中華民國第54屆中小學科學展覽會作品說明書

國小組 物理科

080116

古代工程師巧思-製作精準的投石器

學校名稱:金門縣金城鎮賢庵國民小學

作者:

小六 洪力天

小六 陳韻名

小六 陳漢容

小六 許育瑞

小六 許毅杰

指導老師:

楊恭墉

王智谷

關鍵詞:投石器、槓桿、古代攻城器

作品名稱:古代工程師巧思-製作精準的投石器

摘要

透過六年級「簡單機械」中的槓桿原理製作一台小型的投石器,來瞭解是否真的能像「王者天下 Kingdom of Heaven」電影中的投石器那樣神奇,一投就能準確的命中目標。閱讀過其他人所做的研究,我們決定不以彈力來做力的輸出,而以載物的重力來當做力的輸出,以改善之不穩定的問題,以達到精準投擲,並用這次科展來實作驗證。

第一、二個實驗,利用改變載重和抛出物來探討,抛出物落地的距離。

第三、四個實驗,利用改變載重和抛出物的力臂來探討,抛出物落地的距離。

第五個實驗,利用改變投石器的高度來探討,抛出物落地的距離。

第六個實驗,利用投擲桿的角度來探討,抛出物落地的距離。

第七個實驗,瞭解影響我們製作的投石器準確度因素,並加以修正。

壹、 研究動機

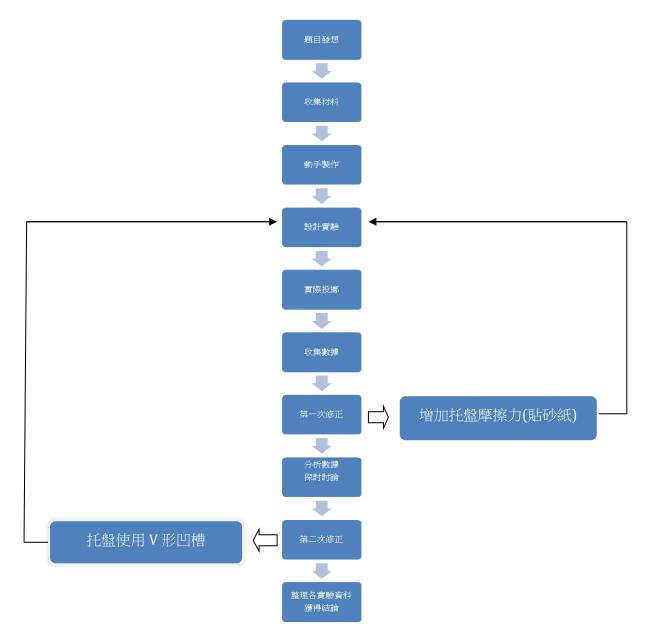
記得曾經在家裡看過一部電影「王者天下 Kingdom of Heaven」,在最後薩拉丁大舉進攻由十字軍防守的耶路薩冷城,守軍於敵人進攻前,在城外每一個固定距離做了一個記號,做為城內投石器的目標,當敵人來攻時,真的準確的投中目標,讓進攻者產生嚴重的傷害,當時覺得很奇妙,為什麼他們能控制投出的遠近,而且還可以投得那麼準?

到了六年級下學期,我們上到「簡單機械」中的槓桿原理,我終於知道了投出的遠近基本原理,剛好老師在問有沒有人想要做科展,這時我就找了幾位同學來,把我的想法告訴他們,看大家有沒有興趣一起做。大家決定後就找老師討論,希望老師能幫忙完成我們的想法。

當我們把想法向老師說明時,老師告訴我們,投石器科展其實已經有很多人做過了,也找出了投出的距離和投石器高度的關係,但如果大家能做出一台具有準確度的投石器也是很厲害的,能把所學的透過實作來實現也是很棒的能力,於是我們就決定請老師指導我們,來做這項實驗。

貳、研究目的

- 一、我們想知道改變載重的重量,對抛出物落地的距離有什麼影響?
- 二、我們想知道改變抛出物,對抛出物落地的距離有什麼影響?
- 三、我們想知道改變載重的力臂位置,對抛出物落地的距離有什麼影響?
- 四、我們想知道改變抛出物的力臂位置,對抛出物落地的距離有什麼影響?
- 五、我們想知道改變投石器的高度,對抛出物落地的距離有什麼影響?
- 六、我們想知道改變投擲桿的角度,對抛出物落地的距離有什麼影響?
- 七、找出影響我們製作的投石器準確度因素有哪些?並加以修正。


參、 研究設備及器材

肆、研究過程或方法

一、問題探討研究流程圖


二、實驗前準備:

(一) 抛出物物理性質量測

1. 量測結果:

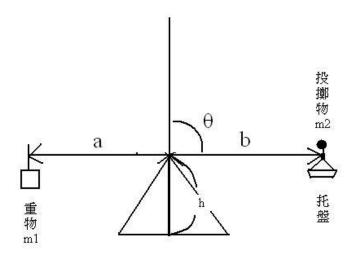
三いいかロント			
	大彈珠	小彈珠	鋼珠
質量(g)	19.5	4.5	17.0
體積(cm³)	8	1.5	2
密度(g/cm³)	2.4375	3	8.5
球徑(cm)	2.5	1.4	1.6

2. 量測操作照片:

(二) 自製一台小型的投石器的過程

- 1. 使用器材及工具: 竹子、電鑽、鋸子、柴刀、水管、光碟片、量角器、鐵絲、 鉗子、機油、砂紙。
- 2. 投石器製作方法:
 - (1) 由老師指導我們鋸竹子,而電鑽、柴刀等較易產生危險的使用部份,請老師協助。
 - (2) 在要固定的地方鑽洞,利用鐵絲固定。
 - (3) 安全:在所有有尖銳的鐵絲頭及竹子節部份用膠帶黏上,避免使用時割傷。
 - (4) 利用鐵桿當作我們的橫軸,水管當作軸承,水管中加入機油以減少磨擦。
 - (5) 繪製量角器當做角度的刻度,以光碟片做軸承兩端的固定物,並在光碟片上畫上角度指示標。
 - (6) 利用洗衣粉的勺子當做抛出物的托盤,塑膠帶當做法碼袋。

3.製作照片:



- (三) 在各項實驗投擲前先進行之工作及投石器校正,項目有:(實作方法如操作照片)
 - 1. 鋪沙以利彈著量測。
 - 2. 鐵桿橫軸水平校正。
 - 3. 鐵桿橫軸與投擲桿的垂直校正。
 - 4. 用繩子鉛垂找到 0點,以利皮尺 0點定位。
 - 5. 軸承上油-減少磨擦力。
 - 6. 量角器水平校正。
 - 7. 記錄彈著情形。

8. 操作方法:

(四) 投石器示意圖。

三、實驗的過程及方法

- (一)改變載重的重量,對抛出物落地的距離有什麼不同?
 - 1. 控制變因(打◎)與操作變因(Ⅴ),未勾選即未使用到。

	投擲桿角度		鐵桿橫軸高度			
45 度	90度	135度	74cm	109cm	144cm	
	0		0			
	抛出物			抛出物力臂		
大彈珠	小彈珠	鋼珠	20cm	30cm	40cm	
0					0	
	載重法碼			載重力臂		
100g	200g	400g	20cm 30cm 40cm			
V	V	V	0			

- (二)改變抛出物,對抛出物落地的距離有什麼不同?
 - 1. 控制變因(打◎)與操作變因(Ⅴ),未勾選即未使用到。

	投擲桿角度			鐵桿橫軸高度			
45 度	90度	135 度	74cm	144cm			
			0				
	抛出物			抛出物力臂			
大彈珠	小彈珠	鋼珠	20cm	30cm	40cm		
V	V	V			0		

<u> </u>	載重法碼			載重力臂			
100g	100g 200g 400g			20cm 30cm 40cm			
	0				0		

- (三)改變載重的力臂位置,對抛出物落地的距離有什麼不同?
 - 1. 控制變因(打◎)與操作變因(Ⅴ),未勾選即未使用到。

	投擲桿角度		鐵桿橫軸高度			
45 度	90度	135度	74cm	109cm	144cm	
	0		0			
	抛出物	也出物 抛出物力臂				
大彈珠	小彈珠	鋼珠	20cm	30cm	40cm	
0					0	
	載重法碼			載重力臂		
100g	200g	400g	20cm 30cm		40cm	
	0		V		V	

- (四) 改變抛出物的力臂位置,對抛出物落地的距離有什麼不同?
 - 1. 控制變因(打◎)與操作變因(Ⅴ),未勾選即未使用到。

	投擲桿角度		金	戴桿橫軸 高度	F Z	
45 度	90度	135度	74cm	109cm	144cm	
	0		0			
	抛出物			抛出物力臂		
大彈珠	小彈珠	鋼珠	20cm	30cm	40cm	
0			V	V	V	
	載重法碼			載重力臂		
100g	200g	400g	20cm 30cm 40cm			
	0					

- (五) 改變投石器的高度,對抛出物落地的距離有什麼不同?
 - 1. 控制變因(打◎)與操作變因(Ⅴ),未勾選即未使用到。

	投擲桿角度			鐵桿橫軸高度			
45 度 90 度 135 度			74cm	109cm	144cm		
	0		V	V	V		

抛出物			抛出物力臂			
大彈珠	小彈珠	鋼珠	20cm	20cm 30cm		
0					0	
	載重法碼		載重力臂			
100g	200g	400g	20cm	30cm	40cm	
	0				0	

(六) 改變投擲桿的角度,對抛出物落地的距離有什麼不同?

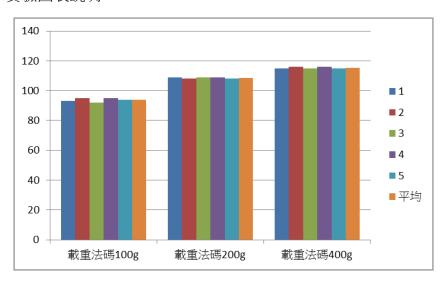
1. 控制變因(打◎)與操作變因(Ⅴ),未勾選即未使用到。

投擲桿角度(每10度量測)			鐵桿橫軸高度			
40度	90度	135度	74cm	109cm	144cm	
V	V	V	0			
	抛出物			抛出物力臂		
大彈珠	小彈珠	鋼珠	20cm 30cm 40cm			
0					0	
	載重法碼			載重力臂		
100g	200g	400g	20cm	40cm		
	0			0		

(七) 影響我們製作的投石器準確度因素有哪些?並加以修正。

1. 透過實驗觀察,以找出哪些項目會影響本投石器投擲時的準確度,加以記錄並做投石器的修正。

伍、研究結果


一、 改變載重的重,對抛出物落地的距離有什麼影響?

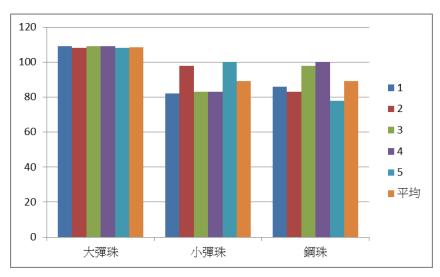
(一) 實驗結果

載重\投擲次數	1	2	3	4	5	平均	最大誤差
載重法碼 100g	93	95	92	95	94	93.8	1.8
載重法碼 200g	109	108	109	109	108	108.6	0.6
載重法碼 400g	115	116	115	116	115	115.4	0.6

單位:cm

(二) 實驗圖表說明:

(三) 結果說明:載重法碼越重距離越遠。


二、 改變抛出物,對抛出物落地的距離有什麼影響?

(一) 實驗結果

抛出物\投擲次數	1	2	3	4	5	平均	最大誤差
大彈珠	109	108	109	109	108	108.6	0.6
小彈珠	82	98	83	83	100	89.2	10.8
鋼珠	86	83	98	100	78	89	11

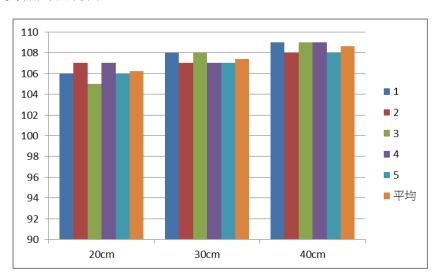
單位:cm


(二) 實驗圖表說明:

(三) 結果說明:

- 1. 大彈珠因體積與托盤間的空隙較小,不會在投出前造成晃動,所以彈著集中, 誤差小。
- 2. 因為我們使用的載重法碼為 200g,而相對於大小彈珠及鋼珠的質量只有 4.5~19.5g 有明顯的差距,此時我們發現大彈珠有較遠的距離,若太大且輕又會 受空氣阻力造成落彈的影響。

(四) 結果照片說明:


三、 改變載重的力臂位置,對抛出物落地的距離有什麼影響?

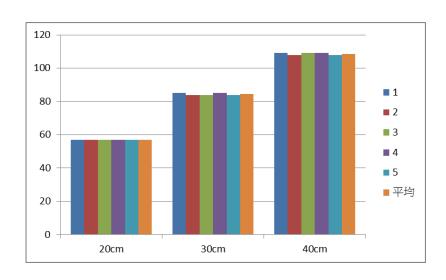
(一) 實驗結果

載重力臂\投擲次數	1	2	3	4	5	平均	最大誤差
20cm	106	107	105	107	106	106.2	1.2
30cm	108	107	108	107	107	107.4	0.6
40cm	109	108	109	109	108	108.6	0.6

單位:cm

(二) 實驗圖表說明:

(三) 結果說明:由實驗結果我們瞭解,改變載重的力臂可以增加投擲距離,但由此可知其影響性較低。


四、 改變抛出物的力臂位置,對抛出物落地的距離有什麼影響?

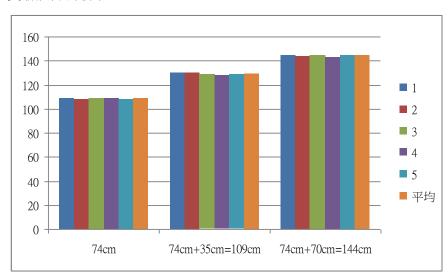
(一) 實驗結果

抛出物力臂\投擲次數	1	2	3	4	5	平均	最大誤差
20cm	57	57	57	57	57	57	0
30cm	86	84	84	85	79	84.4	0.6
40cm	109	108	109	109	108	108.6	0.6

單位:cm

(二) 實驗圖表說明:

(三) 結果說明:我們發現改變抛出物力臂可以產生投擲較遠的結果,且其效果遠大 於改載重的力臂。


五、改變投石器的高度,對抛出物落地的距離有什麼影響?

(一) 實驗結果

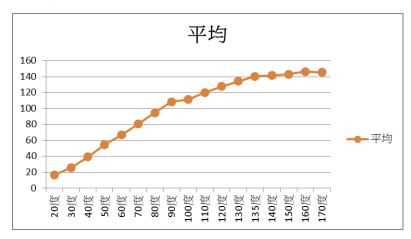
鐵桿水平高\投擲次數	1	2	3	4	5	平均	最大誤差
74cm	109	108	109	109	108	108.6	0.6
74cm+35cm=109cm	130	130	129	128	129	129.2	1.2
74cm+70cm=144cm	145	144	145	143	145	144.4	1.4

單位:cm

(二) 實驗圖表說明:

(三) 結果說明:我們可以發現改變投石器的基座,可以增加投擲距離,效果比增加 載重力臂佳,但比增加抛物力臂差。

六、改變投擲桿的角度,對抛出物落地的距離有什麼不同?


(一) 實驗結果

投擲桿角度\投擲次數	1	2	3	4	5	平均	最大誤差
20度	16	17	17	17	16	16.6	0.6
30度	26	26	26	26	25	25.8	0.8
40度	39	40	39	39	39	39.2	0.8
50度	55	54	55	54	55	54.6	0.4
60度	67	66	67	66	68	66.8	1.2

70度	80	81	80	80	82	80.6	1.4
80度	95	95	94	95	94	94.6	0.6
90度	109	108	109	109	108	108.6	0.6
100度	112	111	111	111	112	111.4	0.6
110度	120	121	120	120	121	120.4	0.6
120度	129	128	128	127	127	127.8	1.2
130度	134	135	134	135	134	134.4	0.6
135 度	142	140	141	139	141	140.6	1.4
140度	142	142	142	141	141	141.6	0.6
150度	144	143	143	143	144	143.4	0.6
160度	147	146	146	146	147	146.4	0.6
170度	146	146	145	145	146	145.6	0.6

單位:cm

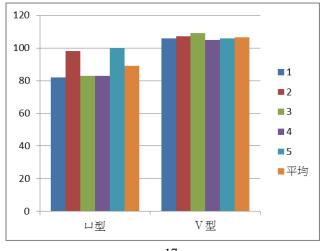
(二) 實驗圖表說明:

(三) 結果說明:當增加投擲桿的角度時,會增加投擲距離,從20~135度有穩定的距離增加,超過135度後距離增加就開始不明顯。(為有效說明,所以加入135度的數值,造成橫軸在135度前後距離不是10度,圖形是略有失真,但仍可從圖中看出135度後增加開始變少)

七、影響我們製作的投石器準確度因素有哪些?並加以修正。

(一) 投石器投擲前的各項校正及事前工作是否能確實做好。

- (二) 抛出物托盤表面是否太過光滑,造成抛出物在投出前產生不穩定的滾動,本實驗中在托盤內貼上沙紙來改善。
- (三) 抛出物托盤與抛出物的間隙是否過大,而不造成不必要的晃動
 - 1. 改變托盤形式,以改善小彈珠的準確度。
 - (1)控制變因(打◎)與操作變因(V),未勾選即未使用到。


抛出物:小彈珠◎

	投擲桿	早角度		鐵桿橫軸高度				
45度	90	度	135度	74cm	109cm	144cm		
	(0		O		0		
	托	盤		抛出物力臂				
ロ型			V型	20cm	30cm	40cm		
V			V			0		
	載重法碼		載重力臂					
100g	20	00g	400g	20cm	30cm	40cm		
	(0				0		

(2)實驗結果

托盤\投擲(小彈珠)次數	1	2	3	4	5	平均	最大誤差
ロ型	82	98	83	83	100	89.2	10.8
V型	106	107	109	105	106	106.6	2.4

(3)實驗圖表說明:(小彈珠)

(4)結果說明:當將托盤改成 V 型後,很明顯的看到小彈珠的準確度增加了, 且距離變遠了,其主要原因在於小彈珠的運動方向受到導槽的控 制而固定了,且力量集中的原故。

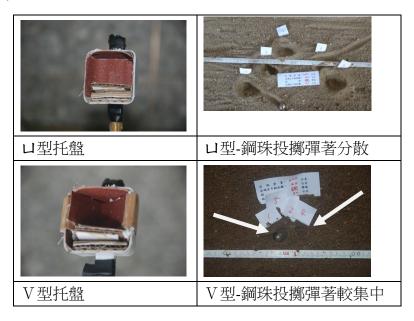
(5)結果照片說明:

- 2. 改變托盤形式,以改善鋼珠的準確度。
 - (1)控制變因(打◎)與操作變因(Ⅴ),未勾選即未使用到。


抛出物:鋼珠◎

	投擲村	早角度	:	鐵桿橫軸高度				
45 度	90	度	135 度	74cm	109cm	144cm		
	()	0					
	托盤			抛出物力臂				
ロ型		V型		20cm	30cm	40cm		
V			V					
	載重法碼			載重力臂				
100g	2	00g	400g	20cm	30cm	40cm		
		0				0		

(2)實驗結果


托盤\投擲(鋼珠)次數	1	2	3	4	5	平均	最大誤差
ロ型	86	83	98	100	78	89	11
V型	103	102	102	100	102	101.8	1.8

(3)實驗圖表說明:(鋼珠)

(4)結果說明:當將托盤改成 V 型後,可以很明顯的看到鋼珠的準確度增加了, 且距離變遠了,其主要原因在於鋼珠的運動方向受到導槽的控 制而固定了,且力量集中的原故。

(5)結果照片說明:

陸、討論

- 一、剛開始,我們在決定該如何找到彈著點時,曾想過在抛出物上和著地點使用魔鬼點,以 點點的方式來定點,但因這樣卻會限制砲彈的重量。也想過在抛出物上包覆濕墨水的紙 張,在落地時打印來標示位置等等方式,最後才在討論中,由另一位同學提出用沙子來 記錄彈著位置,當時大家都覺得非常好,就採用他提的方式來做實驗,所以討論還是非 常有效的。
- 二、為了有效控制抛出物在最高點投出,我們在設計投石器時,在鐵桿正下方設一水平桿, 使投擲捍的托盤能定位最高點時投出砲彈。
- 三、影響我們製作的投石器準確度因素有哪些?並加以修正。
 - (一) 實驗的過程中,我們一再的校正投石器,不管是鐵桿橫軸、橫軸和投擲桿的垂直、 皮尺 0 點的定位、量角器的水平校正、角度指針是否有對準,這些都會影響我們的投 擲準確度,所以在實驗中,我們會特別的注意這些部份。
 - (二) 為了減少托盤的光滑面和尺寸,我們在托盤上貼上砂紙,以減少空隙及光滑滑動效果。
 - (三)當我們發現小彈珠和鋼珠因體積較小,在U型托盤底面很容易到處滾動時,大家就開始討論如何能有效的改善這個問題。經過一番的討論,我們認為以V型的托盤應可以改善這個問題,因V型導槽可以有效的控制小彈珠及鋼珠的滾動方向,實驗結果真的如我們所想的一樣,小彈珠和鋼珠的準確度增加了,且因投擲時的力量集中,所以也投得遠多了,結果能和我們的想法一致,大家都很高興。

四、改變載重的重量,對抛出物落地的距離有什麼不同?

- (一)根據其他的科展作品,我們發現大部份是採用彈力來當做力量的輸出,但彈力本身就不是一個很穩定的力量來源,像橡皮筋用久了,彈力就會逐漸衰減,且在釋放時也易產生不穩定的現象,所以我們認為想要增加投擲精準性,使用重力是較好的選擇。
- (二) 當我們增加載重的重量,就能提高對抛出物的投擲出的力量,增加投擲距離。

五、改變抛出物,對抛出物落地的距離有什麼不同?

- (一)從其他的科展作品我們知道當物品太大而輕,就易受空氣阻力的影響,而造成彈著 點飄移的現象,進而影響準確度甚鉅,所以砲彈要有一定的密度。
- (二) 想要擁有較精準的落彈點,就要讓抛出物的體積與托盤空隙縮小,空隙小才不會在 投出前造成不穩定的晃動,彈著就會集中,誤差就會小。

- 六、改變載重的力臂、抛出物的力臂及基座高度,對抛出物落地的距離有什麼不同?
 - (一)從實驗中我們瞭解,為增加投擲的距離,其改變的效果為,抛出物力臂>基座高度>載重的力臂。
 - (二)我們就上面的結果找老師討論,老師告訴我們,投擲的遠近其實就和抛出物離開 托盤時的速度和飛行的時間有關,而我們增加托盤的力臂就能大大的增加它離開 時的速度,而增加基座的高度能增加飛行時間,但它是開根號的關係,所以影響 性較次,而載重力臂,從槓桿原理看,它是增加力的輸出,在真實上又不可能做 一個很長的力臂,因投石器運轉的高度有限,且其能增加的距離較少,所以較不 重要。在和老師討論時,雖然對於飛行速度和飛行時間還不太明白,但還是很感 謝老師的解釋。
 - (三)所以我們可以看到古代投石器,會把抛出物的托盤力臂儘量加長,以增加攻擊距離,而現代砲兵也儘量把大砲設在高地,除了易於防守外,能增加攻擊距離也是 一個非常重要的因素。

七、改變投擲桿的角度,對抛出物落地的距離有什麼不同?

(一) 我們在實驗的時候,發現在 0~135 度之間,投擲的距離能有效的增加,但過了 135 度後,我們發現距離改變變小了,這個問題,我們一直不太明白,找老師討論時,老師告訴我們,當投擲桿有角度時,力就會分成水平力和垂直力,而過了 135 度後,鐵桿橫軸受力會在光滑的水管壁上滑動上移,我們的機油主要在水管的下方,所以即使只上移一點點都會有所影響。摩檫力增加,就會抵消了提高的能量,所以投擲距離就開始只能小幅增加,但這是老師的說法,他還說,如果要改善這種情形就得改善我們的軸承,雖然老師解釋得很清楚,但我們還是不太明白,或許下次有時間,可以再來驗證老師說法是否是真的。

柒、結論

- 一、 當載重法碼越重所能投擲的距離就越遠。
- 二、使用不同的抛出物會影響投擲結果,當抛出物體積與托盤的空隙小,就不會在投出前造成不穩定的滾動,彈著就會集中,誤差就會小。但太大且輕的抛出物又會受空氣阻力影響,造成落彈不穩定的現象。
- 三、增加載重的力臂、抛出物力臂與基座高度,都可以增加投擲距離,但其影響性大小分別為抛出物力臂>基座高度>載重的力臂。載重力臂影響很小。

- 四、 當增加投擲桿的角度時,會增加投擲距離,從 0~135 度有穩定的距離增加,超過 135 度 後距離增加就開始不明顯。
- 五、 我們想要得到較好的精準度就得讓抛出物與托盤的間隙縮小; 托盤表面不能太過光滑, 以免造成不必要的滾動, 投擲前的各項校正及事前工作是否能確實做好也很重要。
- 六、 載重重力的輸出比彈力輸出的投石器精準度較佳,從中可以明顯的看出重力的輸出是較 穩定的力量來源。
- 七、使用V型托盤可以有效改善體積較小抛出物的準確度,體積小的抛出物在**山**型托盤中, 會因間隙太大而在托盤底部任意的滾動,但在V型托盤中的導槽可以使其力量集中,而 讓抛出物投得較準又遠。

捌、參考資料及其他

一、參考資料:

六下自然科教科書康軒版(民 102)。第四單元簡單機械 。新北市:康軒文教事業股份有限公司。

陳景輝(2006)。攻城利-投石器之探討。取自:中華民國 46 屆中小學科展

賴協志(2002)。超上古兵器-投石器之研究。取自:中華民國 42 屆中小學科展

柯瑞龍。投石器中的物理學。取自:生活科技學藝競賽

二、實驗的心得和想法:

當我們向老師提出想法時,很高興老師建議我們用科展的實驗方式來探討我們的疑問,不但解決了我們心中的疑惑,也能夠把我們所做的資料集合起來,寫成科展報告參加比賽,雖然花了很多的時間,但真的讓我們學到很多,我們不但知道做實驗要一步一步去做,更要注意實驗時的各種細節。不管是投石器的各項校正,還是實驗前的準備工作,都會影響實驗的品質,所以做實驗真的要很小心。

我們也知道團隊的重要,在投石器的製作過程中,同學間彼此不停的討論,也一再和老師研究,解決了我們面臨的各種問題。如各個零件用什麼代替?怎麼組裝上去?要怎樣做實驗才會準確?要怎樣做才會方便量測?這些困難在過程中,最後都一一克服了,我們很有成就感,也從彼此的討論中得到許多,科展實驗真的很有趣。

這個實驗所用的材料,除了工具外,幾乎都是就地取材或資源利用。記得實驗完成 後老師曾說過一句話:「像這樣的科展,竟然沒用到一毛錢,這也真的是很神奇!」我們 想也是,因為要用到的東西,都是靠資源回收或是向其他人借用,但我們真的完成了我 們的想法,感覺真的很棒。

科學實驗是件很有趣的事,從中可以發現科學知識是永無止境的,把所學到的知識 變成可以利用的物品也是科學的一部份,我們很高興能參與這次的科展,雖然累,但學 到太多好東西了,當然也要謝謝老師指導,因為他們也很累!呵!

【評語】080116

投石器是古老的器械,歷代都有各種向度的研究與改進。不但 是科展中常見的主題,即便在一般中小學的課外活動或專題研究也 是熱門的主題之一。相較而言,本作品雖已有初步的探究,但在主 題的創新性與完整性仍有加強空間。