中華民國第55屆中小學科學展覽會

作品說明書

高中組 地球科學科

040505

應用 3D 列印於縮尺建物耐震試驗之可行性探討

學校名稱:新北市立瑞芳高級工業職業學校

作者:	指導老師:
高二 黃林軍	李銘哲
高二 潘冠廷	詹秉鈞
高二 吳堃詣	

關鍵詞:3D列印、縮尺建物、制震系統

摘要

台灣對建物安全與結構防災的意識提升,為達到處於地震頻繁的臺灣具有居住安全,目前建 案多強調房屋結構中加設制震系統以達到減震效益,因此國震研究中心投入相當成本進行耐 震試驗,而透過本專題去探討此一耐震試驗於研究架構之可行性。

本研究目的係利用 3D 列印技術進行縮尺建物之耐震試驗,並透過數值與實驗模擬不同地震 波下,比對 3D 列印模型之頂層加速度與位移歷時是否有相同之變化趨勢?並討論他們在實 驗後各方面的特性差異並做比較,藉由結果數據,以「效益值」、「嚴謹度」、「合理性」三點 進行討論出耐震試驗之可行性,其結果在長週期之針筒阻尼有顯著之制震結果趨勢,唯利用 熔絲製造的 3D 列印方式較無法達到元件具有理想的結構力學行為。

壹、研究動機

地震帶包括環太平洋地震帶、歐亞地震帶、中洋脊地震帶,而台灣處於環太平洋地震帶, 為歐亞大陸板塊與菲律賓板塊交界,致使地震頻繁,當地震級數越大越易造成建物的損壞與 倒塌,導致房舍倒塌時發生連鎖效應,其中以九二一地震為例,而其主因多是建材品質不齊 或老舊等問題造成,所以在建築業中逐漸重視制震系統的重要性,就前面提及的問題於探討 文獻中可以得知。過去高一時我曾撰寫有關制震系統優缺點的小論文,因此對建築物的制震 系統有了初步了解,便想是否可以對此方向去做研究與探討

3D 列印應用在近年來無論在科學實驗與科技實作的應用,不斷有新聞報導的消息,於是 我們就發想選用 3D 列表機去做建物模型,我們透過尋找相關資料,了解 3D 列印成型方式有 很多種,因此我們想應用 3D 列印的融絲製造技術來進行抗震結構的建模,進而探討耐震試 驗之可行性的主題。

圖 1-1 台灣地震分布圖

圖 1-2 房舍倒塌時發生連鎖效應

日期	震央	緯度	經度	震級	災害情形
2004年5月1日	花蓮秀林	北 24.08	東 121.53	5.3	2 人死亡中横公路落石
2006年4月1日	台東卑南	北 22.88	東 121.08	6.2	14 棟房屋全毀
2006年12月26日	屏東恆春外海	北 21.69	東 120.56	7.0	2 人死亡 3 棟房屋全毀
2009年11月5日	南投名間	北 23.79	東 120.72	6.2	1人受傷
2009年12月19日	花蓮磯崎外海	北 23.79	東 121.66	6.9	17 人受傷多棟房屋毀損
2010年3月4日	高雄茂林	北 23.0	東 120.73	6.4	96 人受傷 54 萬戶停電
2012年2月26日	屏東霧台	北 22.74	東 120.78	6.1	
2013年3月27日	南投仁愛	士 23.90	東 121.05	6.2	1 人死亡 97 傷
2013年6月2日	南投仁愛	北 23.86	東 120.97	6.5	5 人死亡
2013年10月31日	花蓮瑞穂	北 23.55	東 121.42	6.3	1人受傷
2015年4月20日	花蓮東部外海 76.2 公里	士 24.05	東 122.37	6.3	1人死亡,1人受傷

表 1-1 2004-2015 地震造成之傷害

貳、研究目的

本研究目的就是探討 3D 列印技術應用於縮尺建物進行耐震試驗的可行性,並希望以縮小建物尺寸來達到設計制震系統的桿件形式,因此我們開始進行一連串的資料收集、歸納分析跟 實驗模擬,並探討其效益值、嚴謹度、合理性之三要項,本研究目的架構如圖 2-1 所示。

此外我們也將建築物模型分成兩類四種,一類為斜撐,分別為H型與O型亦如實際建築工程 所製造之鋼材元件,另一類為阻尼,分別以針筒與彈簧模擬現行房屋結構之制震系統,藉此 探討出 3D列印元件的縮尺建物進行耐震試驗是否具有可行性。

圖 2-1 研究架構圖

參、研究設備及器材

下列為本次研究過程所使用過的材料、儀器及工具設備如下:

一、使用材料:

項次	名稱	數量	T		
1	白色 PLA 線材	2 捆			-
2	紅色 PLA 線材	1捆	PIA 编材(白)	DIA 2白まま(2丁)	*#F
3	木板	10塊	FLA 微化的(口)	PLA 绿杓(紅)	不仅
4	彈簧	24 個	and the second sec	• •	
5	針筒	8個		ALA	
6	熱熔膠條	20 條		針筒	熱熔膠
7	180 號砂紙	1張	AND -		
8	瓦楞板	四片	180 號砂		
9	3M 耐熱美紋膠帶	1捆			3M 耐熱美紋膠帶
10	質量塊	12 塊		瓦楞板	
11	螺絲	40 顆	質量塊		
- 1=	日孫昭				

二、使用儀器

項次	名稱	數量	*	THE REFISEREN OF	
1	3D 列表機	2台		1 m	
2	無旁束壓縮試驗儀	1座		E?]	
3	電子磅秤	1台	3D 列表機	無旁束壓縮試	電子磅秤
4	電子分析天平	1台	N N	120	
5	六軸式電動平台	1座		2012/101 FOR 01/11 S FOR	SS -
6	加速規感測系統	1套	電子分析天平	六軸式抗震台	加速規監測設

三、使用工具

項次	名稱	數量	6 R		×	
1	三角板(45度跟60度)	2把				
2	延長線	2座	三角板	延長線	烙鐵	美工刀
3	美工刀、剪刀	2把		-		
4	烙鐵、烙鐵架	2 件			And in case of the local division of the	
5	鋸子	1把	鑷子	游標卡尺	鋸子	剪刀
6	補土刀	1把				
7	斜□鉗	1把	-	-		
8	游標卡尺	1個	斜口鉗	補十刀	雪 遰	墊子
9	電鑽、熱熔槍	1把		110-1-7-7	电坝	
10	銼刀	1把	7	MULLE		
11	螺絲起子	1把	劫嫁检			
12	墊子、鑷子	1件	积松化	鑚尾	銼儿	螺絲起子

肆、研究過程與方法

圖 4-1 本專題之整體架構流程圖

一、蒐集資料立體製圖

(一)蒐集 3D 相關資料:本研究透過網路蒐集現代 3D 打印成型方法如下表 4-1,並選擇常 運用到的熔絲打印型式,而此打印型式中有兩種線材,並選用 PLA(聚乳酸)作此研究的打印原料。

研究目的:選擇出打印方式、打印原料

■研究步驟:1、蒐集現代 3D 打印成型方法

- 2、匯整資料,找出常運用到的打印型式
- 3、選擇打印時要使用那種打印原料

項次	打印型式	項次	原料種類
1	選擇性激光燒結	1	<u>熱塑性塑料</u> 、 <u>金屬</u> 粉末、 <u>陶瓷</u> 粉末
2	直接金屬激光燒結	2	幾乎任何合金
3	熔融沉積式	3	熱塑性塑料, <u>共晶系統</u> 金屬、可食用材料
4	立體平版印刷	4	光硬化樹脂(<u>photopolymer</u>)
5	數字光處理	5	液態樹脂
6	熔絲製造	6	PLA(<u>聚乳酸</u>)、 <u>ABS 樹脂</u>
7	融化壓模式	7	金屬線、 <u>塑料</u> 線
8	分層實體製造	8	<u>紙</u> 、金屬膜、塑料薄膜
9	電子束熔化成型	9	<u>鈦</u> 合金
10	選擇性熱燒結	10	Thermoplastic powder
11	粉末層噴頭 3D 打印	11	石 <u>膏</u>

表 4-1 打印型式與原料

(二) 蒐集制震系統相關資料: 蒐集制震相關資料,使用 Autodesk Inventer 做 3D 縮尺建物 桿件的設計,並將設計好的各桿件做繪製 3D 縮尺建物。

■研究目的:設計與繪製 3D 縮尺建物

- ■研究步驟:1、蒐集制震系統有斜撐、阻尼器
 - 2、設計各 3D 桿件
 - 3、繪製 3D 縮尺建物

圖 4-2 設計與繪製 3D 縮尺建物之流程圖

二、3D 桿件分析試驗

(一) 3D 桿件抗壓強度(S_C)試驗

■試驗目的:本方法係用測定 3D 桿件之抗壓強度

- ■試驗步驟:1.將試體於 3D 桿件取出,並將底板與主體分開
 - 2.量測 3D 桿件長、寬、厚與重量
 - 3.置試體於抗壓試驗機中央,注意試體與儀器接觸之上下兩面不得使用 墊板。

■計算結果:

$$S_{c} = \frac{P}{A} (\frac{kg}{cm^{2}})$$

P=最大荷重(kg)
A=面積(cm²)

(二) 3D 桿件抗拉強度(S_T)試驗

■試驗目的:本方法係用測定 3D 桿件之抗拉強度

■試驗步驟:1.將試體於 3D 桿件取出,並將底板與主體分開
 2.量測 3D 桿件長、寬、厚與重量

3 將 3D 桿件放置夾具中

計算結果:

$$S_{T} = \frac{P}{A} (Kg/cm^{2})$$

P=作用力(Kg)
A=破壞處之斷面積
(cm²)

(三) 3D 桿件抗折強度(T)試驗

■試驗目的:本方法係用測定 3D 桿件之抗折強度
 ■試驗步驟:1.將試體於 3D 桿件取出,並將底板與主體分開
 2.測定其試體之長、寬、高、厚度與重量。
 3.將試體三點抗折試驗
 4.放入二圓柱於無旁束壓縮試驗中之等距支承軸上如下圖。

- ■計算結果:試樣之抗折強度(kg/cm²),依下式計算。
 - T = <u>3WL</u> 2bd² W=最大載重(kgf) L=支持用滾筒之中心間距(cm) b=試樣寬度(cm) d=試樣厚度(cm)

三、實驗模擬耐震試驗

■試驗目的:探討透過斜撐及阻尼的桿件設計,並利用 3D 桿件組立模型,由對照組 來測試出建物模型在彈性範圍內,是否符合與數值模擬相同之頂層加速度 減少趨勢。

■試驗步驟:1.印製出縮尺模型各個桿件的長、寬、高。

2.在木板上進行放樣並鎖上獨立基腳。

3.柱放樣完後,將樑焊上柱,最後把斜撐與阻尼系統焊至模型上。

4.做不同週期地震波的 3D 列印縮尺建物耐震實驗

項目 順序	主旨	說明	圖表
Step 1	設計	叉型斜撐與阻尼設計	

Step 2	印製	由3D列印印製出桿件尺 寸	
Step 3	桿件接合	木板上進行獨立基腳與 底柱放樣及鎖上	
Step 4		樑與接合版接合,焊好的 樑與柱接合,並放上樓板	
Step 5		將以焊好的斜撐及阻尼系統放上每一層樓	
Step 6	模型秤重 及 量測尺寸	把每棟模型都量測尺寸 與重量,以增加其嚴謹 度。	
Step 7	加速規 的線路安裝	將加速規接到 D718-ES 裝置並裝置 D718-ES 接 上電源並用網路線連接 至數據機,再從數據機連 接至電腦 DATAQ 軟體	
Step8	擷取 電子訊號	設定 DATAQ 軟體的紀 錄時間、為 36 秒,並用槌 子及棉線來測試無震動 前及震動後的自然振動 頻率	
Step 9	模擬搖晃破 壞	進行長、中、短及共振頻 率的週期地震波,輸入參 數如表 4-3,每次的破壞 都會對建物造成破損,所 以都必須測出自然振動 頻率,必較模型是否有降 低的趨勢	表 4-2 模擬地震波之控制參數次項週期振幅位移家c/次mmmm10.10401020.25401031.004010共振週期4010
Step12	轉換 類比訊號	 利用 DATAQ 軟體做頻率 成頻率。並轉換頻率後 透過地震歷時,分析加速 	率的分析,軟體中運用 FFT 快速傅立葉轉換 ,比對出損壞程度。 速度之分佈情形

註 1.耐震實驗操作說明如如下表 4-3

註 2.耐震實驗模擬操作現況如下圖 4-2

表 4-3 耐震實驗操作說明

步驟	操作内容	量測項目
Step1	控制端輸入地震波參數	量測短、中、長週期之加速度歷時
Step2	給予模型的適當微振動源	量測搖前之自然震動頻率(Hz)
Step3	進行短週期地震波之模擬振動	量測搖時之模型頂層加速度歷時(g)
Step4	給予模型的適當微振動源	量測搖後之自然震動頻率(Hz)
		/
Step5	進行中週期地震波之模擬振動	量測搖時之模型頂層加速度歷時(g)
Step6	給予模型的適當微振動源	量測搖後自然震動頻率(Hz)
Step7	進行長週期地震波之模擬振動	量測搖時之模型頂層加速度歷時 (g)
Step8	給予模型的適當微振動源	量測搖後自然震動頻率(Hz)
Step9	進行共振週期地震波之模擬振動	量測搖時之模型頂層加速度歷時 (g)
Step10	給予模型的適當微振動源	量測搖後自然震動頻率(Hz)

圖 4-2 耐震實驗模擬操作現況

四、數值模擬動力分析

本研究數值模擬採用 ETABS 結構分析設計程式,係因該軟體已廣為工程界進行耐震工程 制震系統或動力分析時所採用,並依據 3D 列印所組成之五種對照組與實驗組的建物模型, 於 ETABS 進行建模並在加以分析,

■試驗目的:探討透過斜撐及阻尼的桿件設計,並利用 3D 桿件組立模型,由對照組 來測試出建物模型在彈性範圍內,是否符合與實驗模擬相同之頂層加速度 減少趨勢。

■試驗步驟:操作程序說明如下圖所示

圖 4-3 數值模擬 ETABS 程式之操作流程圖

伍、研究結果

本專題係透過 3D 列印機、六軸式電動平台、微振動感測設備,以及結構分析程式 ETABS 進行一系列的實驗,以下就實驗結果分為 3D 桿件力學特性、耐震實驗試驗模擬、數值模擬分析結果依序分項說明如下:

一、3D 桿件特性

為了測試 3D 列印對於縮尺結構桿件的問題,故採用之控制變因-列印方向(直立與橫列)、列 印線材(PLA;ABS)、設定厚度(樑: W0.3F0.4、W0.6F0.8、W0.9F1.2;柱: 0.65cm、1.3cm、 1.95cm;試片: 0.6cm、0.9cm、1.2cm)、接合方式(柱抗折、試片抗拉)、斷面樣式改變(樑抗 折)、同時列印數量(柱、樑抗壓: 單印1支、並列4支、並列8支),以下就幾點要向的實驗 階段結果分析如下:

本研究在實驗材料特性,其結果如下:

(一) 抗折強度-柱

表 5-1 柱桿件之 3D 列印類別與抗折強度分析探討一覽表

項 目	主題	分類	有無 支撐 線材	代號	設計 長度 (cm)	設 寬 (ci	計 度 m)	設計 厚度 (cm)	實際 長度 (cm)	實 寬 (c	際 度 m)	實際 厚度 (cm)	重量 (g)	顏色	材質	抗折 強度
			102C/17J		(em)	長	寛	(em)	(em)	長	寛	(em)				(kg/cm)
1		直立	無	BC-U-2	12.000	0.750	0.750	0.130	11.999	0.748	0.756	0.121	4.573	白	PLA	83.581
2	方向	構研	有	BC-H-1	12.000	0.750	0.750	0.130	12.117	0.769	0.770	0.130	5.638	白	PLA	177.661
3		個刀	無	BC-H-2	12.000	0.750	0.750	0.130	12.127	0.799	0.780	0.124	5.137	白	PLA	144.749
4	材質	PLA	無	BC-PLA	12.000	0.750	0.750	0.130	12.008	0.748	0.756	0.121	4.573	白	PLA	83.581
5	们具	ABS	無	BC-ABS	12.000	0.750	0.750	0.130	12.030	0.763	0.754	0.127	3.085	白	PLA	43.968
6		0.65	無	BC-T-065	12.000	0.750	0.750	0.065	11.980	0.758	0.763	0.066	2.543	白	PLA	54.015
7	厚度	1.30	無	BC-T-130	12.000	0.750	0.750	0.130	11.999	0.748	0.756	0.121	4.573	白	PLA	217.214
8		1.95	無	BC-T-195	12.000	0.750	0.750	0.195	12.003	0.748	0.749	0.189	6.758	白	PLA	422.905
9	接合	焊接	無	BC-R	12.000	0.750	0.750	0.130	11.986	0.748	0.750	0.139	4.847	白	PLA	39.553

圖 5-1 柱桿件於 3D 列印類別與抗折強度之關係圖

1.量化分析部分:

列印方向:由圖 5-1 得知,橫列無論有無支撐線材,抗折強度皆提升 18%~53%。 線材材質:PLA 較 ABS 強度多達 48%。

設定厚度:厚度愈大,抗折性隨之增加,最高達 88%。

2.質化分析部分:推估原因

(1) 加入支撐線材後,造桿件厚度細微的變化以及列印的更完全、密實。

(2) 材質的不同會對熔絲列印黏合後的軔性產生差異。

(二) 抗折強度-樑

表 5-2 樑桿件之 3D 列印類別與抗折強度分析探討一覽表

項 目	主題	分類	有無 支撐 線材	代號	設計 長度	設 寛 (ci	計 度 n)	設 厚 (ci	計 度 m)	實際 長度 (cm)	實 寬 (ci	際 度 n)	實 厚 (c:	際 度 m)	重量 (g)	顏色	材質	抗折 強度
			7211(1/1		(cm)	腹板	翼板	腹板	翼板	(cm)	腹板	翼板	腹板	翼板				(kg/cm)
1		直立	無	BB-U-2	12.000	0.850	0.625	0.030	0.040	12.012	0.876	0.587	0.027	0.057	1.366	白	PLA	10.575
2	方向	構页[有	BB-H-1	12.000	0.850	0.625	0.030	0.040	12.147	0.848	0.632	0.064	0.081	2.705	白	PLA	26.078
3		但以	無	BB-H-2	12.000	0.850	0.625	0.030	0.040	12.160	0.846	0.638	0.111	0.071	2.138	白	PLA	20.532
4	生頭	PLA	無	BB-PLA	12.000	0.850	0.625	0.030	0.040	12.012	0.876	0.587	0.027	0.057	1.366	白	PLA	10.575
5	们員	ABS	無	BB-ABS	12.000	0.850	0.625	0.030	0.040	12.026	0.880	0.615	0.127	0.108	2.343	白	PLA	35.094
6		W0.3F0.4	無	BB-U-0304	12.000	0.850	0.625	0.030	0.040	12.012	0.876	0.587	0.027	0.057	1.366	白	PLA	10.575
7	厚度	W0.6F0.8	無	BB-T-0608	12.000	0.850	0.625	0.060	0.080	11.969	0.845	0.638	0.055	0.070	1.994	白	PLA	62.821
8		W0.9F1.2	無	BB-T-0912	12.000	0.850	0.625	0.090	0.120	12.010	0.863	0.636	0.085	0.112	2.982	白	PLA	146.133
9		圓形	無	BB-R	12.000	0.6	50	0.0	65	120.350	6.5	70	0.8	800	1.948	白	PLA	34.652
10	斷面	方形	無	BC-U-1	12.000	0.750	0.750	0.1	.30	11.999	0.748	0.756	0.1	21	4.573	白	PLA	84.384
11		H形	無	BB-U-2	12.000	0.850	0.625	0.030	0.040	12.012	0.876	0.587	0.027	0.057	1.366	白	PLA	17.329

圖 5-2 梁桿件 3D 列印類別與抗折強度之關係圖

1.量化分析部分:

列印方向:由圖 5-2 得知,橫列無論有無支撐線材,抗折強度皆提升 21%~60%。 線材材質: ABS 較 PLA 強度多達 70%。

設定厚度:厚度愈大,抗折性隨之增加,最高達93%。

鋼材型式:方形較圓形及H型強度多達58%~80%。

2.質化分析部分:推估原因除呈上所述外,形式的不同會對受力的大小產生改變。

項目	主題	分類	有無 支撐 線材	代號	設計 長度 (cm)	該 寬 (c 腹板)	計 〔度 :m〕 翼板	設 厚 (c 腹板	計 度 m) 翼板	實際 長度 (cm)	實 寬 (c: 腹板	際 度 m) 翼板	實 厚 (c: 腹板	際 度 m) 翼板	面積 (cm²)	重量 (g)	顏色	材質	抗壓 強度 (kg/cm ²)
1		直列	無	CB-U-2	2	0.85	0.625	0.08	0.06	1.997	0.847	0.619	0.905	0.590	1.496	0.3065	白	PLA	515.0
2	方向	構石[[有	CB-H-1	2	0.85	0.625	0.08	0.06	2.010	0.845	0.627	0.710	0.775	1.572	0.4675	白	PLA	546.4
3		傾刀	無	CB-H-2	2	0.85	0.625	0.08	0.06	2.010	0.844	0.618	0.735	1.035	1.901	0.327	白	PLA	410.0
4	む	PLA	無	CB-PLA	2	0.85	0.625	0.08	0.06	1.997	0.847	0.619	0.091	0.059	1.496	0.3065	白	PLA	515.0
5	们具	ABS	無	CB-ABS	2	0.85	0.625	0.08	0.06	2.031	0.876	0.639	0.123	0.087	0.218	0.392	白	ABS	471.4
6		F0.4W0.3	無	CB-T-0403	2	0.85	0.625	0.04	0.03	2.010	0.850	0.619	0.041	0.033	0.075	0.28	白	PLA	411.5
7	厚度	F0.8W0.6	無	CB-T-0806	2	0.85	0.625	0.08	0.06	1.997	0.847	0.619	0.091	0.059	0.150	0.3065	白	PLA	515.0
8		F1.2W0.9	無	CB-T-1209	2	0.85	0.625	0.12	0.09	2.018	0.852	0.636	0.126	0.103	0.238	0.4975	白	PLA	650.7
9		單印1支	無	CB-N1	2	0.85	0.625	0.08	0.06	2.013	0.823	0.606	0.085	0.068	0.152	0.325	白	PLA	568.1
10	數量	並列4支	無	CB-N4	2	0.85	0.625	0.08	0.06	2.012	0.825	0.619	0.095	0.068	0.163	0.3275	白	PLA	422.5
11		並列8支	無	CB-N	2	0.85	0.625	0.08	0.06	1.998	0.825	0.620	0.085	0.068	0.153	0.3285	白	PLA	365.8

表 5-3 樑桿件之 3D 列印類別與抗壓強度分析探討一覽表

圖 5-3 樑桿件 3D 列印類別與抗壓強度之關係圖

1.量化分析部分:

列印方向:由圖 5-3 得知,抗壓直立列印的強度大於 5%~25%。

線材材質:PLA 較 ABS 強度多達 9%。

設定厚度:厚度愈小,抗壓性隨之增加,最高達 37%。

輸出數量:同時列印的越少,強度即隨之增加,最高達 36%。

- 2.質化分析部分:推估原因
 - (1) 因印製方式不同後,造成桿件紋理不同。
 - (2) 材質的不同會產生材質壓縮能力的不同。
 - (3) 大量生產,品質就會降低。

(四) 抗壓強度-柱

項 目	主題	分類	有無 支撐 線材	代號	設計 長度 (cm)	設 寛 (ci	計 度 m)	設計 厚度 (cm)	實際 長度 (cm)	實 寛 (ci	際 度 m)	實際 厚度 (cm)	面積 (cm ²)	重量 (g)	顏色	材 質	抗壓 強度 (kg/cm ²)
			MIC-1-1		(011)	寛	寛	(0111)	(em)	寬	寛	(011)					(iig/eiii/)
1		直列	無	CC-U-2	2	0.75	0.75	0.13	1.997	0.847	0.619	0.905	0.328228	0.6905	田	PLA	534.07
2	方向	楼石	有	CC-H-1	2	0.75	0.75	0.13	2.010	0.845	0.627	0.710	0.328654	0.9495	白	PLA	688.78
3		们其少り	無	CC-H-2	2	0.75	0.75	0.13	2.010	0.844	0.618	0.735	0.338552	0.754	日	PLA	615.69
4	主張	PLA	無	CC-PLA	2	0.75	0.75	0.13	1.997	0.847	0.619	0.091	0.328228	0.6905	白	PLA	534.07
5	的頁	ABS	無	CC-ABS	2	0.75	0.75	0.13	2.031	0.876	0.639	0.123	0.311096	0.5025	山	ABS	317.01
6		0.65	無	CC-T-065	2	0.75	0.75	0.13	2.010	0.850	0.619	0.041	0.166688	0.374	白	PLA	434.73
7	厚度	1.30	無	CC-T-130	2	0.75	0.75	0.13	1.997	0.847	0.619	0.091	0.328228	0.6905	白	PLA	688.78
8		1.95	無	CC-T-195	2	0.75	0.75	0.13	2.018	0.852	0.636	0.126	0.451828	0.9215	白	PLA	603.29
9		單印1支	無	B-N1	2	0.75	0.75	0.13	2.013	0.823	0.606	0.085	0.311535	0.698	白	PLA	526.65
10	數量	並列4支	無	B-N4	2	0.75	0.75	0.13	2.012	0.825	0.619	0.095	0.333199	0.6925	白	PLA	481.35
11		並列8支	無	B-N8	2	0.75	0.75	0.13	1.998	0.825	0.620	0.085	0.336993	0.6955	白	PLA	434.15

表 5-4 柱桿件之 3D 列印類別與抗壓強度分析探討一覽表

圖 5-4 柱桿件 3D 列印類別與抗壓強度之關係圖

1.量化分析部分:

列印方向:由圖 5-4 得知,橫列無論有無支撐線材,抗壓強度皆提升 10%~23%。 線材材質:PLA 較 ABS 強度多達 41%。

設定厚度: 1.3cm 較其他抗壓強度高,最高達 37%。

輸出數量:同時列印的越少,強度即隨之增加,最高達 18%。

2.質化分析部分:推估原因與樑為相同原因所致

(五) 抗拉強度-試片

表 5-5 試片之抗拉強度材質分析探討一覽表

項 目	主題	分類	代號	長度 (cm)	寬度 上 (cm)	寬度 中 (cm)	寬度 下 (cm)	厚度 上 (cm)	厚度 中 (cm)	厚度 下 (cm)	面積 (cm ²)	重量 (g)	顏色	材質	數量 (片)	抗拉 強度 (kg)	抗拉 強度 (kg/cm ²)
1	古白	直列	P-U	16.033	1.361	1.350	1.345	0.064	0.065	0.067	0.088	1.620	白	PLA	3	10.400	38.110
2	四八	橫列	P-H	16.182	1.406	1.399	1.395	0.065	0.067	0.065	0.092	1.731	白	PLA	3	53.000	189.740
3	曲石昌	並列4片	P-N4	16.017	1.387	1.378	1.053	0.064	0.064	0.063	0.081	1.593	白	PLA	3	6.450	60.732
4	뀛里	並列8月	P-N8	16.027	1.380	1.374	1.384	0.067	0.064	0.068	0.092	1.621	白	PLA	3	6.300	23.525
5	材質	PLA	P-U	16.033	1.361	1.350	1.345	0.064	0.065	0.067	0.088	1.620	白	PLA	3	10.400	38.110
6	们具	ABS	P-ABS	16.016	1.415	1.402	1.406	0.064	0.062	0.065	0.090	1.644	白	ABS	3	11.400	82.777

7		0.6cm	P-T-060	16.015	1.342	1.344	1.342	0.065	0.065	0.062	0.086	1.583	白	PLA	3	7.200	56.013
8	厚度	0.9cm	P-T-090	16.030	1.397	1.378	1.390	0.089	0.088	0.086	0.122	2.233	白	PLA	3	24.600	67.438
9		1.2cm	P-T-120	16.043	1.384	1.391	1.387	0.118	0.115	0.118	0.162	2.843	白	PLA	3	33.750	138.037

桿件類別

1.量化分析部分:

列印方向:由圖 5-5 得知,橫躺列印較直立列印之抗拉強度提升 80%。

輸出數量:同時列印的越少,強度即隨之增加,最高達 62%。

設定厚度:厚度愈大,抗拉性隨之增加,最高達 60%。

2.質化分析部分:推估原因為印製方式不同後,造成試片紋理不同,且大量生產,品質 仍就會降低之趨勢。

二、 實驗模擬--耐震實驗:

(一) H 型斜撐分析結果:

表 5-6 H 型斜撐實驗組與對照組於各週期之耐震試驗結果一覽表

XX		地震波加速度	(g)	輸出數據	
XXX	對照組 無斜撐 Max	實驗組 H 型斜撐 Max	對照組與 實驗 組 差值	實驗組 自然振動 頻率 (Hz)	目然 振動頻率 差值 (次/秒)
	0.000	0.000	0.000	2.988	0.00
短週期 0.10 sec/次	0.897	1.002	0.105	2.988	0.00
中週期 0.25 sec/次	0.902	0.677	-0.225	2.988	0.00
長週期 1.00 sec/次	0.319	0.206	-0.113	2.988	0.00

表 5-7 H 型斜撐實驗組與對照組於各週期之動態攝影結果一覽表

夕秘	化毕	自然振動頻率	輕止書品	最大變位	最大變位	総位昌
白件	个人切定	與週期	<u> </u>	畫面(右偏)	畫面(左偏)	愛怔里

圖 5-5 3D 列印試片類別與抗拉強度之關係圖

無斜撐	NX	第三 周期 (長週期) (1.0sec/次)			107MM
H 型 斜撐	NX	第三 周期 (長週期) (1.0sec/次)	XXXX	KXXXI.	65MM

- 1. 量化分析:
 - (1)短週期:H型斜撐未受破壞,自然振動頻率與初始值相同,和無斜撐相較下加速度增加11.7%。
 - (2) 中週期:H型斜撐未受破壞,自然振動頻率與初始值相同,和無斜撐相較下加速度減少24.9%。
 - (3) 長週期:H型斜撐未受破壞,自然振動頻率與初始值一樣,和無斜撐相較下加速度減少35.4%。
- 2. 質化分析:
 - (1)短週期:H型斜撐和無斜撐相較,加速度增加,因斜撐加強結構勁度,故結構物在短週期下加速度較大
 - (2) 中週期:H型斜撐和無斜撐相較,加速度數值下降,斜撐發揮作用
 - (3) 長週期:H型斜撐和無斜撐相較,加速度數值下降,斜撐發揮作用

(二) O 型斜撐分析結果:

17	輸入數據		(g)	輸出數據		
XXXX	地震波 週期	對照組 無斜撐 Max	實驗組 O 型斜撐 Max	對照組與 實驗 組 差值	實驗組 自然振動 頻率 (Hz)	自然 振動頻率 差值 (次/秒)
	0.000	0.000	0.000	0.000	2.988	0.00
短週期 0.10 sec/次	0.100	0.897	1.810	0.913	2.988	0.00
中週期 0.25 sec/次	0.250	0.902	0.711	-0.191	2.988	0.00
長週期 1.00 sec/次	1.000	0.319	0.188	-0.131	2.988	0.00

表 5-8 O型斜撐實驗組與對照組於各週期之耐震試驗結果一覽表

名稱	代號	自然振動頻率 與週期	靜止畫面	最大變位 畫面(右偏)	最大變位 畫面(左偏)	變位量
無斜撐	NX	第三 周期 (長週期) (1.0sec/次)				107MM
O 型 斜撐	NX	第三 周期 (長週期) (1.0sec/次)	XXXXI.	XXXX	IXXXX	60MM

表 5-9 O 型斜撐實驗組與對照組於各週期之動態攝影結果一覽表

1.量化分析:

- (1)短週期:O型斜撐未受破壞,自然振動頻率與初始值相同,和無斜撐相較下加 速度增加 50.4%。
- (2)中週期:O型斜撐未受破壞,自然振動頻率與初始值相同,和無斜撐相較下加速度減少21.2%。
- (3)長週期:O型斜撐未受破壞,自然振動頻率與初始值一樣,和無斜撐相較下加速度減少41.1%。

2.質化分析:

(1)短週期:O型斜撐和無斜撐相較,加速度增加,因斜撐加強結構勁度,故結構物在短週期下加速度較大,和H型斜撐相較,加速度較高,因O型 斜撐圓管厚度較厚,故勁度增加,加速度增加。

(2)中週期:O型斜撐和無斜撐相較,加速度數值下降,斜撐發揮作用。

(3)長週期:O型斜撐和無斜撐相較,加速度數值下降,斜撐發揮作用。

(三)針筒制震分析結果:

表 5-10 針筒制震實驗組與對照組於各週期之耐震試驗結果一覽表

	輸入數據		地震波加速度((g)	輸出數據	白松
	地震波 週期	對照組 無斜撐 Max	實驗組 針筒制震 Max	對照組與 實驗 組 差值	實驗組 自然振動 頻率 (Hz)	 目然 振動頻率 差值 (次/秒)
1	0.000	0.000	0.000	0.000	2.988	0.00

短週期 0.10 s	ec/次	0	.100	0.897		0.488		-0.409		2.988		0.00
中週期 0.25 s	ec/次	0.250		0.902		0.688		-0.214		2.988		0.00
長週期 1.00 s	月 1.00 sec/次 1.000		.000	0.319		0.168		-0.151		2.988		0.00
	表 5-11 針桶		針桶制	震實驗組與	與對	照組於各並	周其	月之動態攝	影約	吉果一覽表		
名稱	代	號	自然打	辰動頻率 週期	靜	止畫面	『 耳 書	曼大變位 插(右偏)	軍畫	是大變位 面(左偏)	4121	夔位量
無斜撐	N	x	拿	第三 周期							1	.07MM

		(1.0sec/次)				
針筒 制震	OD	第三 周期 (長週期) (1.0sec/次)	NANA	INN	IANA	71MM

1.量化分析:

- (1)短週期:針筒制震未受破壞,自然振動頻率與初始值相同,和無斜撐相較下 加速度减少45.6%。
- (2)中週期:針筒制震未受破壞,自然振動頻率與初始值相同,和無斜撐相較下 加速度减少23.7%。
- (3)長週期:針筒制震未受破壞,自然振動頻率與初始值一樣,和無斜撐相較下 加速度减少47.3%。

2.質化分析:

(1)短週期:針筒制震和無斜撐相較,加速度數值下降,斜撐發揮作用。

(2)中週期:針筒制震和無斜撐相較,加速度數值下降,斜撐發揮作用。

(3)長週期:針筒制震和無斜撐相較,加速度數值下降,斜撐發揮作用。

(四) 彈簧制震分析結果:

表 5-12 彈簧制震實驗組與對照組於各週期之耐震試驗結果一覽表

輸入數據	地	震波加速度((g)	輸出數據	
地震波 週期	對照組 無斜撐 Max	實驗組 彈簧制震 Max	對照組與 實驗組 差值	實驗組 自然振動 頻率 (Hz)	自然 振動頻率 差值 (次/秒)

1		(0.000	0.000		0.000		0.000		2.988		0.00	
	2		0.100		0.897		0.480		-0.417		2.988		0.00
	3		(0.250	0.90)2	0.592	2	-0.310)	2.988		0.00
	4			1.000 0.31		9 0.291		1	-0.028		2.988		0.00
		表5	-13 弓	單簧制震	實驗組與	國對照	組於各述	周期之	之動態攝影	影結果	果一覽表		
	名稱	代號		自然振動頻率 與週期		靜止畫面		最大變位 畫面(右偏)		最大變位 畫面(左偏)		4451	變位量
	無斜撐	N	IX	第 周 (長翅 (1.0se	三 期 虹期) c/次)							1	.07MM
	彈簧 制震	Н	D	第 周 (長翅 (1.0se	三 期 5(次)				NNN .				91MM

1.量化分析:

- (1)短週期:彈簧制震未受破壞,自然振動頻率與初始值相同,和無斜撐相較下 加速度減少46.5%。
- (2)中週期:彈簧制震未受破壞,自然振動頻率與初始值相同,和無斜撐相較下加速度減少34.4%。
- (3)長週期:彈簧制震未受破壞,自然振動頻率與初始值一樣,和無斜撐相較下加速度減少8.8%,結構物此時已損壞。

2.質化分析:

- (1)短週期:針筒制震和無斜撐相較,加速度數值下降,斜撐發揮作用。
- (2)中週期:針筒制震和無斜撐相較,加速度數值下降,斜撐發揮作用,自然振動頻率下降,外部無明顯破壞。
- (3)長週期:針筒制震和無斜撐相較,加速度數值些微下降,一樓四根樑斷裂, 一根斜撐斷裂,二樓一根樑斷裂,一根斜撐斷裂且完全脫落,三樓 一根斜撐斷裂,結構多處受損**嚴重損壞**。

三、數值模擬--動力分析:

透過 ETABS 結構分析程式,輸入與 3D 列印建模之幾何斷面與材料性質一致的參數,針對加速度歷時與位移歷時之分析結果說明如下

(一) 加速度歷時分析結果:

因彈簧與針筒制震系統之輸入參數有疑義,故本章節暫不討論,待釐清正確輸入方式後,方進行合理之推論。故以下針對 H 型斜撐與 O 型斜撐進行分析:

數值模	莫擬步驟		1	2	2	3		4		6		7	9
量測項目			本身		短週期		中非	中週期		長週期		長週期	共振週期
			自然	地震	地震波		地震波		搖後	地震波		搖後	自然
			震動	頂層加	頂層加速度		頂層加速度		自然震動	頂層加速度		自然震動	震動
			頻率	(cm/sec^2)		頻率	(cm/sec2)		頻率	(cm/sec2)		頻率	頻率
			(Hz)	Max	Min	(Hz)	Max	Min	(Hz)	Max Min		(Hz)	(Hz)
對照組	無斜撐		2.988	606.5	-730.3	2.988	2365	-2451.000	2.988	7902.000	-7643.000	2.988	2.637
	H型斜撐	原數據	2.988	20.910	-17.200	2.988	168.800	-168.700	2.988	1.993	-1.997	2.988	2.637
		差異值	0.000	-585.590	713.100	0.000	-2196.200	2282.300	0.000	-7900.007	7641.003	0.000	0.000
	0 刑剑墙	原數據	2.520	17.790	-12.860	2.520	43.450	-43.050	2.520	1.824	-1.856	2.520	2.285
官陆们	0 空形按	差異值	-0.468	-588.710	717.440	-0.468	-2321.550	2407.950	-0.468	-7900.176	-1.856 6 7641.144	-0.468	-0.352
貝切知知	社営阻尼	原數據	2.402	63.400	-63.830	2.402	49.930	-49.950	2.402	2.318	-2.233	2.402	2.285
	亚门司(田)巳	差異值	-0.586	-543.100	666.470	-0.586	-2315.070	2401.050	-0.586	-7899.682	7640.767	-0.586	-0.352
	溜釜阳日	原數據	3.105	14.530	-14.230	3.105	26.430	-25.280	2.637	2.617	-2.611	2.402	-
	彈簧阻尼	差異值	0.117	-591.970	716.070	0.117	-2338.570	2425.720	-0.351	-7899.383	7640.389	-0.586	-

表 5-14 針筒制震實驗組與對照組於各週期之數值模擬結果一覽表

圖 5-6 針筒制震實驗組與對照組於各週期之加速度差值結果

由上圖結果顯示,各建物模型在長週期具有明顯之加速度減低效果,但在短週期與中週 期皆較不明顯現象,推估原因為該模型之自然振動頻率較接近其地震波之數值。 (二) 位移歷時分析結果:

表 5-15 針筒制震實驗組與對照組於各週期之數值模擬結果一覽表

數值模擬步驟			1	2	2		4	4		6		7	9
量測項目			本身	短述	短週期		中週期		中週期	長週期		長週期	共振週期
			自然	地震	地震波		地震	地震波		地震波		搖後	自然
			震動	頂層加	頂層加速度		頂層加速度		自然震動	頂層加速度		自然震動	震動
		頻率		cm/sec ²)		頻率	(cm/sec2)		頻率	(cm/sec2)		頻率	頻率
			(Hz)	Max	Min	(Hz)	Max	Min	(Hz)	Max	Min	(Hz)	(Hz)
對照組	無斜撐		2.988	18.23	-17.29	2.988	47.26	-43.910	2.988	293.400	-301.700	2.988	2.637
	H 型斜撐	原數據	2.988	0.008	-0.008	2.988	0.253	-0.253	2.988	0.011	-0.011	2.988	2.637
		差異值	0.000	-18.222	17.282	0.000	-47.007	43.657	0.000	-293.389	301.689	0.000	0.000
	0 刑 公 愷	原數據	2.520	8808.000	-8772.000	2.520	614.300	-616.200	2.520	8943.000	-9082.000	2.520	2.285
官晤会们	0 空科疨	差異值	-0.468	8789.770	-8754.710	-0.468	567.040	-572.290	-0.468	8649.600	-8780.300	-0.468	-0.352
貝切知社	公答阻尼	原數據	2.402	233.100	-232.500	2.402	878.700	-879.000	2.402	149.100	-148.600	2.402	2.285
	亚门司阻/巴	差異值	-0.586	214.870	-215.210	-0.586	831.440	-835.090	-0.586	-144.300	153.100	-0.586	-0.352
	溜釜阻尼	原數據	3.105	8161.000	-8001.000	3.105	505.200	-506.600	2.637	194.600	-197.600	2.402	-
	严更阻心	差異值	0.117	8142.770	-7983.710	0.117	457.940	-462.690	-0.351	-98.800	104.100	-0.586	-

圖 5-7 針筒制震實驗組與對照組於各週期之位移歷時差異結果

由上圖結果顯示,H型、針筒、及彈簧阻尼在長週期具有明顯之位移量減低成效,但在 O型斜撑卻在中週期有提高現象,推估原因為該模型之自然振動頻率較接近其地震波之數值。

陸、討論

一、3D 桿件特性研究

本研究材料特性,目的是為了可以驗證 3D 列印印製實驗桿件的可行性,因此我們 進行了抗折、抗壓、抗拉實驗,結果彙整如下:

- (一)列印方向:列印元件在橫躺列印時,無論有無支撐線材,抗折、抗壓、抗拉實驗強 度皆比直立列印有明顯提升效果,而樑亦此如此。
- (二)線材材質:在柱抗折上,PLA 較 ABS 抗折強度多達 48%,而在梁抗折上,ABS 則
 較 PLA 抗折強度多達 70%。樑抗壓時,PLA 較 ABS 強度多達 2%,而
 柱抗壓時,PLA 較 ABS 強度多達 41%。
- (三)設定厚度:厚度愈大,無論樑、柱、或試片之抗壓、抗拉與抗折性皆隨有增加強度 趨勢。
- (四) 桿件形式:方形較圓形及H型強度多達 58%~80%。
- (五)輸出數量:透過 3D 列印大量生產,品質就會降低。樑或柱同時列印數量的越少, 強度就會增加。

本研究在 3D 列印過程產生許多問題,如下表所示,且產出之元件,經由量測發現,雖能達到尺寸均一之特點,但卻無法控制每一成品之力學性質之等質性,其原因在於列印係採噴頭之熔絲製造成品,故其內部產生堆疊上的冷縫,造成力學特性的變異數。

項 次	失敗 現象	圖片	問題	解決
1	偏移		1.3D 列印機噴頭 列印產生錯 位。	請廠商做軟體更新及檢查 履帶是否有定位問題。
2	主體 站立 不穩		 打底不完全 平台粗度更改 過小 未選打底形式 導致不穩。 	 1.將線材於列印前做預擠 動作使出料順暢。 2.注意平台粗糙度使否為 0.1。 3.打印前可使用口紅膠讓 主體站穩。
3	虚化 及 卡料		 1.未做預擠動作。 2.未開 50%風扇。 3.線材口徑設定 錯誤。 	 1.注意做好預擠動作。 2.將風扇開至 50%。 3.注意線材口徑與本身線 材是否相符合。
4	厚度 過小		 1.再做設計時厚 度與打印出料 口徑不相符合。 	1.在設計時建議是以出料 孔徑為倍數設計。

表 6-1 3D 列印過程中產生問題與解決方法一覽表

二、模型實際耐震模擬

表 6-2 各 3D 列印縮尺建物模型之耐震實驗的加速度歷時分析一覽表

實驗模擬步驟			1	2	3	4	5	6	7	9
量測項目			本身自然 震動頻率 (Hz)	短週期 頂層加速度 (g) Max	搖後自然 震動頻率 (Hz)	中週期 頂層加速度 (g) Max	搖後自然 震動頻率 (Hz)	長週期 頂層加速度 (g) Max	搖後自然 震動頻率 (Hz)	共振週期 自然震動 頻率(Hz)
對照組	無斜撐		2.988	0.897	2.988	0.902	2.988	0.319	2.988	2.637
	H型	原數據	2.988	1.002	2.988	0.677	2.988	0.206	2.988	2.637
	斜撐	差異值	0.000	0.105	0.000	-0.225	0.000	-0.113	0.000	0.000
	O型	原數據	2.520	1.810	2.520	0.711	2.520	0.188	2.520	2.285
實驗組	斜撐	差異值	-0.468	0.913	-0.468	-0.191	-0.468	-0.131	-0.468	-0.352
員初知知	針筒	原數據	2.402	0.488	2.402	0.688	2.402	0.168	2.402	2.285
	阻尼	差異值	-0.586	-0.409	-0.586	-0.214	-0.586	-0.151	-0.586	-0.352
	彈簧	原數據	3.105	0.480	3.105	0.592	2.637	0.291	2.402	-
	阻尼	差異值	0.117	-0.417	0.117	-0.310	-0.351	-0.028	-0.586	-

圖 6-1 各 3D 列印縮尺建物模型之耐震實驗的加速度歷時比較圖

將各建物模型與對照組作一比較,發現各模型之加速度歷時數值皆有減低趨勢,制震效 果越佳,其中彈簧阻尼與針筒阻尼阻尼產生制震效果越佳。 推估原因在短週期中,因搖 動幅度小,其彈簧阻尼即用其彈簧吸收震動以達抗震效果,但在中週期中,因搖動幅度 接近共振,且彈簧壓力過大,其彈簧阻尼亦無法提升其抗震效果。而在長週期中,因搖 動幅度大,其針筒阻尼係以空壓提升其抗震效果。

	宙睑描码上脚		1	2	3	1	5	6	7	0
	員 歌 医预少 颖		1	2	5	4	5	0	/	9
			木白	短週期	按仫	中週期	按体	長週期	按仫	共振
			49	百國	插板	頂屋	播版	百國	播版	週期
			自然	12/15	自然	1兑/目	自然	12/15	自然	白伏
	量測項目		震動	位移	震動	位移	震動	位移	震動	
			艏率	(mm)	艏率	(mm)	_{舶家} (mm)	艏率	震動	
							201			頻率
			(Hz)	Max	(Hz)	Max	(Hz)	Max	(Hz)	(Hz)
對照組	無斜撐		2.988	18	2.988	50	2.988	107	2.988	2.637
	H型斜撐	原數據	2.988	7	2.988	16	2.988	65	2.988	2.637
		差異值	0.000	-11	0.000	-34	0.000	-42	0.000	0.000
	の刑会措	原數據	2.520	10	2.520	23	2.520	60	2.520	2.285
宙 睑石	U Triffe	差異值	-0.468	-8	-0.468	-27	-0.468	-47	-0.468	-0.352
貝歇組	社管阻尼	原數據	2.402	10	2.402	37	2.402	71	2.402	2.285
	1月1日1日	差異值	-0.586	-8	-0.586	-13	-0.586	-36	-0.586	-0.352
	甜筌阳尼	原數據	3.105	9	3.105	43	2.637	91	2.402	_
	冲 更阳厄	差異值	0.117	-9	0.117	-7	-0.351	-16	-0.586	-

表 6-3 各 3D 列印縮尺建物模型之耐震實驗的位移度歷時分析一覽表

圖 6-2 各 3D 列印縮尺建物模型之耐震實驗的位移歷時比較圖

將無斜稱建物模型與實驗組各模型針對位移歷時作一比較,發現其差值越小,抗震就越強,無論是短週期、中週期、長週期之地震波頂層位移,皆具有減少位移量之成效。

三、模型數值動力模擬

因彈簧與針筒制震系統之輸入參數有疑義,故本章節暫不討論,待釐清正確輸入方式後, 方進行合理之推論。本研究僅就H型斜撐與O型斜撐進行分析,加設斜稱之實驗組與 對照組比較,無論在加速度與位移歷時在長週期時,有明顯之制震效果。

柒、結論

經過此研究之結果分析,歸納出效益值、嚴謹性、合理性,做為應用 3D 列印於縮尺建物耐 震試驗之可行性探討,以下就各要項的結論作一說明:

一、 效益值

建物模型的比例與建築構件的製造成本,係為耐震試驗效益值的主要考量,透過本研究 所利用 3D 列印做縮尺模型之桿件,可降低其使用相關成本。唯以目前低廉之 3D 列印 技術尚無法達到結構模型所需的力學特性,故結構桿件的技術提升為本研究後續探討的 重點

二、 嚴謹度

利用 3D 列印技術製成精密之結構元件,並透過高度微感測系統的試驗過程、量測頂 樓加速度歷時與自然振動頻率,以及結合工程實務之分析程式進行數值模擬比對,本研 究具有相當程度之嚴謹度。唯本研究之結構元件所採熔絲製造僅可達到形體之精密程 度,但卻無法符合結構動力分析所需之均質性與定向性等特點。

三、 合理性

我們透過實驗模擬之高感測設備與後處理之 DATAQ 軟體取得每棟 3D 列印縮尺模型的 加速度與位移歷時之結果,配合結構動力數值模擬分析之相互比對的實驗方法,應可取 得結果驗證之合理性,由線性圖得知針筒制震系統設計是具有合理性。唯需考量縮尺模 型建構之元件組成特性的變異性,將影響兩者比對時的判讀結果。

四、總結

- (一)已得知 3D 列印在印製實驗桿件上是可行的,唯利用熔絲製造的列印方式無法達到 元件具有理想的結構力學特性,故產生實驗模擬結果與數值模擬結果產生差異無法 比對趨勢,建議後續研究宜採用直接金屬雷射燒結,方可達到理想桿件之力學特性。
- (二)整體實驗結果顯示,彈簧制震系統在中週期就已被壞,原因為彈簧兩端未做好束制 工作,故此設計為不具合理性,而針筒制震系統在加速度歷時與位移歷時之整體成 效為最好,在與對照組比較時頂樓加速度為最少,所以我們得出針筒制震系統制震 效果最佳。
- (三)就本研究一系列的實驗架構與結果驗證之設備與方法,方可確信可透過此研究方式應可 與大型之實體模型試驗相互比較,因此具有實質之參考價值,期能利用更加之 3D 列印 技術,使縮尺建物之結構元件更加均質、等向特性,便可透過此方式建議不同建築結構 之減震方式,驗證更多結果。
- (四) 唯數值模擬隸屬結構動力分析,故應在強化參數輸入與程式功能認知的提升,以利相關 數值之比對與判讀,瞭解是否達到實驗模擬的合理性目標。

捌、參考資料及其他

- 一、學校建築工程結構規畫手冊 http://tech.ths.com.tw/ths2/2_04.htm
- 二、PLA 與 ABS 的不同特性: http://voltivo.com/zh-tw/blog/3d-abs-pla
- 三、ABS 和 PLA 材料的區別:http://t-rm.blogspot.tw/2013/07/abs-pla.html
- 四、國家地震研究中心 http://www.ncree.org/ZH/EarthquakeQA.aspx
- 五、中央氣象局兒童網 http://www.cwb.gov.tw/kids/html/08.htm
- 六、陳正平技師,100年7月30日,結構用鋼材基本特性介紹,取自於台灣省土木技師公會 http://www.twce.org.tw/modules/freecontent/include.php?fname=twce/paper/764/7-1.htm
- 七、上海情報服務平台-國內外 3D 列印技術發展 http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/list/list.aspx?id=7877
- 八、表 4-1 打印型式與原料取自於: http://zh.wikipedia.org/wiki/3D%E6%89%93%E5%8D%B0
- 九、呂良正,微震良策於劍利建築物基本週期經驗公式及進行耐震評估之應用,博士論文, 國立台灣大學土木工程學研究所
- +、DATAQ 加速規, <u>MapandDirections</u>: DATAQInstruments,Inc, founded in1984, 取自: <u>http://www.dataq.com/</u>
- 十一、 張智開/高志豪/張閔淳,民97,耐震結構元件斜撐介紹,IDEERSS,取自: http://ws1.ncree.org/Ideers2008Edu/earthquakeeng/bracing.htm
- 十二、 黃文宏,民國 92 年 6 月,微震量測技術應用於 RC 結構物頻率量測之研究,取自: 中華大學碩士論文
- 十三、 李錫霖,民國 96年,我國房屋建築結構耐震能力初步評估自主檢查作業,取自: 中華大學土木系
- 十四、 陳耀如、洪國珍、劉叔松,工程材料 II,二版,台北市,旭營文化,32頁,民92年
- 十五、 呂守陞、鄭慶武、侯惠仁,工程概論 I,一版,台北縣,弘揚圖書,34頁、76頁, 民 99年
- 十六、 陳宏州,工程力學 II,二版,台北市,矩陣,384 頁、293 頁、446 頁、481 頁,民
 92 年
- 十七、 王鑫,基礎地球科學(上),再版二刷,台南市,南一書局,126頁、132頁,民102 年
- 十八、 王鑫,基礎地球科學(下),再版二刷,台南市,南一書局,128頁、130頁,民102 年

【評語】040505

- 1. 研究目的希望降低地震災害,值得讚許。
- 2. 與以前科展作品相近,材料改用 3D 列印製成,並用 ETABS 分析。
- 3. 敘述可再改進。