中華民國第56屆中小學科學展覽會作品說明書

國中組 生物科

第三名

030313

易籽而膠,行之有酵

-探討薜荔榕亞屬植物的凝膠特性與酵素活性分析

學校名稱:高雄市立仁武高級中學(附設國中)

作者:

國二 莊竣守

國二 曾旭宏

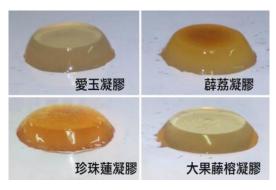
國二 葉宸瑋

指導老師:

蘇毓智

楊子瑩

關鍵詞:薜荔榕亞屬、果膠酯酶、低甲氧基果膠


摘要

為探討薜荔榕亞屬植物之凝膠機制,我們萃取愛玉子、薜荔、珍珠蓮、大果藤榕的果膠酯酶 PME 並滴定活性、分離果膠且分析凝膠品質。四種植物之 PME 活性依序為 $13.36 \cdot 1.63 \cdot 3.19 \cdot 4.29$ 單位;果膠含量為 $6.51\% \cdot 9.83\% \cdot 15.76\% \cdot 11.90\%$;PME 活性决定凝膠速度,果膠量 決定凝膠倍數。愛玉子 PME 活性最高,由果膠量決定凝膠品質;薜荔 PME 活性個體差異大,活性足夠才能凝膠;珍珠蓮果膠最多,凝膠倍數達 400 倍;大果藤榕凝膠關鍵在於成熟度。 水中 $Ca^{2+} \cdot Na^+$ 及升溫可提升 PME 活性。 PME 耐熱性:愛玉子在 70° C、大果藤榕和珍珠蓮 60° C、薜荔在 40° C時活性大減,推測四者 PME 不同,但皆受果膠酯酶抑制劑抑制。此外,不同 PME 與果膠可搭配凝膠,愛玉子、薜荔、大果藤榕相容性較佳,但與珍珠蓮相容性較差。

壹、研究動機

「愛玉凍」是<u>台灣</u>特有的夏日消暑聖品,這是利用**愛玉子**(Ficus pumila L. var. awkeotsang (Makino) Corner)作為原料製作的凝膠,但<u>台灣</u>其實還有另外三種也能製作果凍的榕屬植物,分別是愛玉子孿生種—<mark>薜荔</mark>(F. pumila L. var. pumila L.)、分布於南<u>台灣</u>的大果藤榕(F. aurantiacea Griff var. pavifolia (Corner) Corner)、主要產於北部山區的珍珠蓮(F. sarmentosa B. Ham. ex J. E. Sm. var. nipponica (Fr. & Sav.) Corner)等,這些植物雖不及愛玉子有名,但也夠能製作風味獨特的凝膠;<u>台灣</u>土地不大,卻同時擁有平地(薜荔)、山區(愛玉子)、熱帶(大果藤榕)、溫帶(珍珠蓮)四種榕屬凝膠植物,可說是得天獨厚!

我們請教專家後得知,上述凝膠植物都屬於榕屬下的薜荔榕亞屬(Ficus subg. Synoecia),這是一群藤本、榕果腋生、短柄、果核平滑的榕屬植物,其凝膠特性在野外可能有助於保持種子在食果動物腸道的活性、或為種子保濕、提升萌芽率等。但有關凝膠性質的研究,除愛玉子外,其他三種植物很少相關報導,這使我們想深入研究。

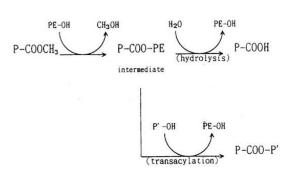
圖一、四種薜荔榕亞屬植物的凝膠

課程相關: 國一:酵素、生物分類學; 國二:酸與鹼、聚合物、離子鍵、催化劑

翻閱歷屆科展作品時(表一),我們發現大部分研究都著重在愛玉子的凝膠表現,而去年, 學長們參加高雄市科展時,曾報導了愛玉子、薜荔、大果藤榕的凝膠性質,且以「混籽」方 式改善愛玉凍出水、薜荔耗籽、大果藤榕形變大的問題。今年,我們想了解薜荔榕亞屬植物 的凝膠機制(加入珍珠蓮),探討「<u>酵素</u>」和「<u>果膠</u>」對凝膠之影響,因此我們萃取酵素滴定 活性、萃取果膠、改良凝膠品質測試方法,希望提供生化、食品科學等相關領域新的想法。

愛玉子的凝膠原理,是利用果膠酯酶

(pectin methylesterase, PME; 也有文獻


以 pectinesterase, PE 稱之;專家建議使用

PME),將高甲氧基果膠水解成低甲氧基

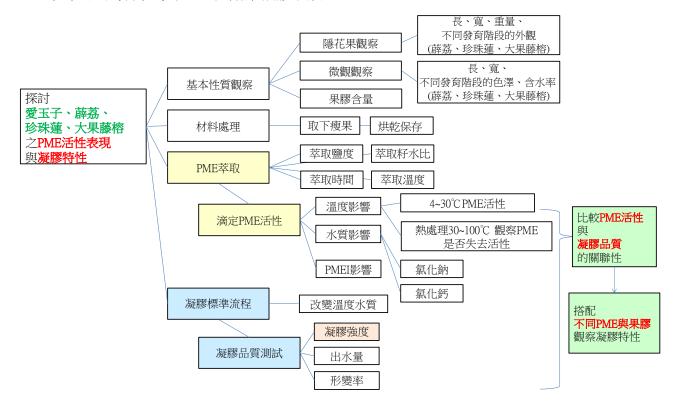
果膠(產生羧基),再與水中之二價陽離子鍵結產生網狀結構,將水分子包覆形成果凍(林讚標,1991)。文獻提及 PME 可催化另一反應式:轉醯基反應—將果膠鏈接在一起形成更巨大的分子,促進凝膠(李靜雯,2002)。推測其他榕屬植物,可能與愛玉子有類似的凝膠機制。

圖二、愛玉子凝膠原理

(改繪自林讚標,1991、李佳佩,2001)

表一、凝膠植物相關科展報告文獻探討

圖三、愛玉子果膠酯酶的作用機制。(李靜雯,2002)

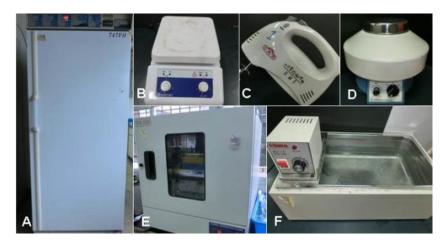

屆(年)	題目名稱	研究創舉
		1. 設計標準愛玉凝膠製作流程。
50 (2010)	「凍」裡乾坤—愛玉凝膠因子之探討	2. 設計方便、好用的凝膠硬度測試裝置。
		3. 以各種水溶液、改變變因,測試凝膠結果。
	探討超音波頻率	1. 藉超音波破殼原理萃取愛玉子中植物膠
55 (2015)	對愛玉子萃取分析差異性	2. 得其殼與凝膠比重的 TDS(總固體溶解率)值,試驗樣
	到复玉丁卒取万州左共任	品之 EC(導電度)、pH(酸鹼值)分析其與凝膠之關係。
<i>FF</i> (201 <i>F</i>)	天之「膠籽」的「凍」感魔法—	1. 發現三種能凝膠的榕屬植物:愛玉、薜荔、大果藤榕。
55 (2015)	探討愛玉、薜荔、大果藤榕的	2. 觀察三種植物的凝膠特性—硬度、出水、形變。
(高雄市賽)	凝膠特性與品質改良	3. 將三種植物以混籽的方式製作凝膠,提升應用價值。
		1. 將愛玉子、薜荔、珍珠蓮、大果藤榕四種薜荔榕植物
	易籽而膠,行之有酵—	進行果膠及酵素(果膠酯酶 PME)萃取,滴定活性。
56 (2016)		2. 將凝膠流程、品質測試改良、更加精確。
本研究	探討薜荔榕亞屬植物的凝膠特性	3. 將不同植株、不同發育階段的樣本分類,觀察 PME
	與酵素活性分析	及果膠的個體差異。
		4. 將凝膠原理提出解釋,提升科學價值。

貳、研究目的

- 一、愛玉子、薜荔、珍珠蓮、大果藤榕的基本性質觀察
 - (一) 隱花果、瘦果觀察
- (二) 凝膠特性觀察 (凝膠時間、最大凝膠倍率)

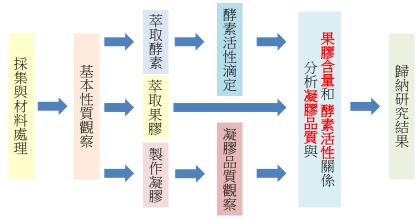
(三) 果膠含量

- (四) 果膠酯酶 (PME) 活性
- 二、觀察發育階段及個體(植株)間的 PME 活性差異
 - (一) 愛玉子 (不同植株)
- (二) 薜荔 (不同植株、不同發育階段)
- (三) 珍珠蓮 (不同發育階段)
- (四) 大果藤榕 (不同發育階段)
- 三、探討外在環境對 PME 的影響
 - (一) 探討溫度對 PME 活性的影響 (二) 探討鈣離子對 PME 活性的影響
- (三) 探討鈉離子對 PME 活性的影響 (四) 探討果膠酯酶抑制劑 (PMEI) 對 PME 活性的影響 四、探討不同 PME 與各種果膠的相容性
 - (一) 果膠與 PME 相容性測試
 - (二) 以混籽方式(1:1) 觀察凝膠表現


圖四、本研究實驗概念圖

參、研究設備及器材

表二、本研究使用的器材、耗材、藥品及採集植物


器	材		
精密電子秤	乾燥櫃		
電子游標卡尺	燒杯		
電子防爆控溫器	錐形瓶		
電子計時器	試管		
低溫植物培養箱	量筒		
植物生長培養箱	刮勺		
恆溫震盪水槽	玻棒		
磁石攪拌器	磁石		
複式顯微鏡	三腳架		
解剖顯微鏡	酒精燈		
離心機	陶瓷纖維網		
pH meter	漏斗		
打蛋器	捕蟲網		
打蛋棒	絹框		
滴定架	高枝剪		
滴定管	滴管		
烘箱	茶葉濾網		
溫度計	鑷子		
銲槍	熱熔槍		
數位相機	調理機		

耗材、藥品					
秤量紙	蒸餾水				
濾紙	礦泉水 (多喝水)				
吸管	95%酒精				
針筒	柑橘果膠				
投影片	蘋果果膠				
保鮮膜	氫氧化鈉 (NaOH)				
鋁箔紙	氯化鈣(CaCl ₂)				
瓦楞板	氯化鈉(NaCl)				
標籤	pH4 緩衝液				
熱熔膠條	pH7 緩衝液				
風扣版	pH10 緩衝液				
保鮮盒	果凍杯				
中藥布袋	果凍杯蓋				
竹籤	塑膠杯				
塑膠瓶	絲襪				
手套	紗布				
採织	集植物				
愛玉子	薜荔				
珍珠蓮	大果藤榕				
無花果					

圖五、本研究使用的設備器材。A. 植物生長箱(HIPOINT 747FH) B.磁石攪拌器(SUNTEX SH-301) C. 打蛋器(三箭牌 HM-250) D.離心機(DIGISYSTEM LABORATORY INSTRUMENTS, INC DSC156) E. 烘箱(YIH DER DK-500) F. 恆溫震盪水槽(WISDOM BC-2)

肆、研究過程或方法

圖六、本實驗流程。歸納酵素活性與果膠含量對凝膠品質之關係

一、採集與材料處理

(一) 愛玉子

- 1. 向高雄市桃源區復興部落農民收購新鮮愛玉子隱花果進行顯微觀察。
- 2. 直接購買烘乾的愛玉子,共選出四家廠商: WLC(對照組)、LC、WT、ALI,其中LC、WT均稱產地在阿里山; ALI則是在奮起湖向原住民購買。

(二) 薜荔

- 1. 本研究薜荔樣本來自:(1)澄清湖(對照組)(2)觀音山(3)煉油廠北門(4)五福路旁
- 2. 摘取成熟雌薜荔隱花果(參考愛玉子成熟度分期,分成四種顏色)。
- 3. 用水果刀沿著果皮劃一刀,將果皮與果肉分離,並將果肉盡量剝開。
- 4. 放入烘箱,以約30~35℃烘烤約24~48 小時。烘乾過程中,持續將薜荔籽剝成碎片,再繼續烘乾至恆重。
- 5. 將不同產地、不同成熟階段的薜荔籽分類,再放入乾燥櫃保存。

(三)珍珠蓮

- 1. 向台北市陽明山區農民收購新鮮雌珍珠蓮隱花果。
- 2. 依珍珠蓮隱花果外觀分成,採收期五月:小型(腰寬<1cm)、中型(腰寬>1cm, 隱花果長<1.5cm;對照組)、大型(長>1.5cm或腰寬>1.3cm)、採收期七月: 深綠(發育逾4個月,隱花果深綠色)、過熟(隱花果發紫、氣味香甜、有酒味)。
- 3. 用水果刀在尾端劃一刀,撥開隱花果,用湯匙的尾端小心挖出瘦果。
- 4. 放入烘箱,以約30~35℃烘烤約24~48 小時,烘乾至恆重,分類保存。

(四) 大果藤榕

- 1. 向屏東縣滿州鄉農民收購新鮮雌大果藤榕隱花果。
- 2. 用刨刀削去外皮、切成兩半。
- 3. 以約30~35℃烘烤約6~8小時後,將瘦果與果托翻轉,使瘦果朝外。
- 4. 以約 30~35℃烘烤約 24~48 小時, 烘乾至恆重。
- 5. 將烘乾的大果藤榕瘦果剝下,分類(未熟、<mark>成熟(對照組)</mark>、過熟)保存。 表三、本研究之樣本分類(*為對照組)

	個體差異				發育階段					
愛玉子	WLC*	LC	WT	ALI						
(產地)	高雄市	阿里山	阿里山	阿里山	_					
薜荔	澄清湖*	觀音山	煉油廠	五福路	乳白籽 淡黄籽 金黄籽* 過熟籽			過熟籽		
珍珠蓮			_		小型	中型		大型	深綠	過熟
少外建					隱花果	隱花男	!*	花果	隱花果	隱花果
大果藤榕		_	_		未熟 成熟* 過熟			過熟		

圖七、台灣產薜荔榕亞屬植物及本研究之樣本產地(左)。薜荔產地(右上,地圖來自 Google map 高雄市區圖)。 薜荔樣區照片(右下) A 澄清湖、B 觀音山、C 煉油廠、D 五福

圖八、薜荔(左)、珍珠蓮(中)、大果藤榕(右)不同時期、成熟度的隱花果與剖面圖

二、基本性質觀察

- (一) 隱花果觀察:觀察隱花果的長、寬、高、重量。
- (二) 瘦果觀察:以解剖顯微鏡觀察瘦果的長、寬、基本構造並畫出顯微繪圖。
- (三) 瘦果含水率測試
 - 1. 刮取新鮮瘦果置入秤盤內,量取重量並登記。
 - 2. 將其放入 35℃的烘箱烘 24~48 小時至恆重。
 - 3. 將烘好的乾瘦果及秤盤量取重量,把含水量換算成含水率。

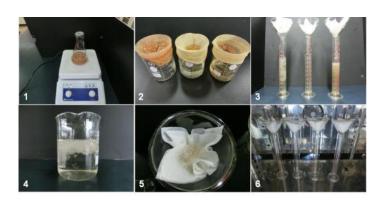
三、瘦果果膠含量萃取(圖九)

(參考李柏宏,2000 方法進行調整)

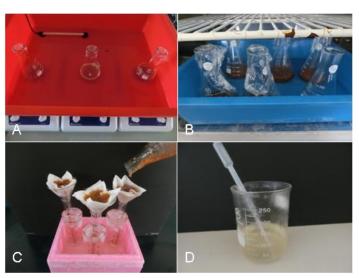
- (一) 量取 2 克的瘦果並放入 100 mL 沸水中去除 PME 活性 (避免攪打時凝膠)。
- (二) 以磁石攪拌器攪打一小時,充分溶出果膠。
- (三)以絲襪袋過濾花被等雜質、再以六層紗布過濾數次,將乾淨透明的膠質加入等量酒 精中,使果膠懸浮或沉降。
- (四) 以六層紗布過濾,留下固形物,以70℃烘乾24小時,把果膠乾重換算成百分比。

四、酵素粗萃 與 酵素活性滴定

(一) 果膠酯酶 (Pectin methylesterase, PME) 粗萃 (圖十)


(參考林讚標,1991;李柏宏,2000;蔡仲華,2002方法進行調整)

- 取乾燥瘦果(愛玉子、薜荔5g;珍珠蓮、大果藤榕2.5g)加入4%鹽水100c.c.,在24℃環境下,以磁石攪拌器攪打固定時間(愛玉子、薜荔2小時;珍珠蓮1小時,大果藤榕40分鐘)。
- 2. 放入3℃冰箱內靜置22小時。
- 3. 準備量筒、上方放置漏斗並鋪上 6 層紗布,量筒外鋪上碎冰。
- 4. 將靜置結束的籽及濾液倒入漏斗,收集到的液體即為 PME 粗萃取液。


(二) 酵素(果膠酯酶 Pectin methylesterase, PME) 活性滴定

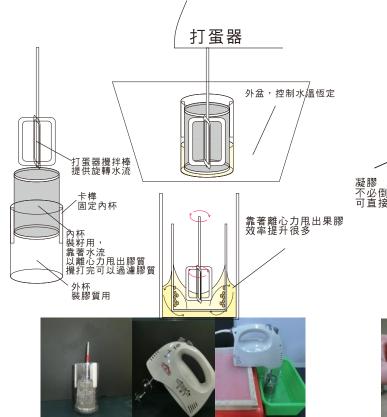
(參考李柏宏,2000;蔡仲華,2002方法進行調整)

- 1. 將萃取好的 PME 粗萃取液取 5c.c.加入 100 c.c. 0.5% 果膠水溶液内(全程 25℃)。
- 2. 加入 3 滴酚酞指示劑 (酒精 50c.c. + 水 50c.c. + 酚酞 0.5g)。
- 3. 以 NaOH 水溶液調整果膠液至變色 (pH = 8)。
- 4. 每半小時以 0.01M NaOH 滴定 1 次並記錄消耗量,紀錄 4 次共 2 小時。
- 5. 背景值測試:將 PME 加入試管內以酒精燈加熱 5 分鐘滅酶後,進行活性滴定(觀察酵素失去活性的情況下,果膠液 pH 值是否會下降)。
- 6. 將滴定數值(果膠液+酵素)扣除背景值(果膠液+滅酶後的酵素)即為 PME 活性數值。
- 6. 愛玉子及薜荔是使用 5g 籽萃取 PME,珍珠蓮及大果藤榕使用 2.5g 籽萃取;因此 四者在比較活性時須換算成相同比例
- 7. 依照實驗需求將 PME 活性數值換算成百分比。

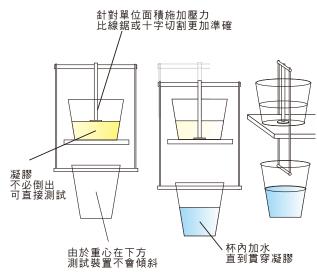
圖九、果膠萃取。1 將瘦果秤重倒入沸水中, 使酵素失去活性,再攪打 1 小時、2 絲襪過濾 瘦果與花被、3 六層紗布過濾出膠質、4 加入等 量酒精中、5 以六層紗布濾出酒精,使果膠固 著於紗布上、6 以 70℃烘乾

圖十、酵素萃取之流程。

A 先將瘦果與 4%鹽水以固定比例在 24℃環境下 攪打、B 將萃取液靜置於 3℃環境 22 小時、C 將靜置 22 小時之萃取液以 6 層紗布在低溫環境 過濾、D 為萃取完之 PME 粗萃取液


五、凝膠製程 與 品質測試方法

(一) 凝膠製作流程開發


- 1. 裝置設計:本研究開發小型離心攪拌裝置甩出膠質,此方法比水流衝擊或刷毛摩擦更加快速、衛生,裝置設計如下:
 - (1) 將塑膠瓶切開,作為外杯;將茶葉濾網放入,作為內杯。
 - (2) 在外杯內側黏上三條細瓦楞板,固定內杯。
 - (3) 將打蛋器攪拌棒放入,提供水流旋轉及離心力。
- 2. 凝膠製作流程(表四、圖十一)
 - (1) 將瘦果以固定的比例加入 100 c.c.純水中,並用打蛋器以固定時間攪打。
 - (2) 若要在高於 25℃的環境打攪時,則在恆溫震盪水槽裡控溫攪打。
 - (3) 將膠質倒出、濾淨,取約45 c.c.分裝兩杯,放入果凍杯內靜置。

表四、凝膠標準流程

瘦果種類	水質	籽重:水重	攪打溫度	攪打時間	過濾方法	靜置時間	靜置溫度
愛玉子 薜荔	純水或	2:100	25℃或	3分鐘	以茶葉濾網過		10℃
珍珠蓮	其他水 溶液	或各種比例	其他溫度 全程控溫	5 分鐘	濾,取 45c.c.放 入果凍杯	24 小時	全程控溫
大果藤榕	份仅		土作11工/皿	3 万理	八木木竹		

圖十一、攪打裝置

圖十二、硬度測試裝置圖

圖十三、完全凝膠的果凍可橫放不滑落

- (二) 凝膠品質測試(圖十二、十三)
 - 1. 凝膠強度:本研究參考許多科展作品,比較各種果凍類食品硬度測試裝置,曾有以線鋸的方式切割果凍(陳英宇等,2010),但常發生線鋸傾斜;或以十字切割(黃榆翔等,2015),但摩擦力大,最後開發出目前的硬度測試方式,針對固定面積的果凍施加壓力作為凝膠強度測試方法,也是最精準的方式。
 - (1) 以吸管固定用於施加壓力的三號針筒尾棒。
 - (2) 以竹籤和吸管固定下方置物台,讓裝置重心在下方,保持平衡。
 - (3) 置物平台為塑膠杯,用來盛裝水(或硬幣)施加壓力,直至果凍貫穿。
 - (4) 凝膠結果定義:「略凝」輕輕轉動果凍,可觀察到膠體來回甩動。 「完全凝膠」指果凍杯橫放,果凍可不滑落。
 - 2. 出水量:用滴管吸出容器內多出的水,為離水現象的出水量。

六、果膠酯酶抑制劑(Pectin methylesterase inhibitor,PMEI)萃取方法

(參考李柏宏,2000 方法進行調整)

- (一) 將愛玉子瘦果先熱水去除 PME 活性後,充分搓洗去除果膠,使用「步驟三、瘦果果膠含量萃取」剩下的殘渣並烘乾至恆重。
- (二) 取籽加純水以 1:15 (w/v) 的比例,以食物調理機攪打成泥,將液體以絲襪過濾。
- (三) 過濾完的液體以離心機離心 50 分鐘,濾掉雜質,即為 PMEI 粗萃取液。
- (四) 將抑制劑粗萃取液加入水中製作凝膠,或取 1~5c.c. 抑制劑及 PME 加入果膠液中進行活性滴定。

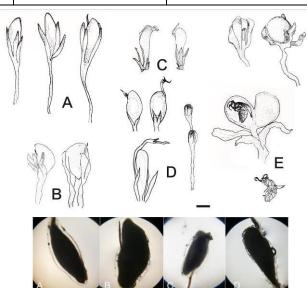
七、測試果膠與 PME 的相容性

- (一)以「步驟四、酵素粗萃」萃取出愛玉子、薜荔、珍珠蓮、大果藤榕的 PME。
- (二)以「步驟三、瘦果果膠含量萃取」萃取愛玉子、薜荔、珍珠蓮、大果藤榕的果膠,新增無花果果膠。
- (三) 配置 1% 柑橘果膠液和蘋果果膠液備用。
- (四) 以不同果膠 (25 c.c.) 搭配不同 PME (5 c.c.) 進行交替測試實驗,再於 10℃冰箱靜置 24 小時。

伍、研究結果

一、愛玉子、薜荔、珍珠蓮、大果藤榕的基本性質觀察

(一) 隱花果、瘦果觀察


	愛玉子	薜荔	珍珠蓮	大果藤榕
學名	F. pumila L. var. awkeotsang (Makino) Corner	F. pumila L. var. pumila L.	F. sarmentosa B. Ham. ex J. E. Sm. var. nipponica (Fr. & Sav.) Corner	F. aurantiacea Griff var. pavifolia (Corner) Corner
俗名	天拋藤、風不動		冰粉樹、阿里山珍珠蓮、崖 石榴、石彭子、小木蓮、牛 奶蒲,匍莖榕	麴林寮玉子、假寮玉子、
分類	桑 根 莖榕節 Sect. Rhizocladus	科 Moraceae 格屬 Ficu 根莖格節 Sect. Rhizocladus	rs 薜荔榕亞屬 subg.Syno 根 莖榕節 Sect. Rhizocladus	ecia <mark>麗榕節</mark> Sect. Kalosyce
分布	台灣海拔 800~2000 公尺 山區	泛全台灣平地分布	台灣海拔 600~2500 公尺 山區,但主要分布在北台灣	屛東、台東、蘭嶼平地
果期	主要是秋、冬季;現農民 已選植全年都結果的植株		尚無農民進行栽培,主要在 野外採集,果期約農曆七月	
傳粉 動物	愛玉榕小蜂 (Wiebesia awkeotsang)	薜荔榕小蜂 (W. pumilae)	珍珠蓮榕小蜂 (W. callida)	大果藤榕榕小蜂 (W. contubernalis)

表五、隱花果與瘦果資料

	愛玉子		薜荔	珍珠蓮	大果藤榕
爲	長度	8.4±1.2 cm	2 cm 4.88±0.60 cm 1.31±0.12 cm		5.13±0.89 cm
隱花果	寬度	4.6±0.4 cm	4.53±0.57 cm	1.16±0.08 cm	4.32±0.52 cm
米	鮮重	作重 77.3±15.7 g 43.66±11.18 g		0.81±0.19 g	39.09±9.53 g
	長度		2.68±0.34 mm	2.81±0.83 mm(含果柄)	2.34±0.47 mm
果	寬度	1.03±0.16 mm	1.11±0.10 mm	0.66±0.20 mm	0.94±0.19 mm

圖十四、本研究的四種榕屬凝膠植物雌隱花果和瘦果觀察。A 愛玉子、B 薜荔、C 珍珠蓮、D 大果藤榕。A-1、B-1、C-1、D-1 為隱花果剖面。A-2、B-2、C-2、D-2 為 新鮮瘦果

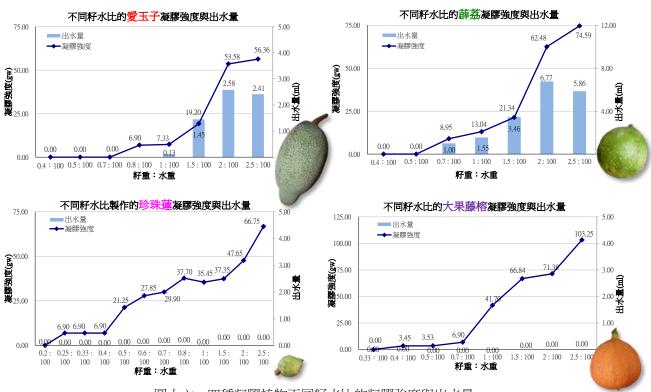
圖十五、四種榕屬植物顯微繪圖(上圖),Bar = 1 mm、及 瘦果泡水(下圖)外果皮分離。A 愛玉子、B 薜荔、C 珍珠 蓮、D 大果藤榕、E 薜荔蟲癭、薜荔榕小蜂

(二) 凝膠特性觀察(凝膠時間、最大凝膠倍數)(表六、圖十六)

1. 愛玉子、薜荔、珍珠蓮、大果藤榕的凝膠特性

愛玉子與薜荔的凝膠性質較接近,皆屬於脆性果凍,出水多;而珍珠蓮、大果藤榕屬於彈性果凍,形變大,幾乎不出水。

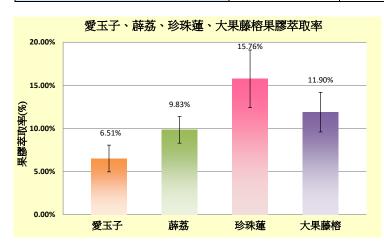
2. 愛玉子、薜荔、珍珠蓮、大果藤榕最大凝膠倍數(製作 25℃,靜置 10℃24 小時)


一般商家或研究人員以最大凝膠倍數(largest gelation times)作為判斷愛玉子品質好壞的依據,本研究也將各種植物瘦果的最大凝膠倍數測出。發現凝膠倍數最大的是珍珠蓮,達400倍,愛玉子125倍、薜荔140倍、大果藤榕250倍。

3. 愛玉子、薜荔、珍珠蓮、大果藤榕的凝膠最短時間(製作、靜置 25℃)

愛玉子凝膠時間最短,5分鐘內開始凝膠;大果藤榕次之,30~40分鐘開始凝膠; 珍珠蓮 40~60分鐘開始凝膠;薜荔 90 分鐘後開始凝膠。

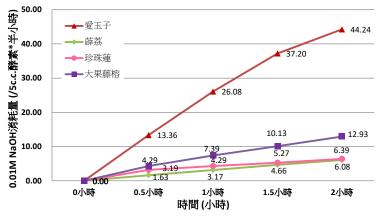
表六、最大凝膠倍數與凝膠時間


	愛玉子	薜荔	珍珠蓮	大果藤榕
最大凝膠倍數	125 倍	140 倍	400 倍	250 倍
開始凝膠時間	5分鐘內	90~120 分鐘	40~60 分鐘	30~40 分鐘

圖十六、四種凝膠植物不同籽水比的凝膠強度與出水量

(三) 果膠含量

果膠萃取率	愛玉子	薜荔	珍珠蓮	大果藤榕
果膠含量	6.51%	9.83%	15.76%	11.90%
標準差	1.55%	1.55%	3.36%	2.30%

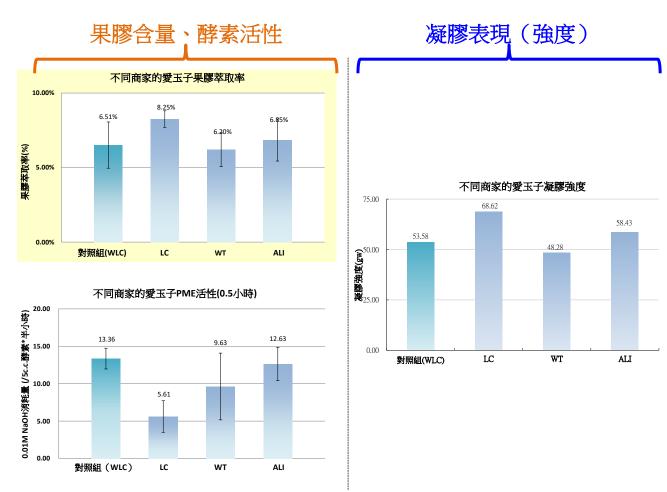


愛玉子的果膠萃取率(果膠乾重/瘦果乾重)平均為 6.51%、薜荔 9.83%、珍珠蓮 15.76%、大果藤榕 11.90%。我們發現,愛玉子果膠含量並未超過另外三者,可能是因為我們採集的薜荔、珍珠蓮與大果藤榕成熟度都高過愛玉子,也更新鮮。與前一實驗比較,推測果膠越多,凝膠倍數越大。

(四) 果膠酯酶 (PME) 活性

	愛玉子酵素活性	薜荔酵素活性	珍珠蓮酵素活性	大果藤榕酵素活性
0.5 小時	13.36	1.63	3.19	4.29
0.5~1 小時	12.73	1.54	1.10	3.10
1~1.5小時	11.12	1.49	0.98	2.74
1.5~2 小時	7.03	1.42	1.13	2.80

愛玉子、薜荔、珍珠蓮、大果藤榕PME活性(逐時)



我們以鹽萃的方式獲得愛玉子、薜荔、珍珠蓮、大果藤榕的PME粗萃取液,再利用果膠酯酶(PME)使果膠鏈上的甲基酯鍵(-COOCH₃)水解成羧基(-COO⁻),以 0.01MNaOH每半小時滴定一次,我們發現,PME反應前半小時,活性最高,隨著時間增加,果膠濃度下降,滴

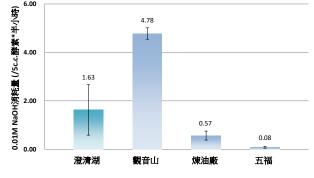
定值也下降,故我們主要採用前半小時滴定值作為 PME 活性:四種榕屬植物中,愛玉子活性最好,0.01M NaOH 消耗量為 13.36mL/5c.c.酵素*半小時,大果藤榕 4.29 單位,珍珠蓮 3.19單位,薜荔 1.63 單位(採自澄清湖)。與前一實驗比較,推測活性越好,凝膠速度越快。

二、觀察發育階段及個體(植株)間的 PME 活性差異

(一) 愛玉子 (不同植株)

我們發現,我們所購買的愛玉子,PME 活性差異極大,活性最佳的是「WLC」愛玉子,有 13.36 單位 PME 活性,「ALI」愛玉子活性第二,有 12.63 單位,「WT」與「LC」的 PME 活性分別只有 9.63 及 5.61 單位;但凝膠表現卻是活性最差的「LC」凝得較好,很可能是因為「LC」的愛玉子果膠含量最多,因此我們認為,對愛玉子而言,PME 活性都非常足夠,

影響凝膠的關鍵是果膠含量。

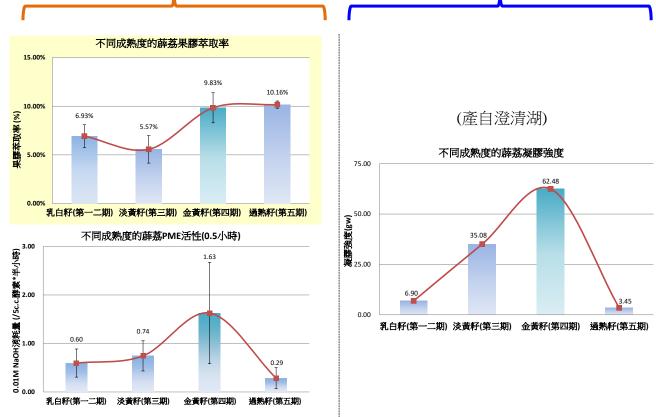

(二) 薜荔 (不同植株、不同發育階段)

果膠含量、酵素活性

凝膠表現(強度)

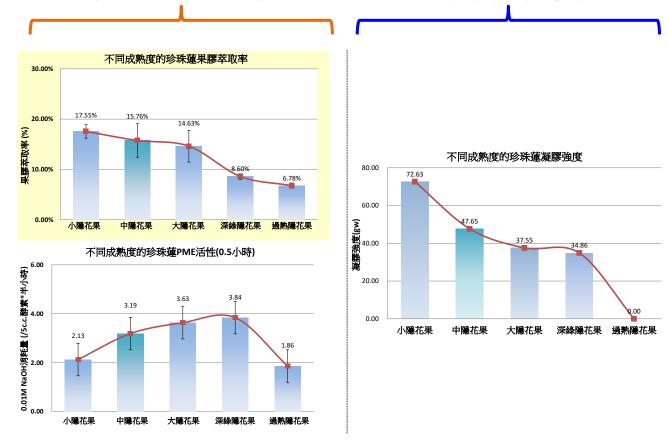
我們發現,不同產地的薜荔 PME 活性有個體差異,表現最好的是觀音山植株的薜荔, 高達 4.78 單位 (接近「LC」愛玉子 5.61 單位), 其次為澄清湖 1.63 單位, 煉油廠 0.57 單位, 最差的是五福樣區只有 0.08 單位,已經接近背景值,幾乎測不到 PME 活性。在果膠含量上, 我們發現四個樣區的薜荔均含有6%以上,顯示果膠含量不輸愛玉子(6.20%~8.25%)。

我們將不同產地的薜荔以不同籽水比製作凝膠,發現澄清湖和觀音山植株的薜荔皆可 在 1.5:100 凝膠 (接近愛玉子水準),煉油廠植株在 8:100 才發生凝膠,五福植株僅在籽水 比 10:100 時略凝,品質最差。此結果顯示<mark>薜荔植株間的 PME 活性個體差異極大,凝膠強</mark> 度趨勢與 PME 活性趨勢一致;因此,我們推測決定薜荔凝膠成敗的關鍵,可能是 PME 活性。


推測,造成薜荔植株間 PME 活性差異的原因,可能是基因、成熟度或環境因素,故我們將薜荔籽依照發育程度不同區分,做接下來的實驗。我們將採自澄清湖的薜荔籽(對照組)依照顏色區分為乳白籽(第一二期)、淡黃籽(第三期)、金黃籽(第四期)和過熟爆裂的過熟籽(第五期)進行 PME 活性以及凝膠強度比較。

圖十七、參考愛玉子發育時期,訂出薜荔不同時期、成熟度的隱花果

凝膠表現(強度)

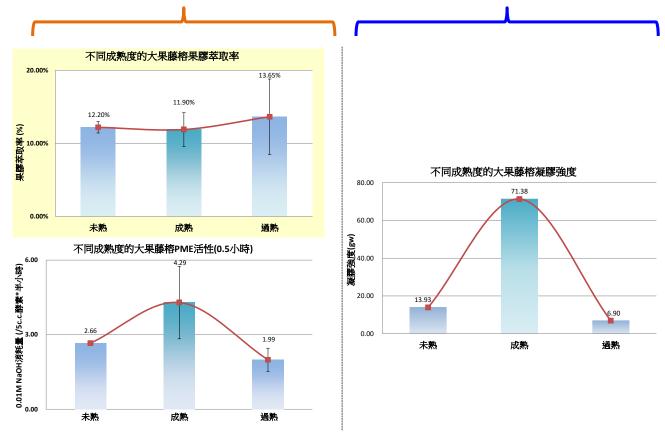


隨著瘦果發育,PME 活性提升,第四期金黃籽活性最高,但過熟籽的 PME 活性劇降。果膠含量普遍逐漸增加。酵素活性和凝膠品質上在<mark>第四期金黃籽的凝膠品質最佳</mark>。

(三) 珍珠蓮(不同發育階段,我們依照隱花果外觀區分,小型:腰寬小於 1cm;中型:腰寬>1cm,隱花果長<1.5cm;大型:隱花果長>1.5cm或腰寬>1.3cm;深綠:隱花果呈深綠色;過熟:隱花果發紫)

果膠含量、酵素活性

凝膠表現(強度)


我們發現不同發育階段的珍珠蓮,PME 活性隨著發育期而逐漸上升,小型隱花果活性為 2.13 單位,中型隱花果活性是 3.19 單位,大型隱花果活性是 3.63 單位,深綠隱花果 3.84 單位,過熟隱花果 1.86 單位。果膠含量:小型 17.55%,中型 15.76%,大型 14.63%,差異不大,越成熟果膠越少,深綠隱花果 8.60%,過熟 6.78%。凝膠表現上,小型隱花果凝得特別好,過熟隱花果完全無法凝膠,也許除了果膠及 PME 影響外,還有其他影響因素 (例如:瘦果表面積、礦物質、發酵後的產物等),這部分可再加以探討。

(四) 大果藤榕 (不同發育階段)

凝膠表現(強度)



我們發現不同發育階段的大果藤榕,果膠含量和 PME 活性都有所差異,PME 活性是隨著發育期而上升,但當成熟度過高 PME 活性又會下降,未熟大果藤榕的 PME 活性有 2.66 單位,成熟活性為 4.29 單位,過熟活性是 1.99 單位。果膠含量:未熟 12.20%,成熟 11.90%,過熟 13.65%。凝膠表現:成熟籽的凝膠強度最好,總和以上結果顯示對大果藤榕而言,影響凝膠品質的關鍵在於成熟度。

三、探討外在環境對 PME 的影響

(一) 探討溫度對 PME 活性的影響

我們發現,愛玉子、薜荔、珍珠蓮、大果藤榕在 30℃以下時,溫度越高、PME 活性越好,但愛玉子即使是在 4℃的環境下,活性仍有 5.39 單位,顯示愛玉子 PME 最耐低溫。若將 PME 以 $40\sim100$ ℃熱處理 5 分鐘,再降回常溫進行滴定,則會觀察到 PME 隨溫度增加而失去活性的情形(以百分比呈現),愛玉子 PME 在 60℃時,仍保有近 9 成的活性,70℃活性驟降,薜荔 PME 在 40℃時活性大幅降低,珍珠蓮和大果藤榕在 $50\sim60$ ℃時,活性驟降,我們認為,四種凝膠植物 PME 失去活性的溫度不同,代表它們的 PME 並非同型。

凝膠表現上,我們也觀察到相同的趨勢,製作愛玉子凝膠時可以 55℃製作,大果藤榕及 珍珠蓮耐熱性較愛玉子略差,薜荔只能在 35℃以下製作凝膠。

不同製作溫度的愛玉子凝膠表現(強度、出水量)

製作溫度 15~65℃,靜置溫度 10℃, 24 小時

我們也發現,使用不同溫度製作的 愛玉子凝膠出水量會隨著溫度增 加,出水量下降,我們更進一步驗 證發現,只要將愛玉籽以 55℃熱水 燙過,等降溫後製作凝膠,可以使凝 膠出水量大幅下降,我們推論:離水 現象也是酵素造成,但此酵素不是果 膠酯酶(PME)而是果膠水解酶 (PG),其耐熱程度不及PME,故 應用上,熱處理的方式可使愛玉不出 水(但不適用於薜荔、珍珠蓮、大果 藤榕)。

(二)探討鈣離子對 PME 活性的影響

在不同氯化鈣濃度下的 愛玉子、薜荔、珍珠蓮、大果藤榕PME活性(0.5小時)

14.31

13.56

14.85

16 91

25.00

20.00

15.00

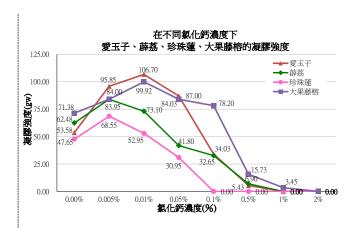
10.00

- 愛玉子

薜荔

━ 珍珠蓮

----大果藤榕

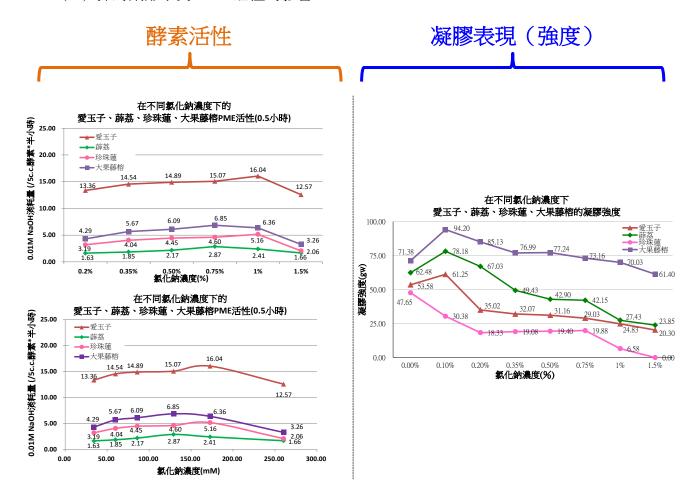

13.39

13.36

0.01M NaOH消耗量 (/5c.c.酵素*半小時) 6.86 5.65 5.11 5.46 4.17 5.00 3.44 5.98 3.19 ● 2.60 ◆ 1.56 2 42 2.19 2.50 1.59 1.59 0.00 1.61 1.76 2% 0% 0.005% 0.01% 0.05% 0.5% 1% 氨化鈣濃度(%) 在不同氢化鈣濃度下的 愛玉子、薜荔、珍珠蓮、大果藤榕PME活性(0.5小時) 3.01M NaOH消耗量 (/5c.c.酵素*半小時) 20.00 一爱玉子 - 薜荔 - 珍珠蓮 15.00 ■ 大果藤榕 5.00 0.00 50 100 150 200

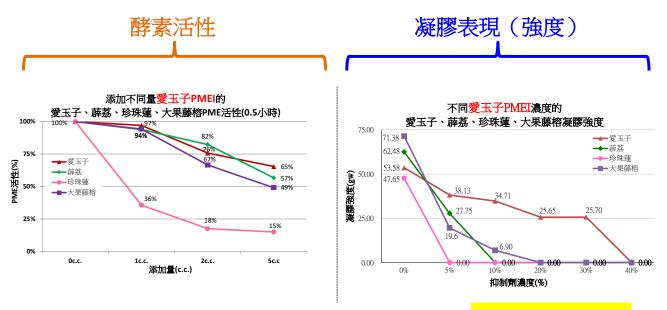
氯化鈣濃度(mM)

凝膠表現(強度)



我們發現,PME活性普遍會隨著氯化鈣的

農度增加而逐漸上升,但在 2%時下降(高峰 <mark>約在 40~90mM)</mark>;凝膠強度方面,0.005~0.01% (Ca²⁺=18~36ppm) 左右的濃度凝膠強度達最


之後隨著濃度增高,凝膠強度逐漸下降。

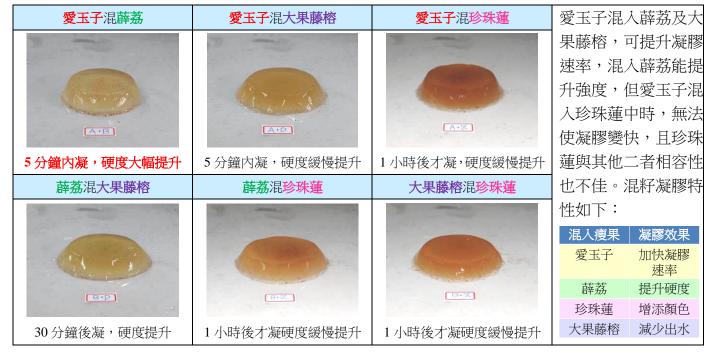
(三) 探討鈉離子對 PME 活性的影響

我們發現,<mark>愛玉子和珍珠蓮的 PME 活性在氯化鈉 1%時最好;薜荔、大果藤榕的 PME 活性在氯化鈉 0.75%的時候最好(高峰在 150mM 附近)</mark>,後來濃度增加到 1%時又因為濃度 過高而導致活性變差。但在凝膠強度上,珍珠蓮在不添加時硬度最好,而愛玉子、薜荔及大果藤榕少量的添加氯化鈉,都能使凝膠強度增加,氯化鈉濃度過高也會影響凝膠表現。

(四)探討果膠酯酶抑制劑(PMEI)對 PME 活性的影響

在愛玉子、薜荔、珍珠蓮、大果藤榕 PME 中添加各種劑量的愛玉子果膠酯酶抑制劑

(PMEI)可使降低四種 PME 活性及凝膠強度,再次驗證四種植物都具有 PME。


四、探討不同 PME 與各種果膠的相容性

(一) 果膠與 PME 相容性測試

	愛玉子 PME	薜荔 PME	珍珠蓮 PME	大果藤榕 PME	不添加 PME
愛玉子果膠		0	略凝	0	不凝膠
薜荔果膠			略凝		不凝膠
珍珠蓮果膠	略凝	略凝	略凝	略凝	不凝膠
大果藤榕果膠			略凝		不凝膠
無花果果膠	不凝膠	不凝膠	不凝膠	不凝膠	不凝膠
柑橘果膠(1%)			48hr <mark>略凝</mark>		不凝膠
蘋果果膠(1%)			48hr <mark>略凝</mark>		不凝膠

去年的科展報告「天之『膠籽』的『凍』感魔法」(黃榆翔等,2015)報導了愛玉子、薜荔、大果藤榕可混籽凝膠改善品質。本實驗利用粗萃的 PME 及果膠進行混搭,發現<mark>愛玉子、薜荔、大果藤榕相容性佳,但與珍珠蓮相容性較差;無花果果膠與任何 PME 搭配都不凝膠;蘋果及柑橘果膠加入 PME 可以凝膠但果凍易碎,顯示不同果膠分子構造上可能有差異。</mark>

(二) 以混籽方式(1:1) 觀察凝膠表現

陸、討論

<u>台灣</u>共有四種可凝膠的榕屬植物:**愛玉子、薜荔、珍珠蓮、大果藤榕**,其中,愛玉子製作的果凍是著名的消暑飲品;薜荔製作的果凍,在<u>中國大陸、新加坡</u>都有人食用;珍珠蓮主要分布在北<u>台灣</u>,當地稱之為「山愛玉」或「小愛玉」,<u>北投</u>一帶居民在產季時會製成果凍食用;大果藤榕也能凝膠,分布於<u>台灣</u>南部、東南亞等地,<u>屏東滿州鄉</u>居民稱為「假愛玉」。本研究旨在探討四種植物的「酵素」與「果膠」在凝膠過程扮演的角色。

一、薜荔榕亞屬的分類

我們向榕屬植物的分類學者請教,專家指出:分類上,榕屬隸屬於桑科,但其花序結構 (隱頭花序)及傳粉系統(與慣授粉榕小蜂具專一性、生物間互利共生),是很特殊的一群,有些學者建議提升至「榕科」,不過因植物分類使用習慣而較少人使用。榕屬下分成七個亞屬,分別是:藥榕亞屬、尾柱榕亞屬、無花果榕亞屬、薜荔榕亞屬、澀葉榕亞屬、埃及無花果榕亞屬及綿毛榕亞屬,本研究觀察的四種植物皆屬於「薜荔榕亞屬」。

薜荔榕亞屬的特徵是藤本、幼年披細毛、榕果腋生、果核平滑且呈長橢圓形等(莊瑞均等,2005),全世界有七十多種,<u>台灣</u>本島有四種——即為愛玉子、薜荔、大果藤榕及珍珠蓮,當中珍珠蓮分成<u>日本</u>珍珠蓮(*F. sarmentosa* var. *nipponica*)及<u>阿里山</u>珍珠蓮(*F. sarmentosa* var. *henryi*) 兩變種,兩者差異在隱花果上毛的疏密程度,目前認為是連續性變異,故合併處理(生物多樣性資訊網,2016),外島有一種——蘭嶼的「鈍葉毛果榕(*F. trichocarpa* Bl. var. *obtusa* (Hassk.) Corner)」,但因取得困難,我們未加以分析。

事實上,專家指出:多數榕果在成熟時都常會發生凝膠,也許都含有果膠或 PME。但將此凝膠商品化的榕屬植物只有愛玉子、薜荔、珍珠蓮及大果藤榕四種薜荔榕,我們推測,他們分類上較接近,PME 活性可能也是榕屬植物中最顯著的。

二、隱花果的收集

我們選擇四家廠商購買當年度的乾燥愛玉子(WLC、LC、WT、ALI);大果藤榕我們向屏東滿州農民購買;珍珠蓮我們請<u>陽明山</u>區農民協助採集;薜荔並無商家販售,我們自行採集,我們在<u>高雄</u>數個地區發現薜荔,並選定<u>澄清湖</u>畔作為第一個樣區,這裡有棵樹齡逾10年的薜荔雌株,一年四季都會結果,是我們的薜荔對照組。我們也在<u>五福路</u>旁、<u>煉油廠</u>北門外、觀音山腳下發現雌薜荔植株,以上為本實驗薜荔的四個樣區。

三、不同發育階段

林讚標(1991)博士指出,愛玉子依發育階段分成五期,分別是第一期花托鮮重急增期(乳白籽),瘦果含水率極高,第二期瘦果鮮重快增期(乳黃籽),含水率逐漸降低;第三期瘦果乾物堆積成熟期(淡黃籽),含水率繼續降低;第四期花托鮮重再增期(金黃籽);第五期隱花果紅熟期(過熟籽),含水率再度急增,果膠黏稠,花托顏色逐漸轉變為紅紫色。

我們參考他的愛玉子分期,也將薜荔依瘦果顏色分成五期進行觀察;此外,我們也將珍珠蓮依照隱花果大小及外觀分成小型(直徑<1cm)、中型(長<1.5cm,腰寬>1cm)、大型(長>1.5cm,腰寬>1.3cm)、深綠(發育超過4個月,隱花果呈深綠色)、過熟(隱花果發紫);大果藤榕則是依照隱花果顏色分期,分別是黃色(未熟)、橘色(成熟)、紫色(過熟)三期。

四、瘦果前處理(圖十八)

一般愛玉子的處理方式是日照,但此方法需要穩定的日照及場地,故我們的薜荔、珍珠蓮、大果藤榕隱花果仍是採用烘乾處理方式,將瘦果自隱花果挖出,以 30~33℃烘乾至恆重。

圖十八、薜荔、大果藤榕、珍珠蓮之材料處理。A-1為採集的薜荔隱花果、A-2將薜荔隱花果剖面、A-3將薜荔瘦果取下、A-4將瘦果烘乾;B-1為大果藤榕隱花果、B-2刨下大果藤榕果皮、B-3將大果藤榕剖面及烘乾、B-4將烘乾瘦果取下;C-1為珍珠蓮隱花果、C-2珍珠蓮剖面、C-3將珍珠蓮瘦果取下、C-4將瘦果烘乾

五、凝膠機制

前人研究中曾提到:果膠分成高甲氧基果膠(甲氧基含量 7%以上)和低甲氧基果膠(甲氧基含量 7%以下),在 PME 去酯化反應中,高甲氧基果膠水解形成低甲氧基果膠,再與水中之二價陽離子鍵結產生網狀結構,把水分子包覆,形成果凍(李靜雯,2002)。本研究除了設計標準的凝膠製作流程觀察凝膠品質外,也嘗試萃取果膠及 PME,滴定活性。

六、標準化凝膠製作流程設計

在第50屆科展作品「『凍』裡乾坤-愛玉凝膠因子之探討」(陳英宇等,2010) 裡,使用磁石攪拌器製作凝膠,可惜耗時長。去年<u>高雄</u>市賽「天之『膠籽』的『凍』 感魔法」(黃榆翔等,2015)開發以打蛋器攪打,在攪拌棒綁上刷毛來增加摩擦力,速度雖快 但殘留許多膠質,無法回收,今年我們再改良方法,利用離心原理甩出膠質(類似脫水機)。 以我們設計的裝置攪打時,內杯的籽離心甩出膠質,外杯的水會反覆吸進內杯,省時又衛生。

七、改良硬度測試方法

果凍類食品的硬度測試方法,在第 50 屆科展作品「『凍』裡乾坤—愛玉凝膠因子之探討」(陳英宇等,2010),以<mark>線鋸</mark>的方式來測硬度,但會有不平衡的問題。55 屆「天之『膠籽』的『凍』感魔法」(黃榆翔等,2015)以十字切割的方法來測量果凍硬度,但摩擦力過大,於是我們又製作新的測試裝置,將 3 號針筒內的推棒取出

倒置, **針對固定面積對凝膠施加壓力使果凍貫穿**。本裝置以點壓方式使受力平均, 也更精準。

八、果膠酯酶(PME)粗初萃及活性測定

為了深入探討酵素對凝膠機制的影響,我們嘗試萃取出愛玉子、薜荔、珍珠蓮、大果藤 榕的果膠酯酶(PME)。起初,我們把新鮮的果凍碎塊加進果膠內,發現活性不佳,我們又懷 疑離水現象的出水或許含有酵素,便將出水加進愛玉子果膠內測試,發現不會產生凝膠,推 測出水內可能沒有酵素,或活性很差。

最後我們參考<u>林讚標</u>博士(1991)鹽萃的方法萃取 PME(將籽與 4%鹽水以 1:15 w/v 的比例加進錐形瓶,再以磁石攪拌器攪打 2 小時,在低溫環境靜置 22 小時,使用 6 層紗布過濾),鹽水對植物細胞是高張溶液,酵素和膠質溶出慢,且鈉離子也會與鈣離子競爭避免凝膠。我們實際測試,卻發現此比例攪打中**常凝膠**,因此我們降低籽水比為 1:20 (w/v)。接著我們測試 3~7%鹽水萃取 PME,發現仍是 4%及 5%鹽水萃取的 PME 活性都高過其他濃度。

愛玉子及薜荔 PME 使用上述方法可成功萃取,但珍珠蓮及大果藤榕因果膠過多常導致磁石無法攪動,我們嘗試將**籽量減半、縮減時間**,發現以珍珠蓮**攪打 1 小時**及大果藤榕**攪打 40** 分**鐘**的 PME 萃取活性最佳,且不凝膠,故採用此條件萃取 PME,由於其籽量減半,滴定數據加倍再與愛玉子、薜荔比較。

我們的活性測定方法是採鹼滴定法,由於果膠被去酯化產生羧基,以 NaOH 溶液連續滴定 PME 水解果膠單位時間產生的羧基表示活性,步驟如下:取 0.5% 柑橘果膠質溶液 100mL 加入 5c.c. PME 粗萃取液並加入 3 滴酚酞,以 NaOH 溶液滴到變色(pH=8),接著靜置於 25 ℃環境下,每半小時滴定一次,觀察 2 小時(數據扣除背景值—將酵素滅酶後加入果膠液後滴定)。我們的方法與林讚標博士在滴定頻率上稍有不同,因為我們觀察的植物中,薜荔、珍珠蓮和大果藤榕活性不如愛玉子,密集的滴定將比較不出差異,因此我們每半小時滴定一次。 九、果膠含量和果膠萃取

影響愛玉子凝膠的原因除了酵素,另一個關鍵就是果膠,<u>李柏宏</u>(2000)曾指出以水萃取果膠是最快的方式,但可能發生凝膠,所以我們想到,**高溫滅酶**也許能解決此一問題,我們取 2g 瘦果加入錐形瓶中,加入 100c.c.沸水滅酶,再以磁石攪拌器攪打 1 小時,使果膠充分溶出,接著將攪完的液體過濾,再以酒精沉降法分離果膠,最後以 6 層紗布過濾固形物濾出酒精,以 70℃烘乾。秤重後除以瘦果乾重換算成果膠含量(%)再行比較。

十、PME 活性探討

(一) 愛玉子、薜荔、珍珠蓮、大果藤榕的 PME 活性分析

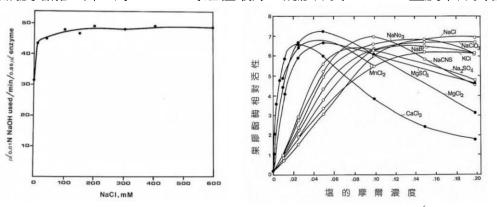
我們發現,愛玉子 PME 活性最好,是薜荔、珍珠蓮和大果藤榕的數倍,愛玉子 PME 活

性介於 12~18 (平均 13.36) 單位,薜荔介於 1~5 (平均 1.63) 單位,珍珠蓮介於 2~5 (平均 3.19) 單位,大果藤榕則介於 4~7 (平均 4.29) 單位,愛玉子活性最高,因此凝膠速度也是四者中最快,在相同條件時(籽水比 2:100,常溫下)只需 5 分鐘即可凝膠,大果藤榕需要 30 分鐘,珍珠蓮需 40 分鐘,薜荔由於 PME 活性最差,需要 1.5 小時才能凝膠,在四者中凝膠速度最慢,有些 PME 不佳的薜荔甚至無法凝膠。

(二) 個體差異與發育階段的影響

我們將獲得的樣本分類,探討個體差異與發育階段對 PME 活性、果膠含量及凝膠表現之影響。我們發現,愛玉子的 PME 活性都很高,但果膠含量有差別,果膠越多凝的越好;薜荔是我們自行採集與分類的,我們發現澄清湖與觀音山的薜荔 PME 活性佳,凝的也很好;珍珠蓮的實驗結果很特別,小型隱花果活性差但凝得特別好,過熟隱花果完全無法凝膠;而大果藤榕則是以成熟果實 PME 活性最好,未熟及過熟,活性差,凝膠品質也差。

(三) 溫度對於 PME 活性的影響


在溫度對 PME 活性的影響上,因此我們想了解 PME 在各種溫度下的活性變化,我們做了 $4\sim30^\circ$ C的全程水浴觀察 PME 活性。發現在 4° C時 PME 活性都是最低的(愛玉子 5.39 單位,薜荔 0.29 單位,珍珠蓮 0.44 單位,大果藤榕 0.73 單位/0.5hr),但愛玉子在如此低溫時活性仍然算高,因此低溫下僅適合愛玉子製作凝膠。

此外,我們知道酵素在高溫環境時會失去活性,為了瞭解 PME 的耐熱性,我們對 PME 做了熱處理 $30\sim100^{\circ}$ C(維持 5 分鐘),我們發現愛玉子的 PME 活性在 $25\sim50^{\circ}$ C活性幾乎都沒有下降,直到 50° C時才略有下降的趨勢, 70° C PME 失去活性;薜荔在 40° C時活性大幅下降;大果藤榕和珍珠蓮在 60° C活性大幅下降;上述實驗結果我們推論:愛玉子、薜荔、珍珠蓮、大果藤榕雖然都有 PME,但分子構造上也許有差別。

(四) 礦物質陽離子對於 PME 活性的影響

販售愛玉凍的商家會建議使用礦泉水製作果凍,因為礦泉水中含有鈣、鎂離子及鈉離子等,可幫助凝膠並減少耗籽量,我們先查閱了文獻,發現<u>黃永傳</u>博士(1980)提及了水中鈣離子濃度介於50~100ppm間可得品質較佳的凝膠,濃度100ppm以上則凝膠品質變差,可見微量添加對於PME活性有明顯的促進作用,濃度過高反而會抑制PME的活性,或發生沉降導致凝膠強度降低,我們針對四種PME都進行鈉、鈣離子添加實驗觀察PME活性。

以各種濃度的氯化鈣果膠水溶液測試 PME 活性,發現活性隨濃度增加提升,約 40~90mM 時活性最好,與<u>林讚標</u>博士的苜蓿 PME 資料(20~40mM)相比偏高,凝膠強度則是在 0.005 ~0.01%達最好。我們將各種氯化鈉果膠水溶液並加入 PME 粗萃取液滴定活性,發現 PME 活性亦隨著濃度增加上升,約 150mM 時活性最好,凝膠品質上,0.1%鹽度下品質普遍最好。

圖十九、不同鹽類下的果膠酯酶活性。左:愛玉子 PME;右:苜蓿 PME(林讚標,1991)

(五) 果膠酯酶抑制劑 (PMEI)

文獻指出,愛玉子瘦果內含有「果膠酯酶抑制劑」,其成分是一種耐熱的小分子蛋白質,分子量介於 3500~4500 Da 之間,會在凝膠中與果膠酯酶 (PME) 競爭而抑制凝膠 (李佳佩,2001)。我們想了解,愛玉子 PMEI 是否也對薜荔、珍珠蓮、大果藤榕的 PME 產生抑制作用,因此我們將愛玉子 PMEI 粗萃,添加不同量的 PMEI 進行滴定與凝膠實驗,發現四種植物的 PME 活性和凝膠表現,皆受愛玉子 PMEI 抑制,推測它們可能都是相似的凝膠原理。

(六) 以不同果膠搭配不同 PME 觀察凝膠特性並改善凝膠速率

因酵素具有專一性,我們認為:愛玉子、薜荔、珍珠蓮、大果藤榕 PME 應與本身的果膠相容性最好,但理論上親源越接近應該相容性越高,因此我們取四種果膠搭配四種 PME 觀察凝膠,發現四種榕屬植物的果膠及 PME 可互搭,特別是愛玉子與薜荔相容性最高,珍珠蓮和其他三者相容性最差,但混籽凝膠是可行的;我們也測試了蘋果及柑橘果膠與 PME 的相容性,發現雖可凝膠但凝膠易碎,推測不同果膠有其結構差異。

(六)未來發展

本研究主要針對台灣特有的愛玉子及分布於平地的薜荔,還有溫帶地區的珍珠蓮、熱帶地區的大果藤榕,這四種生長於<u>台灣</u>本島的薜荔榕亞屬植物,進行 PME 活性及凝膠表現比較,但仍有未完全瞭解之處(例如珍珠蓮為何與其他薜荔榕相容性低等),推測瘦果內應該仍有其他影響凝膠的因子(例如礦物質、果膠酯化度、果膠成分等),若將這些資料分析將可使

研究更加完整。另外,對於生長在<u>蘭嶼</u>的鈍葉毛果榕我們暫時無法取得,且全世界有近 800 種榕屬植物及 70 多種薜荔榕亞屬的植物,希望日後可針對這些植物進行一系列凝膠研究比較,必能使榕屬植物的凝膠特性有更完整的報導呈現。

柒、結論

- 一、本研究為了探討愛玉子、薜荔、珍珠蓮、大果藤榕 PME 活性、果膠含量與凝膠表現關係, 我們設計實驗萃取酵素、分離果膠、以離心原理製作凝膠並發展全新的凝膠強度測試工 具測試品質,以期找出「酵素」、「果膠」對於四種凝膠植物凝膠表現的影響。
- 二、我們採取 NaOH 滴定果膠酯酶 (PME) 反應產生的羧基作為活性單位:愛玉子 13.36 單位;薜荔 1.63 單位;珍珠蓮 3.19 單位;大果藤榕 4.29 單位/0.5hr。發現活性大小決定凝膠速度,PME 活性好的愛玉子凝膠快;PME 活性最差的薜荔凝膠也最慢。
- 三、果膠含量的比較上,珍珠蓮 15.76%>大果藤榕 11.90%>薜荔 9.83%>愛玉子 6.51%。與 凝膠表現比較,果膠越多,最大凝膠倍數越大(珍珠蓮 400 倍,大果藤榕 250 倍)。
- 四、不同植株的愛玉子 PME 的活性都足以凝膠,由果膠量決定凝膠品質。四家廠商 LC 果膠8.25%; ALI 6.85%; WLC 6.51%; WT 6.20%, 凝膠強度與果膠量趨勢相同。
- 五、對薜荔而言,不同植株的果膠都足夠,但 PME 活性落差極大,由 PME 活性決定是否凝膠,本研究中:觀音山植株活性 4.78 單位、澄清湖植株 1.63 單位,兩株薜荔的瘦果都很適合製作凝膠;煉油廠植株和五福植株活性極低,幾乎無法凝膠。隨著薜荔瘦果的發育,果膠含量和 PME 活性都會逐漸增加,第四期(金黃籽)達最高,且適合製作凝膠,但第五期(過熟爆裂籽)的 PME 活性劇降導致無法凝膠。
- 六、對珍珠蓮而言,PME 活性隨著隱花果大小而逐漸增加,到過熟隱花果時下降,果膠含量則是小型隱花果 17.55%最多。過熟隱花果不適合製作凝膠。
- 七、不同發育階段的大果藤榕,成熟時 PME 活性及凝膠表現達最好。
- 八、在 4~30℃間,四種 PME 活性皆隨溫度升高而提升。耐熱性上,愛玉子在 70℃時,活性大幅下降;大果藤榕和珍珠蓮在 60℃時活性下降;薜荔在 40℃時活性下降;推測它們的PME 為不同型,且愛玉子 PME 適溫範圍最廣。

- 十、我們在滴定用果膠中加入不同量的氯化鈉、氯化鈣,發現微量添加就可使 PME 活性上升,但凝膠表現上,過度添加反而造成果膠沉澱導致凝膠失敗。
- 十一、愛玉子含有果膠酯酶抑制劑 (PMEI),對四種植物的 PME 活性和凝膠皆有抑制作用。
- 十二、愛玉子、薜荔、大果藤榕 PME 搭配不同果膠時,具相容性可以凝膠;以混籽方式製作 凝膠,可改善品質,但珍珠蓮的相容性較差。無花果果膠無法與 PME 搭配凝膠,柑橘和 蘋果果膠與 PME 搭配可凝膠,但果凍易碎。

捌、參考文獻

- 1. 黃永傳、陳文彬、邵雲屏(1980)愛玉凍凝膠機構之研究。中國園藝 26(4):117-126。
- 林讚標、劉哲政、楊居源、黃瑞祥、李永生、張森永(1990)愛玉與薜荔隱花果型態與其 生化特性比較。林試所研究報告季刊。5(1):37-43。
- 3. 林讚標(1991)愛玉子專論。林業叢刊第36號。
- 4. 李柏宏(2000)愛玉子凝膠性質及愛玉凍品質之研究。台大化學研究所博士論文。
- 5. 李佳佩(2001)愛玉子果膠酯酶抑制劑之理化性質分析及應用性探討。台大食品科技研究 所碩士論文。
- 6. 李靜雯(2002)番茄及柳尺果膠酯酶所催化轉醯基反應之探討。台大食品科學所碩士論文。
- 7. 蔡仲華(2002)愛玉子專題報告。中央研究院高生命科學資優生培育計劃專題研究報告。
- 8. 莊瑞均、曾喜育、呂福原、歐辰雄(2005)臺灣榕屬植物果核形態之研究— 綿毛榕、無花果榕與薜荔榕亞屬。中華林學季刊。38(1):1~18。
- 9. 陳英宇、梁貿淞、林政宇、黄琛富(2010)「凍」裡乾坤-愛玉凝膠因子之探討。第 50 屆 中小學科學展覽會科展作品。
- 10. 熊慧芬等 (2011) 添加不同食用膠對愛玉凍離水性與組織特性之影響。美和學報。29(2): 149~161。
- 11. 黃榆翔、李昱澄、莊竣守(2015)天之「膠籽」的「凍」感魔法-探討愛玉、薜荔及大果 藤榕的凝膠特性與品質改良。第 55 屆高雄市中小學科學展覽會科展作品。
- 12. 李曜宇、黃浩祐(2015)探討超音波頻率對愛玉子萃取分析差異性。第 55 屆中小學科學 展覽會科展作品。
- 13. 台灣生物多樣性資訊網 http://taibnet.sinica.edu.tw/

【評語】030313

- 此作品欲探討薛荔榕亞屬植物(包含愛玉子、薛荔、珍珠蓮及大果藤榕)的果膠含量、凝膠品質、果膠酯酶活性及凝膠機制。
 也發現影響凝膠的主要因子,可能因植物不同而有差異。
- 此研究有些分析數據有標準偏差,有些又未顯示,應儘可能一致以顯示該實驗具有多重複。此外,若能加入統計測試,以說明那些組別之間具有顯著差異,則更佳。
- 3. 此研究多使用粗萃物來進行分析,較屬定性分析而非定量。在 不同立足點下進行比較,較不合適。例如,目前的研究內容尚 無法定量酵素,而量可能影響活性高低。