!為了使水蒸氣能更有 效率的冷凝成水滴,產生壓力差而加速帶動整個系統,所以使用鋁管 為冷凝管,並將它呈現螺旋狀,增加與水的接觸面積,再接上集水瓶。

而集水器另一端的鋁管,則是為了帶動冷空氣的對流,甚至能防止已冷凝到集水瓶中的蒸餾水蒸發,達到最高的冷凝效率。

壹、研究動機

根據世界展望會統計,每天有超過2,000個兒童死於衛生環境不良及飲用汙染水造成的痢疾,每90秒鐘就有一個孩子因水相關的疾病死亡!即便是擁有水源的地方,也不代表能輕易得到滋潤口舌的甘霖,以非洲為例,婦女及女孩每天用在打水的平均時間是6小時,而為了取水每天得走上約6公里,才能到達水源處。而水,多半是污濁的。因緣際會之下,看到國際上有研究人員專為缺水地區設計

出構造簡單又方便的污水淨化生態球,靈光一閃下,我們認為應該也可以應用在學校的生態池,因此開始我們的實驗。

貳、研究目的

- 一、探討吸水加熱區的設計對汙水淨化的影響。
- 二、探討集熱區的設計對汗水淨化的影響。
- 三、探討冷凝區的設計對汗水淨化的影響。

參、研究設備及器材

表 3-1:實驗器材

電子溫度計	微量天平	壓克力半圓球*2	金屬管	鋁管
散熱片水箱	平底鍋	檯燈	電風扇	止洩帶
絕緣膠帶	冰塊	已拆底部的烤箱	保溫杯	保麗龍箱
平底鍋	鐵架	鐵絲	小罐子	菲涅爾透鏡
集水杯	棉布	紗布	抹布	毛巾
菜瓜布	不織布	化妝棉	衛生紙	夜用衛生棉
黑色塑膠管	黑色塑膠管	黑色塑膠管	紅色塑膠管	綠色塑膠管
藍色塑膠管				

肆、研究架構

生態池污水淨化系統

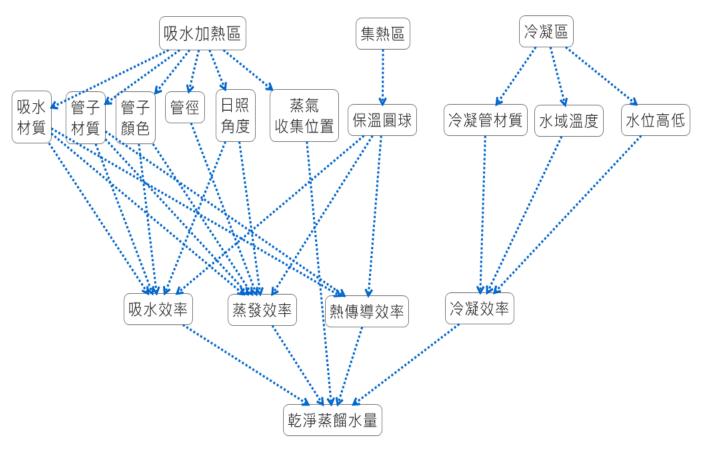


圖 4-1 研究架構圖

伍、研究方法與結果

一、探討吸水加熱區設計對汙水淨化的影響

(一)實驗 1-1:探討此區中<u>吸水材質的有無</u>對於吸水與蒸發效率的影響 利用日常中常見的吸水物品,觀察水在各材質中爬升的情形。

1. 步驟:

- (1) 將吸水材質捲成螺旋狀,塞進三條橡皮管裡,此為實驗組;再準備三條空的橡皮管, 為對照組。
- (2) 準備兩個小罐子,先記錄兩個瓶子的重量,將兩組的橡皮管末端接上玻璃瓶,並以止洩帶纏繞,避免水氣散失。
- (3) 將兩組的橡皮管前端浸泡在水裡,置於紅外線燈管下曬 15 分鐘後, 記錄玻璃瓶重量。

此玻璃瓶是為了收集水氣

圖 5-1:管內吸水材質對蒸發量的影響

2. 結果:

表 5-1:玻璃瓶內水氣增加值(g)

	第一次	第二次	第三次	平均
有放吸水材質	0.020	0.020	0.020	0.020
沒放吸水材質	0.000	0.020	0.000	0.006

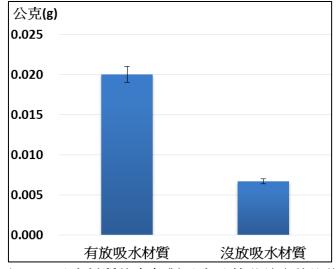


圖 5-2: 吸水材質的有無對吸水及蒸發效率的影響

3. 討論:

- (1) 根據圖 5-2 發現,就收集到的水氣量而言,有放吸水材質的實驗組明顯多於無 吸水材質的對照組。
- (2) 推測是因為吸水材質能將水吸上來,所含的水量越多,熱含量越大,可以保溫 甚至維持高溫,因此收集到的水氣量會大於對照組。
- (3) 因此,淨化裝置的吸水管內可加裝吸水材料,除增加吸水能力,還可以增加導熱及 保熱能力,為蒸發區進行汗水預熱功能。

(二)實驗 1-2:探討不同吸水材質對吸水效率的影響

利用日常中常見的吸水物品,觀察水在各材質中爬升的情形。

1. 步驟:

- (1) 將九種隨手可得的吸水材質裁成 10×10 公分,裝訂到 10×10 公分的資料夾上,秤重。
- (2) 九種吸水材質同時放到藍色色素水裡 30 秒, 量藍色色素水的最高處與最低處, 取平均值, 平均值代表水位上升的位置。

圖 5-3:不同吸水材質對吸水效率的影響

2. 結果:

表 5-2: 九種材質的水位上升位置比較表(cm)

	第一次	第二次	第三次	平均
不織布	0.80	0.80	1.05	0.88
抹布	1.40	1.55	1.45	1.47
棉布	0.95	0.80	1.10	0.95
衛生紙	5.00	5.40	4.50	4.97
紗布	5.55	5.30	5.00	5.28
化妝棉	0.40	0.50	0.50	0.47
菜瓜布	0.70	0.70	0.85	0.75
衛生棉	棉 5.25 5.15		5.25	5.22
毛巾	5.85	5.75	5.75	5.78

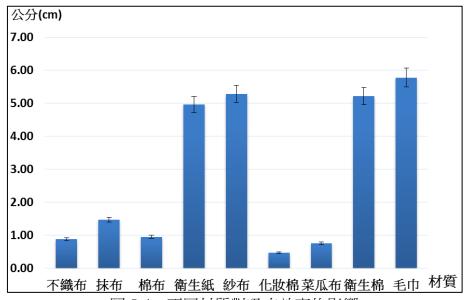


圖 5-4:不同材質對吸水效率的影響

3. 討論:

(1) 根據圖 5-4 發現,毛巾、紗布、衛生棉、衛生紙的吸水效率最佳。

材質	毛巾	紗布	衛生棉	衛生紙
成分	純棉(混紡)	棉	棉狀木漿	原生紙漿
			高分子聚合體	

- (2) 推測:這四種材質的<u>孔隙大小</u>不同,<u>毛細作用</u>的程度也會有所差異,孔隙愈小, 毛細作用愈明顯,吸水力愈強;另外,為增加吸水能力,毛巾於表面上有非常 多的小絨毛,增加了<u>表面積</u>。衛生棉的內部材質加上了棉狀木漿與高分子聚合 體,因此吸水能力也很強。
- (3) 下列實驗則以此四種材質為比較素材。

(三)實驗 1-3:探討不同材質對於蒸發效率的影響

- (1) 將四種吸水材質釘在透明資料夾,秤重,得到數值 A。
- (2) 以滴管滴水進入吸水材質中,飽和後,秤重,得到數值 B。
- (3) 將其曝曬於紅外線燈管下,放置十分鐘。秤重,得到數值 C。
- (4) 蒸發效率 = (數值 B 數值 C) / (數值 B 數值 A) \times 100%。

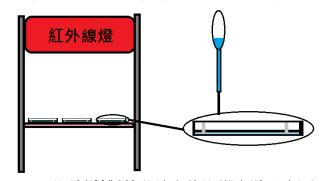


圖 5-5:不同材質對蒸發效率的影響實驗示意圖

表 5-3: 四種材質的蒸發效率比較表

百分比材質	第一次	第二次	第三次	總平均
紗布	51%	50%	51%	51%
毛巾	14%	14%	14%	14%
衛生紙	100%	98%	97%	98%
衛生棉	1%	1%	1%	1%

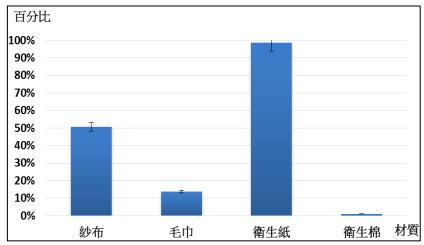


圖 5-6: 四種材質對蒸發效率的影響

3. 討論:

- (1) 根據圖 5-6 發現,蒸發量:衛生紙 > 紗布 > 毛巾 > 衛生棉。
- (2) 推測:材質的孔隙愈大,代表水的蒸發效率愈佳。衛生紙由原生紙漿製成,結構鬆散、孔隙較大且纖維短,因此蒸發效率最好;衛生棉因有高分子聚合體,鎖水力強而導致蒸發效率差。

(四)實驗1-4:探討不同吸水材質的熱傳導效率

- (1) 將四種吸水材質捲成截面積相同的圓筒狀。
- (2) 直立放置於烤箱上方十分鐘。
- (3) 利用木夾將四種吸水材質取下並測量兩端溫度,記錄溫度差。
- (4) 接觸烤箱端溫度相同,若另一端的溫度愈高,代表導熱效果愈好。

終衛生紙、衛生棉、紗布和毛巾捲成相同截面積圓柱狀

將材質放置於烤箱10分鐘 使用木夾夾住材質並測量雙邊溫度差

圖 5-7: 四種材質的熱傳導效率實驗流程圖

表 5-4:四種材質的兩端溫差紀錄表(℃)

温差	第一次	第二次	第三次	第四次	第五次	第六次	第七次	第八次	總平均
衛生紙	2.5	2.6	2.5	2.5	2.9	2.6	1.6	2.9	2.5
紗布	3.1	2.9	2.9	3.1	2.9	2.9	1.7	2.5	2.8
毛巾	2.4	2.5	2.1	2.4	2.5	1.8	1.6	1.7	2.1
衛生棉	1.8	3.0	1.8	1.0	0.8	1.7	1.5	0.6	1.5

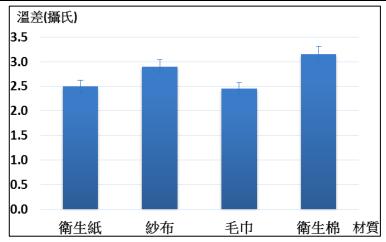


圖 5-8: 四種材質的導熱效率比較圖

3. 討論:

- (1) 根據圖 5-8 發現, 導熱效率: 紗布 > 衛生紙 > 毛巾 > 衛生棉。
- (2) 紗布的導熱效率相較其他材質來說最好,代表紗布最能夠把輻射熱傳給水,以利蒸發。

(五)實驗 1-5:探討管子材質對蒸發效率與冷凝效率的影響

以日常生活中可取得的管子當素材,希望能得到較佳的材質,使吸水與加熱能力最好。

- (1) 取冷氣管內的銅管、五金行販賣的熱水器銅管、廢棄拖把的鋁製握把、實驗室橡膠 管為素材。
- (2) 取一熱水保溫瓶,內部裝入 80 度熱水,插入塞有等量等長衛生紙的彎區冷氣銅管、熱水器銅管、橡膠管,20 分鐘後測出口管子溫度,三重複。出口管溫愈高,代表蒸發效率愈強。
- (3) 取保麗龍箱,內部裝入冰水,將冷氣銅管、鋁製握把、橡膠管插入冰水中,20分 鐘後測冷凝區入口處的管子溫度,三重複。溫度愈低,代表冷凝效率愈強。

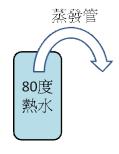


表 5-5:不同管子材質對蒸發效率的影響

蒸發管材質(內徑 cm/管壁厚度 mm)	出口管溫(°C)
冷氣銅管(1.5/0.5)	40.48
熱水器銅管(1/0.2)	30.11
橡皮管(0.9/1.5)	28.36

冰水水

表 5-6: 不同管子材質對冷凝效率的影響

冷凝管材質(內徑 cm/管壁厚度 mm)	管溫(°C)
冷氣銅管(1.5/0.5)	24.79
鋁製握把(2/0.1)	18.41
橡皮管(0.9/1.5)	28.47

3. 討論:

- (1) 根據表 5-5 發現,銅管可維持較高溫度,橡皮管最差。推測因為銅管的導熱與保熱效率較佳,因此蒸發管採用銅管為主要材料。
- (2) 根據表 5-6 發現, 鋁製握把可維持較低溫度,推測因為鋁管的導熱效果極佳,因此冷凝管採用鋁管為主要材料。

(六)實驗 1-6:探討顏色對於蒸發效率的影響

- (1) 利用針筒,分別注入 3ml 的水到紅、綠、藍、黑色塑膠管。
- (2) 將管子的前端與末端夾上塑膠夾,預防止管子兩端朝下,水滴出而影響實驗。
- (3) 每個管子連同夾子一起秤重,得到原重量。
- (4) 於紅外線燈管下曝曬 15、20、25、30、35 分鐘後,管子連同夾子秤重,以利了解不同顏色下的水分蒸發趨勢。

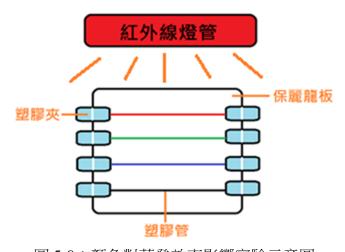


圖 5-9: 顏色對蒸發效率影響實驗示意圖

表 5-7:蒸發管內水量減少紀錄表(g)

第一次	原重量	15 分鐘	20 分鐘	25 分鐘	30 分鐘	35 分鐘	相差
紅	20.22	0.00	0.00	0.00	0.00	0.02	0.02
綠	20.24	0.02	0.02	0.04	0.04	0.04	0.04
藍	20.28	0.06	0.06	0.06	0.06	0.06	0.06
黑	20.30	0.06	0.06	0.06	0.06	0.06	0.06
第二次	原重量	15 分鐘	20 分鐘	25 分鐘	30 分鐘	35 分鐘	相差
紅	20.24	0.00	0.00	0.00	0.02	0.02	0.02
綠	20.22	0.02	0.02	0.02	0.02	0.02	0.02
藍	20.26	0.02	0.02	0.02	0.02	0.02	0.02
黑	20.28	0.04	0.04	0.04	0.06	0.06	0.06
第三次	原重量	15 分鐘	20 分鐘	25 分鐘	30 分鐘	35 分鐘	相差
紅	20.28	0.02	0.02	0.02	0.02	0.02	0.02
綠	20.26	0.00	0.02	0.02	0.02	0.02	0.02
藍	20.16	0.00	0.00	0.00	0.00	0.00	0
黑	20.24	0.00	0.00	0.00	0.04	0.04	0.04

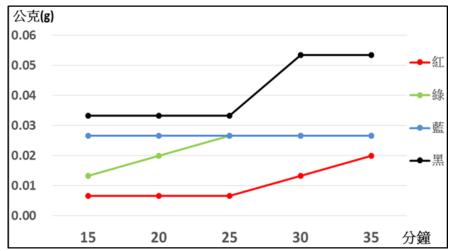


圖 5-10:蒸發管顏色對蒸發量的影響

3. 討論:

- (1) 根據圖 5-10 發現,不同顏色的蒸發管中,黑色管子的總蒸發量最多。
- (2) 紅、藍、綠色平均在25分鐘就不再有較大起伏,但黑色卻可以持續蒸發。
- (3) 因此以顏色而言,黑色的蒸發量是最好、最穩定。

(七)實驗 1-7:探討管徑對於蒸發效率的影響

- (1) 利用針筒分別注入 3ml 的水到不同管徑大小的黑色塑膠管(2、3 與 4mm)。
- (2) 將每個管子的頭尾分別插上直徑 2mm 的黑色短管,使管子的對外開口一樣 大。

- (3) 夾上塑膠夾,每根管子連同夾子一起秤重量,得原始重量 A。
- (4) 每根管子曝曬在烤箱下十分鐘。管子連同夾子一起秤重,得數據 B。
- (5) A-B 值等於蒸發的水量。

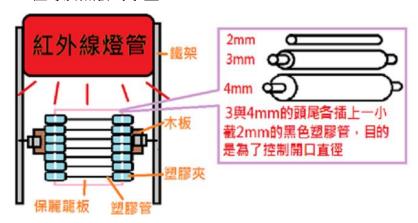


圖 5-11:管徑對蒸發效率影響的實驗示意圖

表 5-8:不同管徑大小對蒸發效率的影響(g)

	第一次	第二次	第三次	第四次	平均
2 mm	0.02	0.20	0.10	0.04	0.09
3 mm	0.08	0.14	0.14	0.04	0.10
4 mm	1.02	0.12	0.06	0.22	0.36

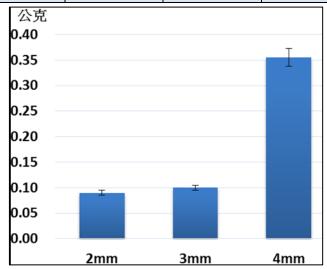


圖 5-12:不同管徑大小對蒸發效率的影響

3. 討論:

- (1) 根據圖 5-12 發現,管徑愈大,蒸發效率愈好。
- (2) 推測是因為管徑愈大,管壁總吸收熱量愈大,有利於水分的蒸發。

(八) 實驗 1-8:探討日照角度對於蒸發效率的影響

- (1) 用針筒在管子內注射 3ml 的水,頭尾夾上塑膠夾,並黏在保麗龍板上。
- (2) 將整個保麗龍板拿去量重量,記錄,並黏於木板上。
- (3) 用兩個廣用夾夾住木板頭尾,固定在鐵架上。

- (4) 將量角器黏上一段的棉線,棉線尾端綁個重物,並且把量角器平面那端倚靠著 木板,此時,利用 180 度去剪掉棉線擺到的度數,就是此木板目前的角度。
- (5) 把曬過的保麗龍板整個拿下去量蒸發後的重量。

表 5-9:不同日照角度對蒸發效率的影響

角度	0	5	10	15	20	30	40	50	60	70	80	90
原重	249.58	248.98	250.48	250.72	250.66	250.7	251.12	251.2	251.08	251.68	250.06	251.74
後重	249.34	248.9	250.42	250.71	250.5	250.68	250.88	250.88	249.12	249.3	246.99	248.38
相差	0.24	0.08	0.06	0.01	0.16	0.02	0.24	0.32	1.96	2.38	3.07	3.36

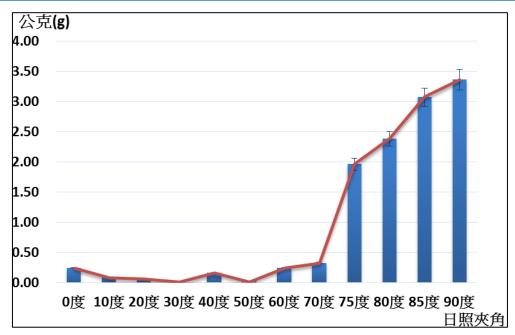


圖 5-13:不同日照角度對蒸發量的影響

3. 討論:

- (1) 根據圖 5-13 發現,日照角度 0 度時,蒸發量愈多,推測因為直射光線照射吸收量較大、反射量較少的緣故。
- (2) 容器內的吸收量在與光線 15 度以內吸收量最大,因此我們認為集熱區要以孤型設計為主。

(九) 實驗 1-9:探討蒸氣收集位置對於乾淨蒸餾水量的影響

- (1) 準備保麗龍箱,量內部空間的總長,在鋁管等長處做個記號,將泡棉膠由頂端 黏到記號處。
- (2) 裁下兩個寶特瓶的底部(高 5cm),用熱熔膠黏在保麗龍箱左下及右下的位置(即 鋁管兩側位置)。
- (3) 準備一個輕輕撞擊而不會變形的罐子,量完原重量後,將它卡在將鋁管底部,並用止洩帶纏繞在其接觸位置,使髒水不會跑進去。
- (4) 裝一小壺的熱水,倒在兩個塑膠瓶底部中,蓋上保麗龍蓋。

- (5) 使用熱水的蒸氣取代太陽照射、池水蒸發的過程(此實驗需要花上一些時間,過程中太陽可能會移動,故以此方式減少誤差)。
- (6) 將整個實驗器材浸入生態池中 15 分鐘, 之後量底部罐子的重量,計算有冷凝 進去的小水滴。三重複。
- (7) 做完一截泡棉膠後,就將鋁管往下一截。

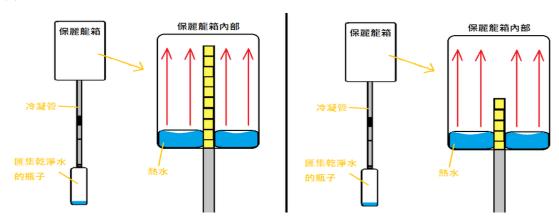


圖 5-14:冷凝管往內延伸長度對乾淨蒸餾水量影響實驗示意圖

2. 結果

表 5-10: 不同蒸氣收集位子(cm)對冷凝量的影響

長度	第一次增加	第二次增加	第三次增加	平均
2.5	0	0	0	0
5.0	0.04	0.04	0.04	0.04
7.5	0.04	0.04	0.04	0.04
10.0	0.02	0.04	0.02	0.03
12.5	0.02	0.02	0.02	0.02
15.0	0.04	0.02	0.02	0.03
17.5	0.06	0.06	0.04	0.05
20.0	0.02	0.04	0.04	0.03
22.5	0.04	0.08	0.04	0.05

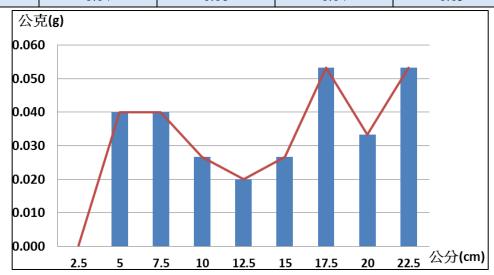


圖 5-15:不同蒸氣收集位子(cm)對冷凝量的影響

3. 討論

- (1) 根據圖 5-15,發現收集到的水量並不是呈現一個穩定的趨勢,判斷是內部有某種物理現象的!
- (2) 將圖 5-15 分為三大區塊,分別是慢速區(0,2.5,5cm),高速區(7.5,10)以及 反彈區(12.5,15,17.5cm)。慢速區因為水蒸氣剛上升流量大且流速較慢,壓 力較大,所以水氣分子會大量的往壓力小的冷凝管中移動,所以較其他區來好!高速區是因為水蒸氣離水面有一段距離,所以有了加速度,又因為流速越快壓 力越小,被壓力較大的冷凝管排開,形成水蒸氣的蒸空區,因為如此,所以流量較慢速區來的小;反彈區流速又較高速區來的更快,但因為此區與箱壁距離較近,在水蒸氣往上衝的同時,撞到箱壁反彈濺入,所以圖 5-15 在最後才會又回升。在 22.5cm,因為冷凝管頂著箱壁,所以收到的水量為 0。

(十) 生態池污水淨化系統示意圖

根據 solar ball 與實驗 1-1~1-9 數據,我們規畫出生態池污水淨化系統設計圖,如圖 5-17。

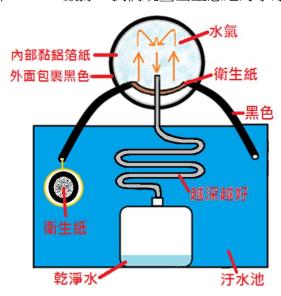


圖 5-16: 生態池污水淨化系統設計圖 - 1.0 版

我們針對實驗設計實做出淨化系統,卻發現在同一顆球內,熱水氣往上移動後,因真空區效應進 入冷凝管的冷凝水量相當少,於是想找出系統中的問題,所以我們進一步設計了一些小實驗來逐步加 強收集冷凝水的效果。

二、探討集熱區設計對汙水淨化的影響

(一) 實驗 2-1:探討保溫圓球的有無對於蒸發效率的影響

1. 步驟:

- (1) 取一廢棄平底鍋, 罩上與平底鍋相同尺寸的壓克力半圓球, 利用膠帶將半圓球與平 底鍋黏接密封, 測量此鍋鍋底初始溫度, 作為實驗組。
- (2) 取另一個無壓克力半圓球,且相同的平底鍋,測量鍋底初始溫度,為對照組。 將平底鍋放置在保麗龍箱上方,以避免地面溫度影響實驗。進行曝曬。
- (3) 每間隔五分鐘,使用電子溫度計測量鍋底溫度。
- (4) 温度愈高,代表水的蒸發效率愈好。

圖 5-17: 保溫圓球的有無對於蒸發效率的影響

2. 結果:

表 5-11: 保溫圓球的有無對蒸發效率的影響

110000000000000000000000000000000000000								
時間	5	10	15	20	25	30	35	40
	22.05	26.55	20.65	12.4	45.05	100	40.05	40.6
實驗組	33.85	36.55	38.65	43.4	45.05	46.6	49.05	49.6
(有保溫圓球)								
對照組	12.70	15.25	16.65	18.85	19.4	20.80	21.80	20.95
(無保溫圓球)								

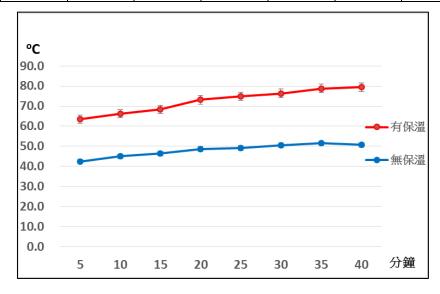


圖 5-18: 保溫圓球對於蒸發效率的影響,溫度愈高代表蒸發效率愈好。

3. 討論:

- (1) 根據由圖 5-18 發現,保溫圓球的有無對平底鍋溫度上升的影響甚大,有保溫圓球的實驗組溫度可達 50 度。我們於 40 分鐘後繼續測量實驗組溫度,發現更可達 80 度。
- (2) 推測因為有加保溫圓球能隔絕空氣的流動,使熱氣被保留下來,達到保溫效果。

三、探討冷凝區設計對汙水淨化的影響

(一)實驗 3-1:探討**水域深度**對於冷凝量的影響

1. 步驟:

- (1) 將電子溫度計的頭端固定在鋁管上。
- (2) 於水深 0、10、20、30、40 及 50 cm 處測量水溫,重複 3 次。
- (3) 水溫愈低,代表冷凝效果愈好。

圖 5-20:不同水深的溫度測量實驗照

2. 結果:

表 5-12:不同水深溫度表

水的深度(cm)	0	10	20	30	40	50
平均溫度(°C)	25.00	25.00	25.00	25.00	25.00	25.00

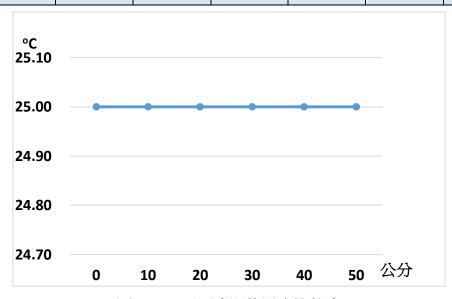


圖 5-19:不同水深的溫度比較表

3. 討論:

- (1) 根據圖 5-19 發現,在水深 0 公分與 50 公分處並沒有明顯的溫度差異。
- (2) 推測因為本校生態池水不深,因此溫度變化不大。對於水淺的生態池而言,冷凝區 置哪都無妨。
- (3) 推測,水深水域(如日月潭)的溫度變化較大,更適合我們的設計。

(二) 實驗 3-2: 探討水位高低對於冷凝量的影響

1. 步驟:

- (1) 準備一截可彎曲的金屬管,將其前端彎成拐杖狀,尾端接上鋁管。
- (2) 將前端纏上黑色絕緣膠帶,塞入吸水材質-衛生紙,放於熱水瓶內,再使用檯燈照射 其部分進行蒸發(衛生紙不可超過轉彎處,否則汙水會順著鋁管流入集水瓶中)。此 步驟模擬太陽照射池水使池水蒸發。
- (3) 準備一個小的保麗龍箱,將其鑽出一個洞,使整根實驗器材都可以穿過,再放入冰塊與些許的鹽巴,然後密封。再使用電風扇吹保麗龍箱以下的管子,使其加速散熱。 此步驟模擬冷凝管泡在池水中進行冷凝。
- (4) 準備一個诱氣的集水杯接冷凝下來的蒸餾水。
- (5) 於鋁管的頂端與中間處分別進行冷凝,三重複。
- (6) 水位愈高(距離彎管愈近),代表冷凝區愈長;水位愈低(距離彎管愈遠),代表冷凝區 愈短。

圖 5-20: 水面高度對於冷凝量的影響

1. 結果:

表 5-13:不同水位高度對冷凝量的影響(水位高度意指與彎管的距離)

水位高度(cm)	0	15	30
冷凝水(g)	0.00	19.63	0.00

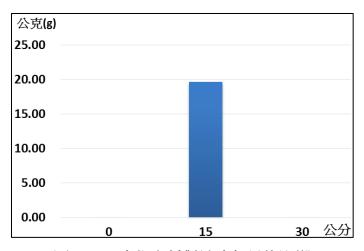


圖 5-21:水位高低對於冷凝量的影響

2. 討論:

(1) 根據圖 5-21 發現,水位高度愈高(距彎管愈近),收到的冷凝水量是 0 克;水位高度 愈接近中間,收到的冷凝水是 19.36 克;水位高度越低(距彎管愈遠),收到的冷凝 水是0克。

- (2) 推測水位愈高,熱蒸氣與冷空氣的交界面可能在彎管內,導致熱蒸氣無法往下;若水位太低,則可能導致熱蒸氣無法冷凝成水滴;而水位剛好在中間時,熱蒸氣與冷空氣的交界面在直的鋁管內,使得熱蒸氣順利往下進而遇到冷空氣而凝結成液態水。
- (3) 推測,冷凝管不可太接近熱蒸氣收集管,但也不可過低。

陸、結論

一、探討吸水加熱區的設計對汙水淨化的影響:我們發現,放在此區內部的吸水材質以衛生紙為佳, 因為吸水效率與蒸發效率都頗高;管子以塗上黑色的銅管為佳,因為容易吸收太熱且保熱效果不 錯;日照最好角度是垂直射入,但因為太陽會移動方位,因此我們建議放入菲涅爾透鏡,以利吸 收來自四面八方的太陽光,以提高水氣蒸發的效率。針對此實驗結果所做出的 1.0 版生態池,收 集冷凝水的效果不佳,因此我們又改良了我們的設計。

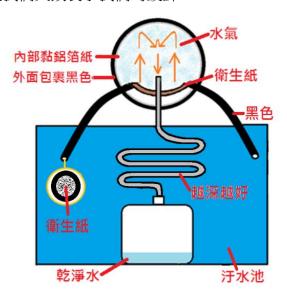


圖 6-1:1.0 版生態池污水淨化系統設計圖

- 二、探討集熱區的設計對汙水淨化的影響:我們發現,若於系統中放入保溫圓球,可使集熱區的溫度 高達80度,若再加上菲涅爾透鏡集中太陽能,加熱效果將愈強,則吸水加熱區的液態水愈容易 蒸發,將更有利於冷凝水的收集。
- 三、探討冷凝區的設計對汙水淨化的影響:我們發現,冷凝管的材質以鋁管最佳;小型生態池不同深度的水溫差異不大,若想利用生態池進行冷凝,可能不容易收到大量冷凝水,所以為了增強冷凝效果,將冷凝用鋁管設計成螺旋狀,以增加冷凝面積,可以再接上散熱水箱,達到雙重效果。另外,推測此設計較有利於水深的生態池;最後,實驗數據說明了開始冷凝的位置不可太高,李必氏冷凝器的設計中,冷水進入的位子在較下方,即可印證我們的實驗。
- 四、根據所有的實驗數據,不斷地進行改良,得到 2.0 版生態池污水淨化系統設計圖,如圖 6-2,說明如表 6-1。

圖 6-2:2.0 版生態池污水淨化系統

表 6-1:2.0 版生態池污水淨化系統的構造與功能

	構造	功能		構造	功能
A.	透明壓克力半球	透光聚熱及隔絕氣體	В.	菲涅爾透鏡	聚光集中熱源
C.	吸熱膠帶	包覆金屬吸水管	D.	金屬吸水管	導水、氣及導熱
E.	吸水長纖維紙捲	吸水及阻隔氣體進出	F.	黑色平底鋁鍋	吸熱導熱及隔絕氣體
G.	浮板	提供生態池半球浮力	H.	冷凝彎管	增加散熱冷凝面積
I.	淨水集水瓶	收集冷凝水	J.	透氣海綿	防止煙塵
K.	透氣管	維持集水瓶氣壓平衡			

各項實驗進行即所呈現的數據結果來看,此汙水淨化系統設計確實能有效解決地表缺水的問題。 然而,大家仍然要珍惜地球上有限的資源,不能因為有替代取得的方式就任意浪費,如此地球資源, 才能永續永存。

柒、参考文獻

- (一)蒸餾球應用,取自 http://phys.org/news/2011-03-portable-solar-device-potable.html
- (二)臺灣水科技網,取自

http://www.waterinfor.com/index.php?option=com_k2&view=item&id=26:%E6%B5%B7%E6%B0%B4%E6%B7%A1%E5%8C%96%E6%A6%82%E8%BF%B0&Itemid=69

- (三)汗水處理,取自 https://zh.wikipedia.org/wiki/%E6%B1%A1%E6%B0%B4%E8%99%95%E7%90%86
- (四)水淨化,取自 https://zh.wikipedia.org/zh-tw/%E6%B0%B4%E6%B7%A8%E5%8C%96
- (五)菲涅爾透鏡,取自

https://zh.wikipedia.org/wiki/%E8%8F%B2%E6%B6%85%E8%80%B3%E9%80%8F%E9%8F%A1

- (六)蒸餾水,取自 https://zh.wikipedia.org/zh-tw/%E8%92%B8%E9%A6%8F%E6%B0%B4
- (七)簡介白努力, http://www.ling.fju.edu.tw/phonetic/Bernoulli.htm
- (八)台灣世界展望會一全球水危機, http://www.worldvision.org.tw/water resource/risk.html

【評語】030804

- 1. 知悉拋物線公式極聚光之概念。
- 2. 會估算太陽能聚光之能量,以及加熱定質量定溫所需能量及時間。
- 3. 得到一定量蒸餾水所需時間尚無估算概念。
- 4. 吸水及吸光纖維之材質及顏色可再改進。