中華民國第55屆中小學科學展覽會作品說明書

高中組 生物(生命科學)科

佳作

040710

「蟎」天鋪地葉枯盡

一非農藥"冰鎮雞尾酒"防治法

學校名稱:臺南市私立德光高級中學

作者:

指導老師:

高二 施佳妏

林聖鈞

關鍵詞:草莓、二點葉螨

摘要

本研究以草莓最為嚴重的蟲害——<u>二點葉螨(Tetranychus urticae)為研究對象,發展</u>高效率的非農藥防治法。<u>二點葉螨</u>對大部分藥劑已經具抗藥性,而且繁衍快速,台灣高經濟作物身受其害,所以發展非農藥防治法刻不容緩。

本文實驗概念源自<u>何大一</u>博士「雞尾酒療法」。以數種非農藥資材<u>窄域油、木醋液、皂液、</u> <u>印楝素</u>並調整稀釋液溫度組合試驗,除了各個資材產生協力作用,提高效力,而且可延 緩抗藥性產生。

以往<u>二點葉螨</u>研究係以豆類等(非草莓)為寄主植物,不同植物品種,<u>二點葉螨</u>生命週期顯著不同。因此本實驗自行培養無病蟲害草莓植株,實驗結果在草莓<u>二點葉螨</u>防治上相對精準。

壹、研究動機

一切由家裡陽台開始。在花市買了的3盆旺盛草梅,數日後葉子開始陸續出現類似小蜘蛛,整株草莓綠葉不再鮮綠,上網按圖索驥之後,方知感染<u>二點葉蝴</u>,依循網路非農藥防治方法噴灑辣椒水、稀釋食用醋……,然而草莓逐漸枯萎。向草莓農民打聽防治法,農民建議噴灑農藥,因為非農藥防治效果不彰。

二點葉蟎之所以難以防治,在於體型小、繁衍速度快且隨風遷移。二點葉蟎各期個體均聚集在葉背為害,主要棲居於葉背取食產卵,棲群密度高時會形成細小絲狀物,由於體型小,可經由風力遷移,而且目前已經遍及全台灣。二點葉螨寄主植物廣泛,蔬菜、果樹、花卉、雜糧均其寄生,甚至是雜草、樹叢,目前已經遍及全台灣。其成長期如下:

呵	略成圓球形,灰白色透明,表面光澤晶瑩,即將孵化時轉為橙紅色。
幼蟎	孵化的幼蟎成淡灰白,三對足,取食後軀幹逐漸變為淡綠色,體背兩側漸有
	黑斑出現。
若蟎	已形成四對足,此時與成蟎外形大致相似,但相對體型較小。
成蟎	雌蟎體長約0.4~0.5mm,雌蟎體型較大,橢圓型呈鵝黃或黃綠色,軀幹左右
	兩側各具墨色特徵。

附註:應用生物學-生物防治法-化學防治法:利用化學藥劑將害蟲驅除或殺害,是最為 簡便、效果最迅速的防治方法。而本實驗則是以非農藥無毒性的資材來降低蟲害。

貳、研究目的

本研究以追尋「二點葉螨非農藥防治法」為目的。

台灣草莓栽培上病蟲害有:<u>炭疽病、青枯病、葉芽線蟲、二點葉螨、蓟馬、灰黴病、</u> <u>果腐病、白粉病、斜紋夜蛾</u>等。上述病蟲害,以<u>二點葉螨及白粉病</u>最難防治,<u>二點葉螨</u> 傳播的方式是隨風吹到其他植株而感染,有時甚至會結絲加速棲群遷移,擴大感染範圍。

本研究初期,曾於簡易室內控制環境下種植草莓100株加以觀察,發現<u>二點葉蝴</u>感染,但是未發現其他病蟲害蹤跡,顯示二點葉螨防治難度最高。

叁、研究設備及器材

一、研究器材與設備

恆溫恆濕培養箱

非農藥資材

材料及、微量電子秤、PH測量器、導電度測量器

儀器及器材	材料	非農藥資材
恆溫恆濕培養箱	硫酸鎂	窄域油
烘箱	硝酸鉀	木醋液
微量電子秤	硝酸鈣	南僑水晶 肥皂液
數位式 LED 顯微鏡	磷酸一鉀	印楝素
600 倍顯微鏡	嵌合鉄	
PH 測量器	綠色綜合微量元素	
導電度測量器	碳酸氫鈉	
輸液器	檸檬酸	
	磷酸	

肆、研究過程或方法

一、由文獻訂定研究方法

(一) 將非農藥資材稀釋液調整 15 及 25℃比較其效果

由文獻中,得知生長環境中氣溫對二點葉螨有明顯影響,在 30℃氣溫下其 棲群 2~3 天即可加倍成長,而 20℃以下,35℃以上成長速度明顯變慢。而且 15 ℃時雌螨卵孵化天數明顯變長,這點在二點葉螨防治上具實質意義,因為如果 以非農藥資材破壞卵,其繁殖速率即可大幅下降(表一)。而且在此溫度下,二點 葉螨死亡率提升到 30%以上(表二),在田野間無法控制溫度,但是可由資材稀 釋液的溫度著手。因此本研究將稀釋液調整 15 及 25℃比較其效果。這是本研究 名稱中「冰鎮」的原由。

此外此三篇文獻使用不同寄主植物,各個統計數字差異不小。例如最<u>高雌</u> <u>蝴</u>產卵數量由 156.8~81.8 顆,即使 Nazeh,Ashraf(2012)以不同品種梨樹葉<u>二點</u> <u>葉</u>螨的統計數據亦具差異。

本研究係防治草莓二點葉螨蟲害,因此將寄主植物直接定位為草莓植株。 為此必須自行培育無病蟲害、無農藥施作的草莓植株,是此實驗最大難度。 特別的是,日本 Kitashima & Tatsuo Sato(2013)使用近 50℃熱水浸泡螨卵及雌螨, 測試其耐熱程度,直觀上 50℃熱水應該會損及植株,所以在此實驗未將之納入。

表一、各文獻二點葉螨於不同溫度下,雌螨產卵數量及棲群加倍所需日數統計表

研究者	寄主植物	温度	相對溼	雌螨產	卵數量	棲群加倍	所需日數
	可土阻彻	設定℃	度設定	最多(溫度)	最少(溫度)	最短(溫度)	最長(溫度)
何琦琛 羅幹成	大豆初葉	20~35°C	40~65%	130.5(25°C)	86.9(20°C)	1.73(30°C)	5.9(20°C)
劉達修	四季豆葉	15~40°C	20~40%	81.8(27°C)	53.5(40°C)	_	_
Nogola a Ashuof	Lacont pear	15~30°C	70±5%	156.8(30°C)	43.6(15°C)	3.22(30℃)	12(15°C)
Nazeh, Ashraf	Hood pear	15~30 C	70±3%	143.6(30°C)	37.4(15°C)	2.66(30°C)	16(15°C)

表二、各文獻二點葉螨於不同溫度下,雌螨卵孵化天數及死亡率統計表

研究者	寄主植物	雌螨卵卵	俘化天數	死亡率(不包含死亡率1	00%的溫度	Ŧ)
研先 有		最多(温度)	最少(溫度)	最高(溫度)	最低(温度)	15℃	25°C
何琦琛 羅幹成	大豆初葉	8.54(20°C)	2.7(35°C)	39.7%(35°C)	8.3%(30°C)	_	9%
劉達修	四季豆葉	7.89(15°C)	2.37(35°C)	88.9%(40°C)	21.4%(27°C)	36.5%	25.5%
Nazeh , Ashraf	Lacont pear	11.7(15°C)	2.8(30°C)	30.12%(15°C)	16.79%(30°C)	30.15%	18.34%
ivazen ' Asinai	Hood pear	13.6(15°C)	2.7(30°C)	30.7%(15°C)	16%(30°C)	30.7%	20.35%

(二) 選擇非農藥資材窄域油、木醋液、皂類、印楝素作為本實驗非農藥資材,並多

樣組合成防治用稀釋液

本次實驗室將非農業資材組合試驗,原因有三如下:

- 由多種資材組合的稀釋液,同時產生不同物理或生化等多 樣防治,提升防治率;
- 2. 期待組合使用時產生協力作用,產生加乘效果;
- 3. 由於組合下,個資材濃度均下降,可以降低資材對植株的 不利影響,同時降低且延緩二點螨對資材產生抗性。

各文獻各種非農藥資材防治數據整合於表三,並以下述原則挑選本次實驗資 材:

- 1. <u>各大類資材只挑選一樣</u>:由於同類資材防治原理相似,為 降低資材用量,所以單類資材只挑選一種。例如:油類包 含<u>窄域油、椰子油、棕椰油、菜籽油</u>,只挑選防治率最高 的<u>窄域油</u>列為本實驗油類資材;
- <u>防治螨卵重於成螨防治</u>,由於幼螨抵抗力低,所以成螨防治重於幼螨;而螨卵多於成螨,所以以螨卵防螨卵防治優先。例如:醋類中<u>工研醋</u>在成螨防治力最高,而<u>木醋液</u>在螨卵防制力最強,因此挑選<u>木醋液</u>為本實驗醋類資材。

表三、各文獻以非農藥資材對二點葉螨防治效果統計及評估表

非農藥資材 類別	油類	醋類	皂類	印楝素
文獻中使用之資 材名稱(成螨致 死率)	窄域油91.1% 椰子油(62.6%) 棕櫚油(57.1%) 菜籽油(51%)	工研醋(75%; 88.6%) 木醋液(57%; 62%) 糖醋液(40~52.5%)	家用皂類84.4; 93.1~98.6%	3成蟎沒有顯著顯著的 死亡率
文獻中使用之資 材名稱(螨卵致 死率)		工研醋(58.7%) 木醋液(77.9%) 糖醋液(29.8%)	無效	1 卵致死率> 80% 2 雌螨受印楝素影響產 卵降低39~53%,而且壽 命減少1.4~2天。
挑選為本實驗用 資材	窄域油	木醋液	南僑水晶 肥皂液	印楝素
挑選原因	油類中,二點葉螨 防治率最高	螨卵防治率高	成螨防治率高	螨卵防治率高且影響產 卵數及雌螨壽命

(三) 噴灑後 48h,先以 50 倍數位顯微鏡計算存活螨數,再以 600 倍顯微鏡計算死亡

螨數

此二準則是於本實驗實地觀測經驗中所擬定,設定 48h 為觀測時間原因如下:

在 24h 發現原先死亡成螨,數小時後開始移動。而 72h 往往 觀測到相對大量幼螨(約 10 隻以上),可能是 48~72h 存留螨 卵開始孵化,因此取 48h 為觀測時間。

另一觀測準則:「先以 50 倍數位顯微鏡計算存活螨數,再以 600 倍顯微鏡計算 死亡螨數」,其設定原因如下:

- 1. 二點葉螨移動速度,無法以高倍顯微鏡頭觀測;
- 死亡的二點螨葉如果乾枯、變色則容易判斷,但是靜止的二點葉螨必須以相對高倍顯微鏡觀測,觀測其支爪、 支節是否移動,確認是否死亡。

二、文獻討論

(一) 何琦琛 羅幹成 (1979) 在 20、25、30 及 35℃ 及 40-65% 相對濕度下,以大 豆初葉飼育二點葉蟎,雌蟎總發育期分別為21.34、11.73、7.59 及7.28天;產 卵前期分別為 2.14、0.75、0 及 0.44 天; 產卵期分別為 27.43、26.00、1 0.9 及 9.33 天;每雌一生產卵量分別為 $86.86 \times 130.52 \times 112.2$ 及 61.56 枚;雌雄性比例(\$/ ③)分別為 2.38、2.25、1.44 及 1.65。 棲群加倍所需日數(Days for population to double) 分別為 5.92、3.07、1.73 及 2.12 天。在相較之下,30℃ 似為二點葉蟎發育及繁 衍之最適溫。

表四、以大豆初葉飼育二點葉螨於不同溫度下發育所需日數及死亡率,摘自何琦琛 羅幹成 (1979)

溫	度	觀察	《 數		發	育 期	間	(目)	Duration	ı (days))	死亡率
Tempe 。C		N		Е	L	NC	PN	DC	DN	тс	Total	Morta- lity %
40		52	X SD	3.23 0.29	_	_	_	_	_	_		100
35	우	22	Σ̈́ SD	2.70 0.32	1.11 0.73	0.64 0.25	0.64 0.27	0.68 0.28	0.76 0.29	0.76 0.33	7.28 1.41	39.7
	♂	14	X SD	2.73 0.34	1.00 0.69	0.62 0.22	0.48 0.17	0.79 0.16	0.69 0.36	0.81 0.25	7.12 1.14	39.1
30	우	24	$ar{X}$ SD	3.52 0.28	0.71 0.15	0.68 0.07	0.54 0.17	0.61 0.24	0.71 0.11	0.82 0.17	7.59 0.32	8.3
	♂	18	Σ̈́ SD	3.65 0.32	0.69 0.08	0.72 0.26	0.41 0.15	0.65 0.14	0.56 0.16	0.84 0.20	7.50 0.26	0.0
25	우	13	X SD	5.07 0.31	1.28 0.23	1.05 0.12	0.97 0.21	1.03 0.21	1.30 0.38	1.33 0.51	11.73 0.75	9.0
	含	27	X SD	5.46 0.22	1.10 0.33	1.01 0.17	0.74 0.14	1.07 0.29	0.83 0.45	1.52 0.22	11.73 0.53	9.0
20	우	27	X SD	8.54 0.49	2.46 0.41	2.07 0.14	1.67 0.16	1.96 0.17	2.25 0.35	2.39 0.45	21.34 0.62	11.54
	含	18	X SD	9.34 0.57	2.09 0.51	2.15 0.38	1.54 0.23	1.95 0.17	1.61 0.33	2.39 0.29	21.06 1.21	11.54

E: Fill egg

L:幼蠩 larvae

NC: 若蛹 nymphochrysalis

PN:前若螨 protonymph

DC:後蛹 deutochrysalis DN:後若螨 deutonymph TC:終蛹 teleiochrysalis

X :平均 SD:標準偏差

(二) <u>劉達修(1987)沙烏地阿拉伯</u>進行試驗(二點葉蟎為沙國作物最重要害蟎),在相 對濕度 20~40%下,於 15、20、25、27、30、35 及 40℃定溫中,用四季豆葉 飼育。結論為發育最適溫度為 27°C,臨界低溫在 10°C左右,雌蟎總發育期分別 為 25.04、15.04、9.75、8.88、7.64、 6.30 及 6.49 天; 每一雌蟎一生產卵量為 56.3、 76.2、67.6、81.8、63.7、54.2 及 53.5 枚。

表五、四季豆葉飼育二點葉螨於不同溫度下發育發育所需日數及死亡率,摘自劉達修

Tempe	rature				Duration	n (days)				Mortality
$^{\circ}$ C		E^1	L	NC	PN	DC	DN	TC	Total	%
10	♀		21.65 21.01	16.82 15.13	27.42 26.17		孟		· · · · · ·	100.0
15	♀ ◆	7.89 8.17	4.15 4.42	3.31 3.53	1.80 1.56	2.35 2.01	2.13 1.96	3.41 3.04	25.04 24.69	36.5
20	우 ☆	5.78 5.98	2.02 1.85	1.78 1.25	1.36 1.20	1.52 1.38	0.99 1.40	1.59 1.13	15.04 14.19	32.3
25	♀ ◆	3.93 4.14	1.04 1.00	1.09 1.11	1.00 0.94	1.05 0.94	0.80 0.83	0.82 0.83	9.75 9.79	25.6
27	♀ ◆	3.76 3.93	0.96 0.95	$0.80 \\ 0.79$	0.92 0.93	0.90 0.86	0.76 0.64	0.78 0.77	8.88 8.87	21.4
30	♀ ♦	2.79 2.82	0.91 0.87	$0.86 \\ 0.77$	$0.80 \\ 0.68$	0.79 0.74	0.75 0.66	0.74 0.79	7.64 7.30	29.7
35	♀ ♦	2.37 2.34	0.82 0.69	0.73 0.69	0.62 0.56	0.58 0.56	0.58 0.63	0.60 0.62	6.30 6.09	63.7
40	♀	2.73 2.65	0.66 0.57	0.61 0.51	0.62 0.50	0.61 0.51	0.61 0.52	0.65 0.53	6.49 5.79	88.9

¹ E∶egg

NC: nymphochrysalis

DC: deutochrysalis

TC: teleiochrysalis

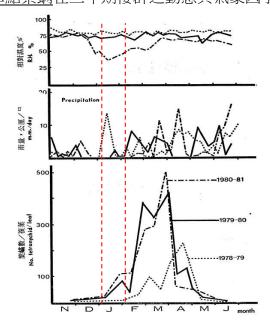
 $L: larva \qquad \qquad PN: protonymph$

mph DN: deutonymph

(三) Nazeh and Ashraf (2012)以Lacont pear和Hood pear為寄主植物。在15, 20, 25 & 30 ± 2℃,相對溼度70% ± 5%,雌螨生存天數在5℃時最長,30℃繁殖繁殖率最高時(平均產卵率),此外Lacont pear和Hood pear為寄主植物相較之下,後者生存天數較短,棲群加倍所需日數只需2.66天。

表六、二種梨樹葉飼育二點葉螨在成長階段參數表

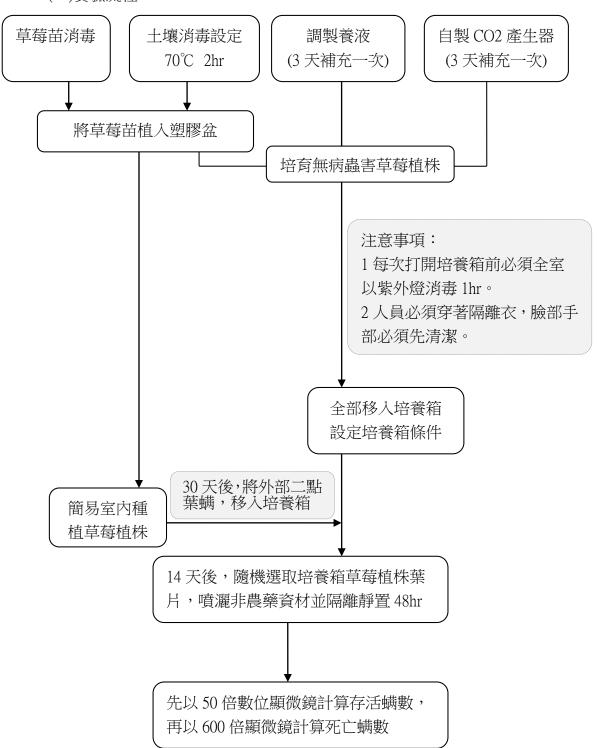
Factor	·level	Egg	Larva	Protonymph	Deutonymph	Immature	Life cycle
Variation	Lacont	6.68b	3.08b	2.85a	3.08b	9.02b	15.71b
Variety	Hood	7.21a	3.32a	2.96a	3.40a	9.68a	16.9a
	15°C	12.55a	6.85a	5.70a	6.60a	19.15a	31.70a
Temp.	20°C	7.9b	2.82b	2.85b	3.07b	8.75b	16.65b
	25°C	4.6c	1.82c	1.75c	1.97c	5.57c	10.22c
	30°C	2.7d	1.30d	1.32d	1.32d	3.95d	6.65d


表七、二種梨樹葉飼育二點葉螨在不同條件下生命參數表

Variety	°C	DT a	Survival rate	50% mortality ^a	Sex ratio	R _o ^b	r _m c	λ
	15	12	0.52	30.12	0.58	11.27	0.05	0.05
Lacent	20	5.77	0.49	17.6	0.74	23.89	0.12	1.13
Lacont	25	3.46	0.78	18.34	0.70	30	0.20	1.22
	30	3.22	0.93	16.69	0.76	37.67	0.31	1.36
	15	16	0.46	30.7	0.66	7.79	0.04	1.04
Hood	20	9.9	0.47	15.07	0.50	8.71	0.07	1.08
пооа	25	4.33	0.73	20.35	0.60	19.42	0.16	1.18
	30	2.66	0.91	16.00	0.76	27.88	0.26	1.29

^a Days ^b Per generation ^c Individuals/female/day DT = Time for population double

- (四) Kitashima & Tatsuo Sato(2013)將螨卵、雌螨浸入45~57℃熱水,螨卵於47.5°C(150sec)及57°C(1sec)致死率達50%;螨卵47.5°C(600sec)及57°C(7sec)致死率達100%。雌螨47.5°C(380sec)及57°C(4sec)致死率達50%;螨卵47.5°C(1200sec)及57°C(7sec)致死率達100%。而研究指出其葉片忍受條件為50°C(150sec)或55°C(30sec)或57°C(20sec)。
- (五) <u>羅幹成</u>等(1984)於<u>大湖</u>地區 3 年追蹤,其結論:<u>二點葉蟎</u>棲群密度受雨量及相對 濕度成反向關係,其原因為雨量及濕度上升,導致<u>二點葉蟎</u>感染真菌以致棲群 數量下降。


圖一、草莓二點葉螨在三年期棲群之動態與氣象因子之關係(苗栗大湖)

- (六) <u>李啟陽</u>; <u>羅幹成</u>; <u>姚美吉</u>; <u>彭武康</u>; <u>吳文哲</u>(2006)選取五種市售家用肥皂加水稀釋成皂液,在實驗室內使用葉浸法對<u>二點葉蟎</u>雌成蟎及卵粒進行觸殺,皂液對卵無效。但是孵化後若蟎再次浸泡皂液之死亡率為89.2~98.8%。皂液中之二價金屬離子濃度也會影響對<u>二點葉蟎</u>的殺蟎效果,將雌成螨浸泡於以標準硬水為溶劑的肥皂水溶液,其死亡率差異下降。
- (七) 余志儒 陳炳輝(2009)在室内25℃ ± 1℃下測試三種植物油,椰子油、棕櫚油及菜籽油對二點葉蟎。試驗結果顯示殺蟎能力椰子油(62.6%)>棕櫚油(57.1%)>菜籽油(51%)
- (八)Daniel et al(2013) <u>印楝素(azadirachtin)</u>對成蟎沒有顯著顯著的死亡率,但是可降低成蟎生育能力 50 %。
- (九)DEJAN et al(2015)<u>印楝素</u>有顯著的驅離效果,約 8~40%的<u>二點葉螨</u>會自<u>印楝素</u>處理的葉子移往沒有處理的葉子。雌螨受印楝素影響產卵降低 39~53%,而且壽命減少 1.4~2 天。
- (十)<u>劉達修 王文哲 陳啟吉(1993)</u>做了廣泛研究,所使用資材涵蓋農藥類及非農藥類,當中包括砂糖及奶粉。試驗結果處理後經7天對玫瑰二點葉蟎之殺蟎率,以優利2 號有機肥250倍86.3%最高><u>工研醋</u>200倍75%>新殺蟎乳劑500倍68.8%。而糖醋液 殺蟎率只有40~52.5%。
- (十一)<u>王文哲</u>、<u>劉達修</u>(1996)田間<u>玫瑰</u>防治試驗以<u>優利二號</u>有機肥等四種非農藥物質供試,連續施用二次,<u>玫瑰二點葉蟎</u>之後代族群均有抑制效果。僅施用一次時,對<u>二點葉蟎</u>成若蟎之防治率以<u>優利二號</u>有機肥200倍及<u>工研醋</u>200倍兩處理區較高,達86.7%及88.6%;對幼蟎之防治效果則四種供試物質皆有佳,防治率均達82.3%以上。
- (十二) <u>廖保成(2012)</u>在防治試驗中,經過稀釋 200 倍的<u>窄域油、皂液、木醋液</u>處理 後七天之<u>二點葉蟎</u>成若蟎防治率分別達到 91.1% 、 84.2%及 62%,此外此 文現提及碟盤試驗成效遠低於噴灑方式,亦即資材噴灑是否均勻對於其致死 效力非常重要。

三、實驗流程及記錄

(一)實驗流程

(二)實驗步驟細節及記錄

1. 培育無病蟲害草莓植株

(2)草莓苗消毒

向草莓農場購入草莓苗。

去除草莓苗根部土壤。

草莓苗消毒:以窄域油

500:1、木醋液 500:1、印楝素

500:1、枯草菌 500:1 加逆滲

透水調稀釋。整株浸泡30

sec、葉片以手指輕柔清潔。

調製稀釋液

去除根部土壤

整株浸泡 30sec、葉片以 手指輕柔清潔

(2)土壤消毒

購入種植用土壤,置入 烘箱設定 70℃, 2hr。

烘箱設定 70℃, 2hr。

(3)將草莓苗植入塑膠盆並移入培養箱

將培養箱內部及塑膠 盆以稀釋雙氧水擦拭 消毒。

將消毒過的草莓苗植 人消毒過的土壤。 完成後迅速移入培養 箱,減少汙染。

(4)調製養液

養液成分及比例參 附錄。

以磷酸調整酸鹼值 ph6~5.5。

(5)自製 CO2 產生器(供應培養箱)

 $C_6H_8O_7 + 3NaHCO_3 \rightarrow 3H_2O + 3CO_2 + Na_3C_6H_5O_7$

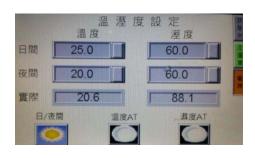
將輸液器插入寶特瓶(A 瓶)底側。

將 A 瓶裝入檸檬酸 (C₆H₈O₇)40g(約 0.2 莫耳), 加入 500g 水。A 瓶瓶蓋鑽 一小孔。

另一寶特瓶(B 瓶)裝入小 蘇打(NaHCO3)50g(約 0.6 莫 耳),且將輸液器出口至入 B瓶。A瓶瓶蓋鑽一小孔, 作為 CO2輸出孔。

將 A 瓶置於 B 瓶上方,輸 液器調整至最小量。

將輸液器插入寶特瓶(A 瓶)底側。裝入檸檬酸(CoHsOr)40g(約 0.2 莫耳),加入 500g 水。


寶特瓶(B瓶)裝入小蘇打(NaHCO₃)50g(約 0.6 莫耳),將 A 瓶置於 B 瓶上方,輸液器調整至最小量。

(6)設定培養箱條件

每株草莓苗澆200CC培 養液。

溫度白天設 25℃,晚上 設 20℃,濕度設定 60%。

2. 將外部二點葉螨,移入培養箱

- 1. 將上述消毒過的草莓植株於室內培育,並以32目網隔離。
- 一個月後,檢查葉片,確認是有感染 二點葉螨,以毛刷,將二點葉螨平均 移入培養箱內每株草莓。
- 移入後,培養箱溫度全天設定 30℃, 溼度降至 50%,以利二點葉螨快速繁殖。二週後做測試。

3. 噴灑非農藥資材並隔離 48hr

(1)噴灑非農藥資材

以氣壓式噴水器,水霧調至最細,距離草莓葉5~10CM噴灑資材稀釋液。葉背、葉面、葉脈、葉緣及葉柄均須噴勻。

2. 自製隔離靜置區

將噴灑後的草莓葉柄插入塑膠 管,管內裝養液。

以硬紙板製成架子,支撐塑膠 管成直立狀態。(目的在避免草 莓葉枯萎,增加二點葉螨致死 率。)

將 1000CC 燒杯倒扣,蓋住。防止外界二點葉螨飄入。

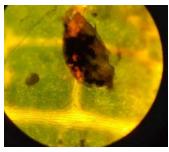
將草莓葉柄插入塑膠管,以硬紙板支撐直立 以燒杯倒扣蓋 住隔離

4. 顯微鏡觀測

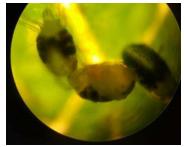
(1)先以50倍數位顯微鏡觀察,計算存活二點葉螨。

No.1~3 為活動快速之幼螨; No.4 為存活之成螨; No.5 為死亡之成螨。其他黑點必須以 600 倍顯微鏡確認。

0~250 倍數位顯微鏡觀察


(2)以 600 倍顯微鏡觀察,計算死亡二點葉螨。

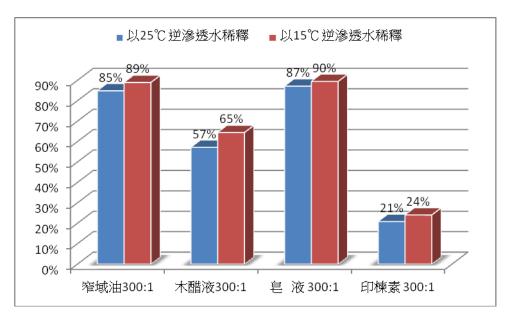
- 1. 以 600 倍顯微鏡觀 察。
- 2. 必要錄影或拍照 時,以手機從接目 鏡完成。(學校設 備無配置 600 倍數 位顯微鏡)以此 DIY 做法,所拍攝 結果尚可清晰記 錄。



必要錄影或拍照時,以手機從接目鏡完成,影像如下:

確認二點葉螨已死亡

左側第一隻二點葉螨,在 600 倍顯微下,肢 節輕微移動,16 分鐘後離開原位


伍、研究結果

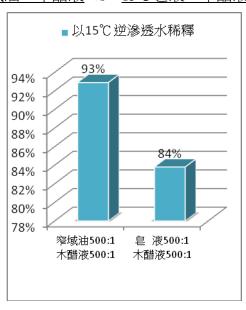
一、已挑選四樣非農藥資材,先測試各資材滅螨效果,並將稀釋液調整成 15℃及 25℃, 其記錄如下:

表八、<u>窄域油、木醋液、皂液及印楝素</u>依溫度 15℃及 25℃單獨實驗結果

	草莓葉(標記	序號)	1	2	3	4	5	6	7	8	9	10	總計	平均	致死率
	窄域油 300:1	單葉螨數	42	36	35	38	45	37	38	31	33	37	372	37.2	
	乍 以 旧 300.1	單葉存活螨數	7	6	3	4	9	5	4	5	6	7	56	5.6	84.9%
	小 羅涛 200.1	單葉螨數	43	48	42	34	45	39	48	44	38	44	425	42.5	
以 25℃	木醋液 300:1	單葉存活螨數	19	20	17	14	20	17	19	17	21	18	182	18.2	57.2%
水稀釋	白 法 200.1	單葉螨數	51	45	45	46	53	44	43	37	41	48	453	45.3	
	皂 液 300:1	單葉存活螨數	8	7	4	3	8	5	4	7	6	6	58	5.8	87.2%
	印梅丰 200.1	單葉螨數	36	34	37	42	37	38	34	33	28	35	354	35.4	
	印楝素 300:1	單葉存活螨數	30	26	31	38	25	33	27	25	19	26	280	28	20.9%
	发生制油 200.1	單葉螨數	36	30	30	36	42	34	33	36	43	35	355	35.5	
	窄域油 300:1	單葉存活螨數	4	2	3	6	4	3	3	4	5	5	39	3.9	89.0%
	上 離法 200.1	單葉螨數	44	43	33	35	39	37	37	30	39	35	372	37.2	
以 15℃	木醋液 300:1	單葉存活螨數	13	12	15	13	10	20	12	14	16	7	132	13.2	64.5%
水稀釋	白 法 200.1	單葉螨數	39	37	38	44	49	41	42	42	44	45	421	42.1	
	皂 液 300:1	單葉存活螨數	4	7	4	5	4	5	5	3	2	5	44	4.4	89.5%
	口柱主 200 1	單葉螨數	45	42	37	43	45	42	45	50	44	47	440	44	
	印楝素 300:1	單葉存活螨數	30	28	25	31	34	27	39	40	39	41	334	33.4	24.1%

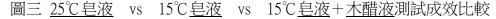
圖二<u>窄域油、木醋液、皂液及印楝素</u>依溫度15℃及25℃單獨測試成效比較

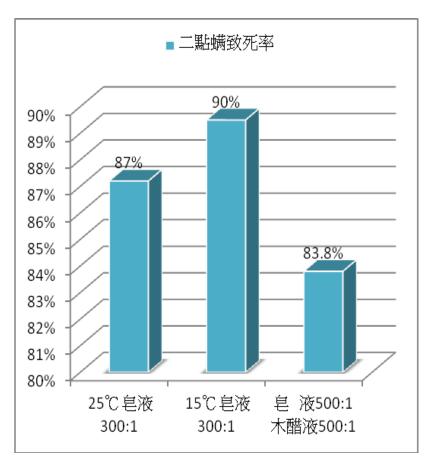
在以25℃,螨蟲致死率<u>皂液</u>最高,<u>窄液油</u>次之;最低者為<u>印楝素</u>;在15℃時皂液和 <u>窄液油</u>不相上下、效果仍優,且所有資材殺螨能力均已提升,顯示15℃具殺螨效果。 而<u>印楝素</u>雖然成效不彰,但是合乎其資材特性,因為<u>印楝素</u>著重在破壞螨卵,及降 低雌螨產卵數目。噴灑後48小時應是無法觀測印楝素成效。


二、15℃<u>窄域油+木醋液</u> vs 15℃<u>皂液+木醋液</u>測試成效

上階段已經證實稀釋液調整至 15℃具有實質滅螨成效,以下均以 15℃狀態做實驗。前一階段發現<u>窄域油</u>及皂液類似,此階段再加一種資材<u>木醋液</u>測試其加乘效果, 挑選木醋液原因為:印楝素 48h 效果不易呈現,無法驗證其加乘效果。

表九 15℃窄域油+木醋液 vs 15℃皂液+木醋液實驗結果


	草莓葉(標記	序號)	1	2	3	4	5	6	7	8	9	10	總計	平均	致死率
	窄域油 500:1	單葉螨數	40	34	35	35	42	33	36	31	28	36	350	35	
以 15℃	木醋液 500:1	單葉存活螨數	3	5	0	3	1	5	1	3	0	4	25	2.5	92.9%
水稀釋	皂 液 500:1	單葉螨數	36	28	30	40	34	30	33	37	32	34	334	33.4	
	木醋液 500:1	單葉存活螨數	6	6	3	8	5	4	4	3	9	6	54	5.4	83.8%


圖二 15℃窄域油+木醋液 vs 15℃皂液+木醋液測試成效比較

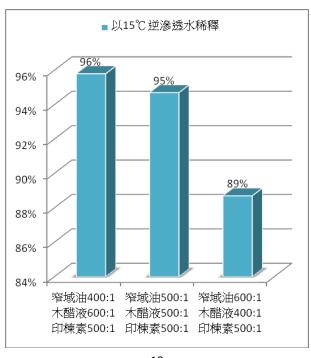
此實驗發現 15° C <u>窄域油</u>+<u>木醋液</u>殺螨率由 $89\%(15^{\circ}$ C <u>窄域油</u>)提升至 92.9%,而 15C <u>皂液</u>+<u>木醋液</u>殺螨率由 $89.5\%(15^{\circ}$ C <u>皂液</u>)下降至 83.8%。前者具加乘效果,後者呈現抵減效應,推估皂液呈現鹼性,<u>木醋液</u>而係酸性資材,二者相加稀釋後因酸鹼中

和,離子數降低,因此出現抵減效果。由圖三可知關於皂液之測試,15℃皂液稀釋 液效果最佳。

由於<u>皂液</u>碳鏈部分易與油結合,所以<u>窄域油</u>與<u>皂液</u>亦會出現抵減效果,實驗至 此階段將皂液排除在資材組合,下一階段實驗名單將以<u>窄域油</u>、<u>木醋液</u>、<u>印楝素</u>測 試其組合效力。

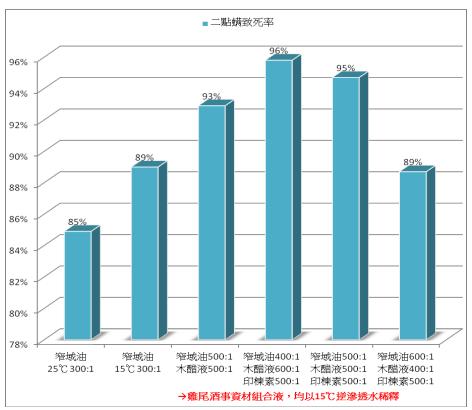
四、15℃窄域油、木醋液、印楝素之濃度組合

此階段實驗模式將大幅變更,目的在測試印楝素效果。改變模式如下:


模式	單一資材及雙組合模式	3種資材組合
資材	1. 窄域油、木醋液、皂液、	15℃窄域油、木醋液、印
	印楝素單獨測試	棟素之濃度組合測試
	2. 皂液和木醋液組合測試	
噴灑方式	剪下葉柄噴灑資材	整株噴灑資材後,置回培
		養箱,7天後噴灑第二次。

模式	單一資材及雙組合模式	3種資材組合
觀測時間	48h	第 9 天觀察(亦即第一次
		噴灑後7天,第二次噴灑
		後 48h 觀測)
區隔方式	以 1000CC 燒杯倒扣	以培養箱隔離(培養箱共
		三層,每層噴灑不同比例
		組成資材,層與層之間以
		32 目網紗隔離),由於培
		養草莓植株耗時,因此同
		時分層測試。

表十 15℃窄域油+木醋液+印楝素不同比例組成實驗結果


	草莓葉(標記	序號)	1	2	3	4	5	6	7	8	9	10	總計	平均	致死率
	木醋液 600:1	單葉螨數	37	45	48	52	44	36	46	48	44	51	451	45.1	
		單葉存活螨數	1	2	0	3	3	0	2	2	1	5	19	1.9	95.8%
窄域油 500:1 以 15℃ 大磯液 500:1	單葉螨數	56	43	49	52	44	55	53	48	58	51	509	50.9		
水稀釋	木醋液 500:1 印楝素 500:1	單葉存活螨數	3	0	4	5	1	3	2	1	2	6	27	2.7	94.7%
木醋液 400:1	單葉螨數	66	55	58	65	71	61	59	73	56	62	626	62.6		
	單葉存活螨數	4	12	3	9	7	5	11	7	8	5	71	7.1	88.7%	

圖四 15℃窄域油+木醋液+印楝素不同比例組成測試成效比較

由於此測試難度較高(以整個培養箱草莓植株作測試),所以將印楝素稀釋比例固定在 500:1,藉以釐清窄域油、木醋液稀釋比例變化成效。三種比例組成以 15℃窄域 油 400:1 木醋液 600:1 印楝素 500:1 殺螨率 95.8%最高,15℃ 窄域油 600:1 木醋液 400:1 印楝素 500:1 殺螨率 88.7%最低。推估其原因為窄域油稀釋比例下降後,該資材殺螨效率下降,雖然木醋液用量增加,強化殺卵能力,但能不足彌補前者,如此消長下 15℃ 窄域油 600:1 木醋液 400:1 印楝素 500:1 殺螨能力大幅下降。

由圖五可以清楚比較窄域油相關測試,15℃<u>窄域油</u>400:1 <u>木醋液</u>600:1 <u>印楝素</u>500:1 殺螨率 95.8%最高,25℃<u>窄域油</u>300:1 殺螨率 84.9%最低,而 15℃<u>窄域油</u>600:1 <u>木醋液</u>400:1 <u>印楝素</u>500:1 組合效力,只與 15℃<u>窄域油</u>300:1 相當殺螨率約 89%。

圖五 所有窄域油相關測試成效比較

五、兩樣本比例檢定

針對重要資材稀釋液作統計上的檢定,因為二點葉螨致死率的排序不代表比率 高的就是殺螨成效較高,還需要統計上的支持。信賴水準 $\alpha=0.05\%$,作兩樣本比 例檢定,如果接受虛無假設 H_0 則兩樣本二點葉螨致死率在統計上是相同的,反之, 拒絕 H_0 則是兩樣本二點葉螨致死率顯著差異。將檢定結果留在(陸之四)討論。

 P1(二點葉螨致死率) I			
	P2(二點葉螨致死率)	$H_0: P_1 - P_2 = 0$ $H_1: P_1 - P_2 > 0$	統計上意義
		111.11 12 / 0	
窄域油 400:1 窄	窄域油 500:1	4 4 57 11	→ M L ** * * * * * * * * * * * * * * * *
木醋液 600:1 P₁=0.958 木	木醋液 500:1 P₂=0.947	接受 H。	二點葉螨致死率相同
印楝素 500:1	印楝素 500:1	Z=0.796 < 1.645	$P_1 = P_2$
窄域油 400:1 窄	窄域油 600:1	h=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
木醋液 600:1 P=0.958 木	木醋液 400:1 P₂=0.887	拒絕 Ho	二點葉螨致死率不同
印楝素 500:1	印楝素 500:1	Z=4.398>1.645	$P_1 > P_2$
窄域油 500:1 窄	窄域油 600:1	h=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	→ III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
木醋液 500:1 P:=0.947 木	木醋液 400:1 P₂=0.887	拒絕 Ho	二點葉螨致死率不同
印楝素 500:1	印楝素 500:1	Z=3.660>1.645	$P_1 > P_2$
窄域油 400:1 窄	窄域油 500:1	4⊏ <i>\</i> ⁄⁄⁄⁄⁄ II	
木醋液 600:1 Pi=0.958 木	木醋液 500:1 P₂=0.929	拒絕 H ₀	二點葉螨致死率不同
印楝素 500:1		Z=1.758>1.645	$P_1 > P_2$
窄域油 500:1 窄	窄域油 500:1	4分元 11	→ M L ******** → **** 1 = 1
木醋液 500:1 P=0.947 木	木醋液 500:1 P₂=0.929	接受Ho	二點葉螨致死率相同
印楝素 500:1		Z=1.085 < 1.645	$P_1 = P_2$
皂 液 300:1 窄	窄域油 300:1	接受 Ho	二點葉螨致死率相同
15°C 15	5°C	Z = 0.237 < 1.645	$P_1 = P_2$

表十一 兩樣本比例檢定(信賴水準 $\alpha = 0.05\%$)

六、噴灑 15℃<u>窄域油 400:1_木醋液 600:1_苦楝素</u> 500:1 及對照組(噴灑 25℃水及無處理) 之比較:

接下來以最佳組合 15℃<u>窄域油</u>400:1<u>木醋液</u>600:1 <u>苦楝素</u>500:1 和對照組<u>噴灑</u>25 ℃水及無處理,三者逐日觀察記錄,為求一致,前二組分別再第一天及第七天噴灑,記錄如下:

表十二 噴灑15℃窄域油400:1 木醋液600:1 苦楝素500:1及對照組實驗結果

	D1(噴灑前)	D2			D3			D4			D5		
	存活	死亡	存活	死亡	存活	死亡	合計	合計	存活	死亡	合計	存活	死亡	合計
	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數
無處理	35		42	2	60	6	66	44	50	3	53	56	4	60
噴灑 25℃水	39	以滴管 將死亡	43	5	61	11	72	48	49	6	55	55	8	63
窄域油 400:1 木醋液 600:1 苦楝素 500:1 15℃稀釋液	56	螨去除	4	58	13	63	76	62	5	63	68	9	63	72

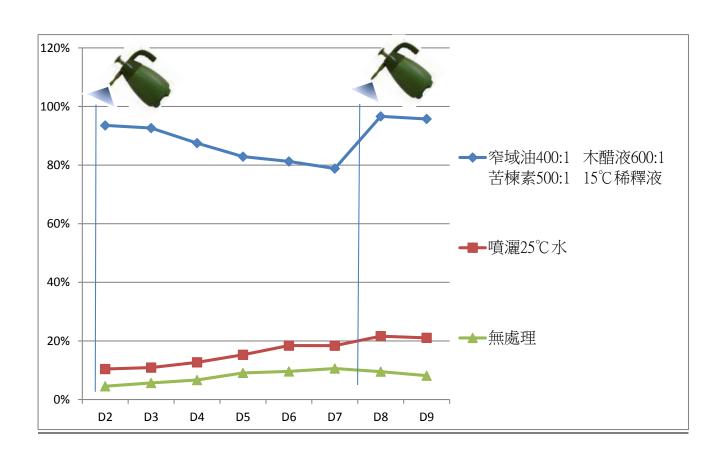
	D6			D	7(噴灑)	前)		D8		D9			
	存活	存活 死亡 台		存活	死亡	合計	存活	死亡	合計	存活	死亡	合計	
	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	螨數	
無處理	66	7	73	76	9	85	95	10	105	124	11	135	
噴灑 25℃水	62	14	76	71	16	87	87	24	111	105	28	133	
窄域油 400:1 木醋液 600:1 苦楝素 500:1 15℃稀釋液	15	65	80	18	67	85	3	86	89	5	91	96	

表十三 噴灑15℃窄域油400:1 木醋液600:1 苦楝素500:1及對照組逐日死亡率統計

死亡率	D2	D3	D4	D5	D6	D7	D8	D9
窄域油 400:1 木醋液 600:1 苦楝素 500:1 15℃稀釋液	94%	93%	88%	83%	81%	79%	97%	96%
噴灑 25℃水	10%	11%	13%	15%	18%	18%	22%	21%
無處理	5%	6%	7%	9%	10%	11%	10%	8%

本文最佳非農藥資材組合與對照組-純噴水組及無處理組逐日觀察螨蟲死亡率,發現 最佳非農藥資材組合於觀察期間**累積螨蟲致死率**均明顯優於對照組。而且證實每七日噴灑 一次即可穩定控制螨害。

由圖五得知:純噴水組及無處理組於觀察期前七天螨蟲致死率呈現逐日攀升,應該是 螨蟲族群自然死亡累積所致,第八日卵逐漸孵化,無處理組螨蟲致死率開始下降,而純噴 水組係因為第七天噴水,所以第八天致死率持續攀升但在第九日下降。


噴水對螨害控制在以往文獻研究致死率在八成以上,但是是以高頻率噴水(每日固定一段時間持續噴灑)將環境維持高濕度,此方式主要是螨蟲在高濕度環境下遭受梅菌感染導致族群下降。

然而高濕度已引發草莓植株病害。本實驗初期在簡易環境控制下,嘗試每日固定時段 噴灑,初期螨害明顯下降,但是2個月後,草莓植株50%以上感染炭疽病,如下圖示:

草莓植株突發性癱軟,橫剖面經部已經褐化枯死。

圖五 15℃**窄域油 400:1 木醋液 600:1 苦楝素 500:1 及對照組**逐日死亡率

陸、討論

一、此實驗發現 15℃<u>窄域油</u>+木醋液 殺螨率由 89%(15℃ 窄域油)提升至 92.9%,而 15℃ <u>皂</u>
液+木醋液 殺螨率由 89.5%(15℃ 皂液)下降至 83.8%。為何前者具加乘效果,後者呈現 抵減效應?

首先探討各資材的特色:

(一) <u>窄域油</u>是精煉自石油,具較窄之蒸餾域,成份精純,與一般礦物油最大的差別 是未磺化值高達 98%以上,不易與其他物質結合而產生藥害。碳與碳間主要為 單鍵,不含芬芳族,<u>窄域油</u>被紫外線即分解為二氧化碳及水,快速被微生物分解, 對土壞不構成負擔。

<u>窄域油</u>滅螨方式以物理作用,將以包覆蟲體或阻塞(或干擾)呼吸系統方式阻殺害蟲及病菌,對蟲卵係以包覆方式防治,然而在窄域油被紫外線分解後,對蟲卵防治能力及大幅下降。

- (二) <u>木醋液</u>係木材蒸餾而得,呈酸性,係酸性資材,具滅蟲、殺菌作用,對蟲卵防 治能力高。
- (三) <u>皂液</u>呈現鹼性,係以接觸、破壞蟲體表面,使蟲體脫水死亡。文獻指出<u>皂液</u>對 阻殺極低。
- (四) <u>印楝素</u>存於<u>楝科</u>(Melia-leae)、<u>芸香料</u>(Rutaceae)和<u>苦木科</u>(Simaroubaceae)等植物, 含<u>檸檬素</u>類化合物,對昆蟲有拒食、絕育及殺卵等多種作用。

本實驗得到<u>皂液</u>和<u>木醋液</u>二者混合後離子數下降,產生抵減效應,成螨死亡率低於皂液稀釋液、但是高於<u>木醋</u>稀釋液。同時皂液中碳鏈中親油基與油類結合,亦會產生抵減效果,因此皂液無法和其他資材產生協力滅螨,而且對蟲卵防治率低。因此本實驗將皂液自組合名單中排除。

而在 15℃<u>窄域油</u>+<u>木醋液</u>組合中,<u>窄域油</u>主要撲殺活螨,<u>木醋液</u>撲殺螨卵且具 撲殺活螨的功能,因此發揮加乘作用。

二、最後3樣資材的組合為何只做3種配比?(_15℃<u>窄域油</u>400:1<u>木醋液</u>600:1<u>印楝素</u>500:1; 15℃<u>窄域油</u>500:1、<u>木醋液</u>500:1、<u>印楝素</u>500:1 和 15℃<u>窄域油</u>600:1 <u>木醋液</u>400:1 <u>印</u>

楝素 500:1)

本實驗最後資材組合名單定調為<u>窄域油、木醋液</u>及<u>印楝素</u>,但是 3 組配比略微不足,這部分的實驗難度在於:

(一)必須觀察組合資材對二點葉螨跨代影響,因為印楝素成效短天期無法評估

<u>印楝素</u>對二點葉螨的防治在於降低雌螨產卵數、減少雌螨壽命及阻殺蟲卵。 所以整個實驗必須橫跨數天才能觀察其防治成效。本實驗採取一般市售資材噴灑 方式以七天一次。於第七天噴灑第二次,二天後顯微鏡觀察死亡螨數。

(二) 必須以整個培養箱草莓植株作測試

由於實驗過程長達九天,而且必須維持原培養箱條件,所以是以整個培養箱草莓植株作測試,培養箱可以以32目網紗分層,所以一培養箱植株可以做3 組實驗。受限上述因素,只能有3種組合。

三、為何由窄域油 500:1 木醋液 500:1 印楝素 500:1 開始?

因為培養箱植株培養不易,且數量有限,所以是以其他室內草莓植株先行測試。由三資材均採900:1(窄域油900:1 木醋液900:1 印楝素900:1)、800:1、700:1、600:1、500:1、400:1,殺螨率在500:1及400:1最高,且數據相近,所以決定由<u>窄域油500:1木醋液500:1</u> 印楝素500:1開始,並將印楝素稀釋比例固定在500:1,藉以釐清窄域油、木醋液稀釋比例變化成效。

然而 15℃<u>窄域油</u> 400:1 <u>木醋液</u> 600:1 <u>印楝素</u> 500:1 在統計上和 15℃<u>窄域油</u> 500:1、 <u>木醋液</u> 500:1、<u>印楝素</u> 500:1 致死率並無差異(表十一),但是本實驗還是以 15℃<u>窄域</u> 油 400:1 木醋液 600:1 印楝素 500:1 為最佳配方,理由有三:

- (一) 二點葉螨是需要逐週噴灑長期防治,原因是除了殘餘蟲螨、蟲卵,外界亦會遷入,面對龐大二點葉螨數量, 1.1%(=95.8%-9.47%)致死率差距,在防治上是有實質意義的。
- (二) 兩種配方資材的使用量(<u>窄域油</u>400:1<u>木醋液</u>600:1<u>印楝素</u>500:1VS<u>窄域油</u>500:1、 <u>木醋液</u>500:1、<u>印楝素</u>500:1)相當,費用上亦約略相同,理所當然使用防治率較 高的配方組合。
- (三)由表十一,15℃<u>窄域油</u>400:1 木醋液 600:1 印楝素 500:1 是顯著優於 15℃<u>窄域油</u>
 +木醋液; 反觀 15℃<u>窄域油</u>500:1、木醋液 500:1、印楝素 500:1 在統計上是和 15℃窄域油+木醋液無差異的。

最後將所有有關於窄域油資材的實驗結果一起比較,由表五可以清楚比較窄域油相關測試,15℃<u>窄域油</u>400:1 <u>木醋液</u>600:1 <u>印楝素</u>500:1 殺螨率 95.8%最高,25℃<u>窄域油</u>300:1 殺螨率 84.9%最低,而 15℃<u>窄域油</u>600:1 <u>木醋液</u>400:1 <u>印楝素</u>500:1 組合效力,只與 15℃ <u>窄域油</u>300:1 相當殺螨率約 89%。因此 15℃<u>窄域油</u>600:1 <u>木醋液</u>400:1 <u>印楝素</u>500:1 的組 合是不具經濟效益,相對使用較多資材,其效力不及單劑。

此外將最佳非農藥資材組合 15℃<u>窄域油</u>400:1 <u>木醋液</u>600:1 <u>印楝素</u>500:1 和對照組-純噴水組及無處理組逐日比較致死率連續九日,發現最佳非農業資材組合於觀察期間<u>累</u> 積螨蟲致死率均明顯優於對照組。而且證實每七日噴灑一次即可穩定控制螨害。

一般防治上常常會落入此迷思,越多樣、撲殺範圍愈廣,此實驗結果證明多樣之外, 還必須考量資材間是否存在抵減效果,還有各資材稀釋比率亦是重要資訊,稀釋比例組 合不當,就會出現防治效果下降的反效果。

柒、結論

本實驗所得結論歸納如下:

- 一、最佳非農藥資材組成比例為 15℃ <u>窄域油</u> 400:1 <u>木醋液</u> 600:1 <u>印楝素</u> 500:1 殺螨率高達 95.8%,和 25℃ <u>窄域油</u> 300:1 相較,殺螨效率提升了 13%。本文標題中「冰鎮雞尾酒」 即是取自 15℃的稀釋液以及 3 種不同類別資材混合。實驗過程將<u>皂液</u>排除,因為<u>皂</u> 液親油性及其鹼性特徵,和皂液及木醋液組合反而產生抵減效果。
- 二、本實驗另一特色是將稀釋液溫度納為變因之一,此一想法源自關於氣候對<u>二點葉蝴</u>影響的文獻,研究中指出氣溫對<u>二點葉蝴</u>棲群繁衍影響顯著。因此將氣溫改以稀釋液溫度,而本實驗結果亦具成效。實務上,在開放環境下,建議在晚間噴灑此非農藥資材延長低溫殺螨滅卵時間(窄域油易受紫外線分解,晚間噴灑可延長窄域油的功效。),如在植物工廠可再噴灑時調降室溫。
- 三、受限於時間及無蟲害病毒之實驗用草莓植株栽培不易,三資材組合比例於此實驗只做3種配比,在條件許可下應做更多樣配比實驗。
- 四、本實驗資材均外購,成份已經受限。如果針對資材成份調整,實驗或許可以得到更高的防治率。例如:<u>木醋液,陳伯光(2009)</u>指出不同溫度蒐集的蒸餾液製成的<u>木醋液</u> 其殺菌力不同,又如<u>印楝素</u>純度對防治力的影響等,相信上述研究可將<u>二點葉螨</u>防治力再提升
- 五、實驗中另一難題為培育無蟲害病毒之實驗用草莓植株,由於無相關文獻,是故是在 失敗中反覆測試,失敗過程及原因不在此贅言。而報告中所述相關流程,是實際操 作成功之作法。
- 六、以噴水方式維持高濕度來控制螨害,是一具經濟效益且對生態環境影響極微,然而 在本研究發現草莓植株在高濕度環境下大量感染<u>炭疽病</u>。換個角度思考,如何在噴 水高濕度下,達到控制螨害的目的,同時降低草莓植株病害,是未來研究方向之一。
- 七、最後,這研究尚有議題未完成,亦即此非農藥配方對草莓產能、風味、草莓品相影響如何?畢竟草莓是高經濟作物,必須更進一步探索對其經濟效益。由於草莓一產期約 6~7 個月,因此是一個更為龐大的計畫。

捌、參考文獻及其他

壹、中文部分

陳伯光(2009)·*不同溫度採集竹/木醋液之基本性質與抑菌性之評估*.(碩士論文)。

廖保成(2012) <u>• 非農藥防治資材對草莓二點葉蟎防治成效之評估</u>.(碩士論文)<u>•</u>臺灣大學昆蟲學研究所。

王文哲 劉達修(1996) <u>•</u>非農藥物質對玫瑰二點葉蟎之影響<u>•台中區農業改良場研究彙報</u>, 第五十期, Page 21-28。

王順成、林明瑩、謝再添、鄭莉蓉、吳芳儀、何琦琛(2011) • 三種重要葉蟎之抗藥性研究回顧.有害生物抗藥性 • 研討會專刊 ,1-18。

李啟陽 ; 羅幹成 ; 姚美吉 ; 彭武康 ; 吳文哲(2006) <u>•</u> Household Soap Solutions on the Mortality of the Two-spotted Spider Mite, Tetranychus Urticae Koch. <u>• 臺灣昆蟲</u> , 26:4 , 379-390 。 余志儒 陳炳輝(2009) <u>•</u> 三種植物油對二點葉蟎之致死效果 <u>• 台灣農業研究</u>. 58(2): 136-145。 何琦琛(1989) <u>•</u> 捕植蟎-現行之瞭解在葉蟎防治中之利用及其葉蟎天敵之簡介 <u>• 中華昆蟲特刊</u> ,第三號 ,109-124 頁。

何琦琛 羅幹成 (1979) <u>•</u>溫度對二點葉蟎 Tetranychus urticae生活史及繁殖力之影響 <u>• 中華農</u> 業研究, 28(4), 261-271。

何琦琛、羅幹成、陳文華(1995)<u>·</u>台灣為害經濟植物之葉蟎種類及 12 種殺蟎劑對二種主要 葉蟎之毒性測試·中華農業研究, 44,157-165。

何琦琛、羅幹成、陳文華(1997) <u>•</u>臺灣農作物上之葉蟎種類<u>•中華農業研究</u>, 46, 333-346。 林翰謙、夏滄琪 (2006) <u>•</u> 應用竹醋液蒸氣處理評估孟宗竹材之抗黴性<u>•林業研究季刊</u>, 28 (2), 51-66。

劉達修(1987) · 溫度對二點葉蟎發育之影響·台中區農業改良場研究彙報(14,15),71-78。 劉達修 王文哲 陳啟吉(1993) · 數種非農藥物質在葉蟎防治上之應用·臺中區農業改良場研究彙報,39,61-71。

盧崑宗、郭嘉雯、劉正字 (2007) <u>•</u>不同碳化溫度範圍收集竹醋液之基本性質及其抗植物病原細菌活性<u>•中華林學季刊</u>, 40(1), 97-112。

貳、英文部分

DEJAN MARČIĆ* & IRENA MEĐO(2015) Sublethal effects of azadirachtin-A (NeemAzal-T/S) on Tetranychus urticae (Acari: Tetranychidae) *Systematic & Applied Acarology 20*(1): 25 – 38

Daniel et al (2013) Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry *.Bernardi Pest Management Science Volume 69*, Issue 1, pages 75 – 80

Elena Martínez-Villar et al (2005) Effects of azadirachtin on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) *Experimental & Applied Acarology* March 2005, Volume 35, Issue 3, pp 215-222

Nazeh M. Abd El-Wahed and Ashraf S. El-Halawany (2012)Effect of Temperature Degrees on the Biology and Life Table Parameters of Tetranychus urticae Koch on Two Pear varieties. *Egypt. Acad. J. Biolog. Sci.*, 4(1): 103-109

Kitashima & Tatsuo Sato(2013) Effect of hot-water treatment on the Two-spotted spider mite,

Tetranychus urticae, and its predator, *Neoseiulus californicus International Journal of Acarology Volume*39, Issue 7, 533-537

White JC, Liburd OE.(2005) Effects of soil moisture and temperature on reproduction and development of twospotted spider mite (Acari: Tetranychidae) in strawberries. *J Econ Entomol.* Feb;98(1):154-8.

附 錄

日本山崎配方(1976)

作物別		肥料量	成分	潰度	(me/	L)		電導度			
נית עיד ד	硝酸鉀	硝酸鈣	硫酸鎂	磷酸一銨	EDTA 鐵	硝酸態氮	鉀	鈣	磷	鎂	mS/cm
胡瓜	610	830	500	120	20	13	6	7	3	4	2.0
洋香瓜	610	830	380	155	20	13	6	7	4	3	2.0
西瓜	610	830	185	60	20	13	6	7	1.5	1.5	1.6
菠菜	300	470	250	80	20	7	3	4	2	2	1.1
番茄	400	360	250	80	20	7	4	3	2	2	1.1
草莓	310	240	125	60	20	5	3	2	1.5	1	0.7
甜椒	610	360	250	100	20	9	6	3	2.5	2	1.3
茄子	710	360	250	120	20	10	7	3	3	2	1.5
萵苣	400	240	125	60	20	6	4	2	1.5	1	0.8
茼蒿	810	470	500	155	20	12	8	4	4	4	2.0
蕪菁	510	240	125	60	20	7	5	2	1.5	1	0.9
蕹菜 ^z	707	354	246	152	20	10	7	3	4	2	1.6

【評語】040710

- 1. 觀察仔細,能利用肉眼、光顯雙重確認蟎的生死狀態,精神可佳。
- 2. 應以恰當方法全面檢視各處理法的殺螨成效,並正確呈現在圖表上(ex. 低溫的殺蟎效果並不明確,值得再探討)。
- 3. 各資料的殺螨效果效益均已知,多種混合後提昇的效益有限。