中華民國第54屆中小學科學展覽會

作品說明書

高中組 物理科

佳作

040113

頂天立地的水滴-液體形變能量損耗與等效摩 擦力的探討

學校名稱:臺北市立成功高級中學

作者:	指導老師:
高二 趙貴賢	陳冠廷
高二 鄭羽容	邱育民

關鍵詞:水的表面張力、功與能、等效摩擦力

摘要

水在鋁面之間受力外力作用時,鋁面下移及上拉畫出受力的 F-x 圖不一致,圖形所為 面積即損失的能量。

為了解釋能量散失,建立兩種能量損失的機制(模型一及模型二),定義物理量:「等效摩擦力」及「損耗係數」討論水的特性。

調製不同黏稠度的 CMC 水溶液,分別測其等效摩擦力及損耗係數,以及形變時的 F-t 圖。驗證並解釋液體形變,液體種類的不同,能量損失情形也不同。

由液體形狀的面向,以「紙片模型」再探討。透過曲線擬合液體外形,發現液體受壓 向下時,固液交界面有作用力影響液體形狀。

兩者計算出的等效摩擦力相當接近,因此可說是本實驗結果的雙重驗證。

最後以障礙張力 Barrier tension 表示固液界面的張力,其值與水表面張力接近,代表 兩者共同影響形變外形。

壹、研究動機

曾經,我們濕的桌面放上桌墊,發現水滴擴散到很大的面積,而這時試圖掀起桌 墊發現桌墊難以與桌面分離,桌墊有被吸附的感覺,再使點力拉扯後,水也在拉起的 過程中縮小接觸面積,而變得好掀了。這之中的水究竟能帶有多大的力量阻止掀起的 墊子呢?幾經詢問物理老師,得知是來自「表面張力」的作用。好奇心牽引著我們想 了解水在「受壓情況下的物理現象」,我們開始思考要如何以穩定而精確的方式模擬 桌墊的效果,因而為此有了研究的動力。

究竟在桌墊裡頭的水中有甚麼作用力參與呢?透過對受壓水滴的研究,期待能從 中學習到更多課外的科學知識,並以不同的視角透析生活中物理的奧妙。

貳、研究目的

- 一、探討水滴形變時能量損耗的可能原因與機制。
- 二、探討表面張力及等效摩擦力的作用,並試圖測定出水的等效摩擦力。
- 三、配置不同黏稠度的溶液,探討其形變時能量損耗的機制,與等效摩擦力的關係。
- 四、探討不同黏稠度溶液達到力平衡所需時間的差異。
- **五、**觀察水滴形狀的變化與等效摩擦力的關係,並以不同方式測定與驗證等效摩擦 力。

參、研究設備及器材

一、實驗材料與設備

(一) 水

(ニ) CMC 粉末(羧甲基纖維素)

- (三) 力學桌
- (四) 厚紙板、有孔金屬塊、螺帽
- (五)兩個鋁蓋(作為實驗時的上鋁面+下鋁面)
- (六) 直角立架、麥克筆、橡皮筋、銅線(固定上鋁面於力學桌)
- (七)電子秤(精密度 0.01 g)
- (ハ)書籍、鋁板(墊高電子秤)
- (**九**) 水平儀
- (十) 滴管、小燒杯
- (十一)高畫素單眼相機、腳架、閃光燈、黑色砂紙
- (十二)筆記型電腦及相關設備
- (十三) Tracker 軟體(分析照片數據)
- (十四) wxMaxima 軟體(計算輔助)
- ニ、實驗設備製作
 - (一)依照力學桌三個角的位置在厚紙板上挖出可塞入金屬塊的洞,將其二者以 AB
 膠黏合,再與力學桌嵌合後,穩定力學桌,使力學桌在改變垂直高度時不會
 有水平位移。
 - (二) 在力學桌之桌緣以膠帶黏上直角立架,並以AB 膠黏合直角立架、麥克筆及 鋁盒蓋,利用校正上鋁面的水平性。
 - (三)利用多條橡皮筋、棉繩及校正鋁面水平,並固定之。
 - (四)以鋁板墊高,放置電子秤及下鋁盒(於秤上),使其與上鋁面之距離維持在約1.5倍的水滴高。
 - (五)因本實驗欲藉觀察水滴在表面張力的作用下受力的情形,故以可升降之力學 桌控制物體(上鋁面)上升及下移的距離。
 - (六)拍攝水滴形狀。

肆、研究過程及方法

- 一、實驗一:探討作用力 F 與高度 x 的關係
 - (一) 實驗方法:

首先,我們想測量上鋁面與水滴間的作用力,並研究此作用力與兩鋁面距離的關係,因此,我們先將液體置於上述的設備之中,固定下鋁面,而使上鋁面逐漸下移,從碰到水滴算起,開始下移(每次約0.194 mm),然後再逐漸上拉回到原處,鋁面移動的路徑長為兩個振幅,如此反覆數次,並記錄電子秤對應的讀數。

這樣下移再上移的過程,我們稱之為「一次循環」。

我們藉由轉動力學桌的調整螺絲,使鋁面上升或下降。測量出力學桌的調整 螺絲一個螺距約為 1.550 mm,一次則是轉動八分之一個螺距約 0.194 mm。

此圖中,作用力F代表上鋁面施予水向上的作用力,定向上為正,即電子秤 讀數;而 x 則代表上鋁面的位移量,其碰到水滴的瞬間定為 x=0,向下為正。

在此實驗中,我們共分三個研究細目:

- 研究細目一:固定振幅。
 以同一顆水滴實驗,觀察每次循環數據之間,作用力F對x的變化情形。
- 研究細目二:改變振幅。
 以同一顆水滴實驗,觀察不同振幅循環的數據,記錄 F-x 的關係,求 F-x 的循環關係圖,並探討不同振幅下,作用力 F 對 x 的變化情形。

- 研究細目三:加入溶質 CMC,改變液體濃度。
 以不同濃度的液體,固定振幅的循環,記錄 F-x 的關係,求作用力 F 對 x 的變化情形。
- 二、實驗二:研究上鋁蓋作用力 F 與時間 t 的關係。
 我們將不同濃度的 CMC 溶液進行實驗,求得 F 對時間 t 的變化關係,並討論其與實驗一關聯性。
- 三、實驗三:探討水滴的形狀。
 同實驗一的裝備及步驟,在旁架設照相機,拍攝以探討水滴形狀與 x 的關係,並討論其與實驗一、二關聯性。

伍、研究結果

−、實驗一

(一)研究細目一:固定振幅。
 以水滴進行實驗,觀察每組循環的數據之間,作用力F對高度x的變化,並
 求出上鋁面對水做功的大小。

前面有說過,固定下鋁面,而使上鋁面逐漸下移,我們測量出力學桌的調整 螺絲一個螺距約為 1.550 mm,一次則是變動八分之一個螺距。 從碰到水滴算起開始下移八次(每次八分之一個螺距約 0.194 mm,共 1.550 mm),然後逐漸上拉八次回到原處,即為「一次振幅 1.550mm 的循環」,如此 反覆數次,並記錄電子秤對應的讀數。

為方便起見,下文簡稱:

例如下移第7次,表示為下壓07;上拉第1次,表示為上拉01。 (註:表中下壓07-05表示下壓0.097mm,即十六分之一個螺距)

(註:黃格子的數據,後來將不採用,因	因為它的數據無法重複規律出現)
--------------------	-----------------

水滴質量	第一次			第二次			第三次	
0.39g	x (mm)	F (gw)		x (mm)	F (gw)		x (mm)	F (gw)
觸碰瞬間	0.000	0.38	上拉 08	0.000	0.62	上拉 08	0.000	0.63
下移01	0.194	0.41	下移01	0.194	0.63	下移01	0.194	0.63
下移 02	0.388	0.44	下移 02	0.388	0.60	下移 02	0.388	0.61
下移03	0.581	0.45	下移03	0.581	0.52	下移03	0.581	0.55
下移 04	0.775	0.44	下移 04	0.775	0.49	下移 04	0.775	0.50
下移 05	0.969	0.45	下移 05	0.969	0.49	下移05	0.969	0.50
下移 06	1.163	0.48	下移 06	1.163	0.49	下移 06	1.163	0.51
下移 07	1.357	0.52	下移 07	1.357	0.55	下移 07	1.357	0.51
下移 07-5	1.454	0.57	下移 07-5	1.454	0.54	下移07-5	1.454	0.55
下移 08	1.550	0.63	下移 08	1.550	0.56	下移 08	1.550	0.55
上拉 00-5	1.454	0.99	上拉 00-5	1.454	0.90			
上拉 01	1.357	1.08	上拉 01	1.357	1.10			
上拉 02	1.163	1.01	上拉 02	1.163	1.02			
上拉 03	0.969	0.94	上拉 03	0.969	0.95			
上拉 04	0.775	0.87	上拉 04	0.775	0.87			
上拉 05	0.581	0.77	上拉 05	0.581	0.82			
上拉 06	0.388	0.72	上拉 06	0.388	0.76			
上拉 07	0.194	0.67	上拉 07	0.194	0.68			
上拉 08	0.000	0.62	上拉 08	0.000	0.63			

將上表畫出 F-x 的關係圖:

X 軸: x 為上鋁面的位移量,定向下為正,上鋁面下移至碰觸水滴的瞬間視為 x=0。

(二)研究細目二:改變振幅。

改變上鋁片的振幅,共做5種大小不同振幅,每個振幅各進行一個循環。記錄 F-x 的關係,求 F-x 圖形的循環數據。數據如下表。

(註:黃格子的數據,後來將不採用,因為它的數據無法重複規律出現)

水滴質 量	第一次			第二次			第三次	
0.39g	x (mm)	F (gw)		x (mm)	F (gw)		x (mm)	F (gw)
觸碰瞬 間	0.000	0.42	上拉 08	0.000	0.56	上拉 08		
下移01	0.194	0.44	下移01	0.194	0.48	下移01		
下移 02	0.388	0.46	下移 02	0.388	0.46	下移 02	0.388	0.65
下移03	0.581	0.47	下移03	0.581	0.49	下移03	0.581	0.58
下移 04	0.775	0.46	下移 04	0.775	0.49	下移 04	0.775	0.51
下移05	0.969	0.45	下移05	0.969	0.52	下移05	0.969	0.54
下移 06	1.163	0.49	下移 06	1.163	0.48	下移06	1.163	0.54
下移07	1.357	0.56	下移 07	1.357	0.54	下移07	1.357	0.57
下移07-5	1.454	0.59	下移07-5	1.454	0.62	下移07-5	1.454	0.60
下移08	1.550	0.63	下移 08	1.550	0.60	下移 08	1.550	0.58
上拉00-5	1.454	1.16	上拉00-5	1.454	1.16	上拉00-5	1.454	1.18
上拉 01	1.357	1.06	上拉 01	1.357	1.15	上拉 01	1.357	1.13
上拉 02	1.163	0.97	上拉 02	1.163	1.04	上拉 02	1.163	0.88
上拉 03	0.969	0.90	上拉 03	0.969	0.88	上拉 03	0.969	0.77
上拉 04	0.775	0.79	上拉 04	0.775	0.78	上拉 04	0.775	0.71
上拉 05	0.581	0.72	上拉 05	0.581	0.73	上拉 05		
上拉 06	0.388	0.67	上拉 06	0.388	0.65	上拉 06		
上拉 07	0.194	0.61	上拉 07			上拉 07		
上拉 08	0.000	0.56	上拉 08			上拉 08		

	第四次			第五次	
	x (mm)	F (gw)		x (mm)	F (gw)
上拉 08			上拉 08		
下移 01			下移01		
下移 02			下移 02		
下移 03			下移03		
下移 04	0.775	0.71	下移 04		
下移 05	0.969	0.57	下移 05		
下移06	1.163	0.46	下移 06	1.163	0.85
下移 07	1.357	0.56	下移 07	1.357	0.56
下移 07-5	1.454	0.58	下移 07-5	1.454	0.55
下移 08	1.550	0.56	下移 08	1.550	0.57
上拉 00-5	1.454	1.06	上拉 00-5	1.454	1.06
上拉 01	1.357	0.99	上拉 01	1.357	0.98
上拉 02	1.163	0.85	上拉 02	1.163	0.86
上拉 03			上拉 03		
上拉 04			上拉 04		
上拉 05			上拉 05		
上拉 06			上拉 06		
上拉 07			上拉 07		
上拉 08			上拉 08		

下圖為將上表五次循環 F-x 的作圖:

(三)研究細目三:改變液體濃稠度,研究作用力F與時間 x 的關係。

分別配置重量百分濃度為 0%、1.96%、3.85%、4.76%、5.66%的 CMC 溶液進 行實驗。固定振幅,記錄 F-x 關係的循環數據。

由於礙於篇幅,故不把數據列出。 以下為循環操作,不同濃度液體的 F-x 關係圖:

二、實驗二:研究作用力F與時間t的關係。

上移鋁片 1/8 螺距(即 0.194 mm), 使液體形變, 接下來的 F 值要經過一段時間才會趨近穩定值。

因此,分別配置重量百分濃度為0%、1.9%、3.8%、4.7%、5.6%的CMC 溶液進行實驗。測量 F-t 關係數據

三、實驗三:探討水滴的形狀。

同實驗一的操作步驟,並在旁架設照相機,拍攝以探討 x 與水滴形狀的 關係,並分析結合實驗一,討論其關聯性。

在下移上拉第二次之後的數據相當一致,具有高度可信度。因此,可以 第二次循環後的面積為取樣對象。(註:在討論-實驗一-研究細目一, 有詳盡說明),並放入 tracker 軟體中,描點、做擬合線。下圖為某一水 滴的實驗照片。

將照片匯入電腦後,我們利用「Tracker」—物理座標定位軟體,對選定的圖片加工。我們對圖片設置 y-x 座標系,並將水與空氣交界曲線的每個點以座標定位標示:

以下是第一次下移 08 開始到第二次的下移 08, x、F 和擬合方程式: (註:向上定為 X 軸正向,向右定為 Y 軸正向,原點定為水滴與下鋁 面接觸的中心)

	鋁面間距 (m	m) [F (gw)	擬合方程式 (x= ay^2+ by+ c)
下移 08	1	.744	0.46	x = 0.0207y^2 - 0.1436y + 11.097
上拉 00-5	1	.841	0.76	x = 0.1702y^2 - 0.4887y + 11.091
上拉 01	1	.938	0.91	x = 0.2292y^2 - 0.7068y + 10.04
上拉 02	2	2.132	0.91	x = 0.184y^2 - 0.718y + 11.953
上拉 03	2	2.326	0.86	x = 0.2209y^2 - 0.8576y + 11.361
上拉 04	2	2.519	0.80	x = 0.2354y^2 - 0.8865y + 10.52
上拉 05	2	2.713	0.75	x = 0.234y^2 - 0.9746y + 10.325
上拉 06	2	2.907	0.68	$x = 0.2615y^2 - 1.0927y + 8.8988$

上拉 07	3.101	0.62	$x = 0.3009y^2 - 1.2656y + 7.8451$
上拉 08	3.295	0.57	$x = 0.2836y^2 - 1.3199y + 7.5552$
下移 01	3.101	0.57	$x = 0.2903y^2 - 1.2621y + 7.2066$
下移 02	2.907	0.56	$x = 0.2358y^2 - 1.0237y + 7.6666$
下移 03	2.713	0.48	$x = 0.1471y^2 - 0.7564y + 8.4665$
下移 04	2.519	0.43	$x = 0.0522y^2 - 0.3192y + 8.2838$
下移 05	2.326	0.43	$x = 0.0694y^2 - 0.3132y + 9.2059$
下移 06	2.132	0.43	$x = 0.019y^2 - 0.2163y + 9.5247$
下移 07	1.938	0.44	$x = 0.0662y^2 - 0.2444y + 9.6228$
下移 07-5	1.841	0.44	$x = 0.0139y^2 - 0.1428y + 10.934$
下移 08	1.744	0.45	$x = 0.0064y^2 - 0.1835y + 11.591$

陸、討論

-、實驗一:

(一)研究細目一:固定振幅。

就我們原先對表面張力的認知,下移過程 F 值及上拉過程 F 值應該一致, 如下圖所示,只要上下鋁面間距相同,水滴形狀應該完全相同,上鋁面對 水滴之作用力應該是完全相同。

但是在實驗中,我們發現了一個重要現象,顛覆了原先的認知。 就是:<u>鋁面下移及上拉時,作用力並不一致</u>,我們相信探討這作用力的差 距應該可發掘隱藏於液體內部的物理本質。

下圖中,我們從各個數據點採樣。,從第一次下移 08 開始到第二次的下移 08 為止(藍線上半部+紅線下半部),發現圖形呈現規律的變化,即為下圖 中的封閉曲線(P7 的結果圖)。

鋁面下移及上拉時,作用力並不一致,其F-t 圖包圍了一個封閉區域。

接著,我們想探討 F-x 圖包圍面積所代表的意義:

如下示意圖,當鋁面由 B 點下移至 A 點,再由 B 點上拉至 A 點,我們稱為 一個循環

由功與能的關係可知,上面示意圖形所包圍的面 積代表系統損失的力學能,也代表產生的熱能。

以下,第一次循環簡稱:<u>循環01</u>;第二次循環稱:<u>循環02</u>。 計算兩次相同振幅循環所圍成面積:

水滴質量	振幅(mm)	面積(gw*mm)
0.37g		
循環 01	1.5504	0.5252
循環 02	1.5504	0.5300

環形區域圍成的面積,為此次循環損失之力學能(轉換為熱能)。 由以上關係可知相同的振幅,其能量的散失幾乎相同,約為0.53(gw*mm)。

因為數據相當一致,具有高度再現性。因此,往後的實驗皆以第二次循環後的面積為取樣對象。

1. 模型建立:

由於上鋁面在下移及上拉過程,水柱之受力不一致(下移時受力較小, 上拉時受力較大),這是以單純的表面張力模型無法解釋的。

在從國中學習物理起至今,我們學習到,當一個理論或模型無法成功解 釋現象時,不要立刻否定它,往往只要對原理論略加修正或是補充即可。

因此為了解決我們遇到的困境,我們並不揚棄表面張力,而是擴大作用 力的範疇。

也就是在表面張力之外,還加入可能的「其它作用」。 因此設法建立底下兩種模型來陳述我們所謂的「其它作用」。

(1) 模型一:

因彈簧是緊繃的,施力F須一直維持向上。使光滑活塞先下移再上 拉回到原處,則系統損失的力學能先完全轉成擾動流體的動能,最 後再轉成熱能。

(2) 模型二:

同樣地,因為彈簧是緊繃的,施力下移須一直維持向上。一樣使活 塞先下移再上拉回到原處,此時流體的擾流動能是可以忽略的,而 系統損失的力學能是直接從活塞摩擦力轉成熱能。

2. 等效摩擦力

我們相信,水滴受力情形可能較像模型一,也可能 較像模型二,甚至可能是兩種模型的「混合模型」。 ΔW

然而,不論是模型一或模型二,總施力F與位置 x 關係圖均大約如右圖所示。曲線包圍面積就是系統 產生熱能 ΔW 。

因活塞下移及上拉均有熱能產生,我們<u>自創</u>並定義一個稱為:

等效摩擦力 f_e

則系統產生熱能,可以由<u>摩擦力乘上路徑長</u>算得,即:

$$\Delta W = f_e \cdot 2\Delta x \Longrightarrow f_e = \frac{\Delta W}{2\Delta x}$$

其中2Δx 為進行一個循環鋁面來回的路徑長,當然等效摩擦力與路徑長 無關,與一般摩擦力類似。

無論是模型一或模型二,等效摩擦力 f_e 都是存在且可以由上式計算的。 (不過對模型一而言,等效摩擦力並非具象)

3. 損耗係數

直覺上,水滴愈大,其等效摩擦力應該也越愈大。因此,我們又再發明一個更重要的全新物理量:

損耗係數 D

定義D為等效摩擦力 f_e 與水滴重量 W_{\star} 的比值,即:

$$D = \frac{f_e}{W_{zK}} = \frac{\Delta W}{W_{zK} \cdot 2\Delta x}$$

損耗係數D有下列的物理性質:

(1) D 是單位重量的液體,在進行單位振幅循環時所產生的熱能(或所 耗的熱能)。

- (2) D越大,代表液體形變時產生的熱能越多,反之D越小,代表液體 形變時產生的熱能較少。
- (3) D是一個無因次的物理量,即使改變實驗過程使用 x 或 W 的單位, 也不影響 D 的數值。
- (4) 它與液體重量無關,只與液體種類有關的係數。不同種類的液體, 其D值應不相同。
- (5) 它代表了液體發生形變時,等效摩擦力的大小,也代表形變時,液 體損耗力學能而發熱的多寡。

我們稍後將設法求出 D 值。

(二)研究細目二:改變振幅。

若上述假設合理,那麼上鋁面在一個循環振幅愈大,等效摩擦力做功愈多, 也就是 F-x 圖包圍面積可能愈大。以下是實驗數據 F-x 圖: (註:此圖節錄自 P.8 的圖)

得到以下振幅與面積(損耗力學能)的關係:

	振幅 (mm)	面積
		(gw*mm)
循環 00-01	1.550	0.521
循環 01-02	1.163	0.384
循環 02-03	0.775	0.262
循環 03-04	0.388	0.111

由上圖可知,每一循環產生的熱能與振幅成正比。 這樣的結論可證實前面模型所提到的「等效摩擦力 f_e」的假設是成功的, 因為在一般情況下,<u>摩擦力在摩擦生熱時,產生的熱能就是與路徑長成正</u> 比。

前面模型有提及,不論模型一或是模型二,都可求得等效摩擦力
$$\boxed{f_e = \frac{\Delta W}{2\Delta x}} \circ 因為 \frac{\Delta W}{\Delta x} 即為上圖之斜率,故:$$
$$f_e = \frac{斜率}{2} = \frac{0.332}{2} = 0.166(gw)$$

即對此一重量 0.39gw 的水滴而言,等效摩擦力為 0.166(gw)。

因上圖是通過原點的直線,關係圖形也顯示我們測得的等效摩擦力精確度很高。

接下來,我們再求得水的損耗係數D:

$$D = \frac{f_e}{W_{\pi \kappa}} = \frac{0.166}{0.39} = 0.427$$

前面模型處提到過, D只與液體種類有關。

D越大,代表液體形變時產生的熱能越多,反之**D**越小,代表液體形變時產生的熱能較少。

因此, *D*為液體的特質之一,我們也推論:不同種類的液體,其*D*值應不相同。這正是我們底下要探討的事。

- (三)研究細目三:加入水溶性的溶質 CMC(即羧甲基纖維素),改變液體濃度。 由於水的流動性較佳,但加入較多 CMC 濃稠液體的流動性不好。我們猜測 這兩種液體在形變時,產生熱能的模型可能不相同。
 - 流動性佳的液體:
 採用 模型一(見 P16):液體形變→產生擾流動能→液體間摩擦產生熱 能。
 - 2. 流動性差的濃稠液體:

採用 模型二(見 P16):液體形變→液體摩擦產生熱能。 也就是說流動性差的液體,形變時並不產生擾流的動能,形變時直接摩 擦生熱。

我們假設流動性不同的液體,在形變時產生熱能的過程,可假設套用兩 種截然不同的模型一及模型二,因此相信不同流動性的液體,其D值應 不相同。

不過鑑於加入 CMC 之後應該會改變原有液體的表面張力,這是否會對 D 值 的測量造成影響?

為解決心中疑惑,我們進行下面方程式推導:

 $\vec{F} = \vec{F}_{R,P,D} + \vec{F}_{R,P,D}$ (表面張力之作用力屬保守力,而等效摩擦力屬非保守力)

將 序 對一個位移為 0 的路徑進行積分:

$$\begin{split} \oint \vec{F} \cdot d\vec{\ell} &= \oint \vec{F}_{\mathcal{R} \not\ominus \mathcal{I}} \cdot d\vec{\ell} + \oint \vec{F}_{\# \mathcal{R} \not\ominus \mathcal{I}} \cdot d\vec{\ell} \\ &= \oint \vec{F}_{\# \mathcal{R} \not\ominus \mathcal{I}} \cdot d\vec{\ell} \end{split}$$

其中 $\oint \vec{F}_{$ 保守力} \cdot d\vec{\ell} = 0,

因此我們確信,水加入 CMC 之後即使會改變液體的表面張力,仍不會對等效摩擦力 f_e 及 D 值的測量有任何影響。

接下來,我們以CMC 調製不同濃度的水溶液,分別測量不同濃度的D值:

固定振幅大小Δx = 1.55mm,改變 CMC 液體濃度。即實驗一的研究細目三 (P9~P10),記錄每種濃度,在一個形變循環,作用力 F 與位移 x 的數值,並 探討不同濃度上鋁面作功的情形,即可由下式求得不同濃度液體的損耗常 數 D 值:

f_e	$=\frac{\Delta W}{2\Delta x}$	$D = \frac{f_e}{W_{\mathcal{K}}}$	$-=\frac{\Delta W}{W_{\rm TK}\cdot 2\Delta x}$	
CMC 濃度	液體質量 W _水 (g)	面積ΔW (gw*mm)	等效摩擦力 $f_e({ m gw})$	損耗常數 D (無單位)
0.00%	0.39	0.530	0.171	0.438
1.96%	0.41	0.546	0.176	0.429
3.85%	0.42	0.572	0.185	0.439
4.76%	0.40	0.531	0.171	0.428
5.66%	0.38	0.349	0.113	0.296
6.54%	0.41	0.378	0.122	0.297

再畫出 D 值與 CMC 濃度的關係:

由上圖表可得到下面重要結論:

濃度在 4.76% ~ 5.66% 之間, D 值有較劇烈的變化,我們相信, D 值劇烈 的變化是來自液體形變模型的轉變,也就是在低濃度時液體的流動性 佳,可用模型一來解釋其所耗能量的方式;然而在高濃度時液體的流動 性差,可用模型二來解釋。

因此<u>D</u>值在濃度稍高時,產生劇烈變化,可歸因為液體形變模式的改變, 這間接加強了我們模型的可信度 我們在 P11~12 的實驗結果可知:

分別配置重量百分濃度為 0%、1.96%、3.85%、4.76%、5.66%的 CMC 溶液進行實驗。測量 F-t 關係數據

21

作用力 F都要經歷一段時間才會趨近一個數值(隨濃度而定),但是我們發現,濃 度由 4.7%提高到 5.6%之後, F值有明顯快速趨近其特定數值的跡象。

我們認為這幾個可說明底下這兩件事:

- (一)濃度由 0%~4.7%的水滴,當它在形變時內部會有擾流,可用模型一來解釋, 它們需要較久的時間,等待擾流的停止,來達到作用力 F 值的穩定。
- (二)而濃度提高到 5.6%時,水滴在形變時內部不會有擾流,可用模型二來解釋 為何它可以瞬間達到作用力 F 值的穩定。

因此,不同濃度 F-t 的實驗結果,正呼應了實驗一的結論: 濃度在 4.76%~5.66%之間, D 值有較劇烈的變化,我們相信,D 值劇烈的變化 是來自液體形變模型的轉變

三、實驗三

(一)探討水滴下移及上拉過程中其形狀的變化情形。
 我們先將水滴置於上述的設備之中,以攝影設備記錄每次水滴的變化,並
 利用 Tracker 軟體分析照片中水滴的形狀。
 其中,為方便擬合方程式,將水滴的 x-y 軸對調,可得到二次多項式的方程
 式。以探討水滴左右曲線改變的情形。

如下面示意圖,我們能從水滴的照片求出其側曲面的擬合線方程式,針對 此曲面的意義,對於任意一個點,可以使用兩個曲率半徑來描述,分別稱 之為 R1 和 R2。

R1 為已知水滴曲面與水滴中央的距離。

R2 為曲面外與 R1 平面垂直的曲率半徑, R2 必須用以下的公式求出:

1. 右圖是實驗一水滴循環,F-x F-x 關係圖。針對第二循環,我 1.2 1.0 們拍攝水滴在不同狀態的形 0.8 狀。針對每一水滴循環過程 6.0 **E** ← 第一次 的照片,可求得R1及R2。 ■_第二次 0.4 ★ 第三次 $\frac{R_1}{R_2}$ 對x的關係 0.2 底下再做了 0.0 2.0 0.0 0.5 1.5 1.0 x (mm) 圖: **R1/R2** - x 5.00

2. 建立紙片模型:

如下圖,鋁片在上拉過程與下移過程,上鋁片移動一個微量的位移,此時作用力與時間的關係並不一致,也就是上拉過程 F-t 圖較平滑而下壓過程 F-t 圖有階梯狀變化,故我們再建立「紙片模型」來解釋此現象。

23

如左圖紙片模型,上方平面代表鋁片,底 兩側彎曲的紙片代表水滴的曲面。鋁片上 移過程,紙片可以輕易地往中間縮回(假設 完全無障礙力);但是鋁片在下移過程,紙 片向外擴張受到不穩定的障礙力,也就是 紙片常常「卡住」。因此這個模型可以解釋 鋁片上拉時水滴 F-t 圖是平滑的,而鋁片下 移過程,水滴向外擴張過程是不順遂的, 以致 F-t 圖產生階段性變化的現象,同時需 要較多的時間才能趨於穩定。

3. ※等效摩擦力的再探討

我們打算使用紙片模型再度算出「等效摩擦力 f_e' 」。假設上移過程上鋁面作用力 F_1 ,與水接觸面的圓周長 L_1 ,接觸角 α_1 ,且此時等效摩擦力為零。

而下移過程上鋁面作用力 F_2 ,與水接觸面的圓周長 L_2 ,接觸角 α_2 ,且 等效摩擦力為 f_e' 。T=0.0074(gw/mm)是水的表面張力,則:

$$\begin{cases} F_1 = 0 + TL_1 \sin \alpha_1 \\ F_2 = -f_e' + TL_2 \sin \alpha_2 \end{cases}$$
$$\Rightarrow f_e' = F_1 - F_2 - T(L_1 \sin \alpha_1 - L_2 \sin \alpha_2)$$

我們利用上式算出下移過程 f_e '的值,同時假設上拉過程 f_e '=0,而藍 色橫線表示 f_e '=0.166gw(如 P.18 計算),如下圖所示。

4. 如上圖,這些 f_{e} '的平均值約為 0.18gw 與先前測等效摩擦力值 0.166gw 相當。

5. ※接著定義出新的物理量,障礙張力 Barrier tension ,即 $B = \frac{f_e'}{L_2}$

B 與表面張力同因次。

如下圖可知在上拉過程 B=0,在下移過程中 B 值得平均約為 0.0069(gw/mm),且有時會超過表面張力 T=0.0074(gw/mm),代表下移 的物理量 B 會明顯的影響水滴的形狀,因此上拉及下移過程水滴形狀不 相同(如 P.12 所示)

柒、結論

- 、水滴在兩固定距離的鋁片之間作用力,並非固定,同時其外形也不是固定。我們的研究結果得知,其外形和作用力與成形的過程(上拉或下移)有因果關係。
- 二、水滴與鋁片間之作用力並非保守力,這與我們原先對水的表面張力認知有很大差 異,及作用力是表面張力與等效摩擦力的合成。
- 三、能量損耗ΔW與表面張力無關,我們建立兩個能量損耗的模型。模型一:液體形 變產生擾流生熱,模型二:形變時直接摩擦生熱。我們猜測兩種模型生熱方式截 然不同,其D值應該也不同。
- 四、因此我們建立等效摩擦力 $f_e = \frac{\Delta W}{2\Delta x}$,我們認為這個物理量與表面張力無關,因為表面張力是保守力,而摩擦力為非保守力。我們測量水滴的 fe 值為 0.166gw。
- 五、接著我們再建立一個無因次的物理量 $D = \frac{f_e}{W_{\pi}}$ (損耗係數),以描述液體受力變形再恢復原形狀時,損耗能量的多寡。例如我們測得純水 D=0.427,而濃度 5.7%的CMC 溶液 D=0.30。

- 六、再測量不同濃度的 CMC 水溶液的損耗係數 D 值,我們發現在濃度升高到某值附近,D 值有急劇變化,因此我們認為這是因為液體形變時,其生熱的機制由模型一轉變為模型二所致。
- 七、不同濃度的液體在受力後達穩定所需時間的關係中,濃度提高到 5.6%時,F 值 有明顯快速趨近其特定數值的跡象。可說明液體形變時內部不會有擾流或擾流可 忽略,亦可證實模型一轉換為模型二的論點。
- 八、為了進一步研究上述兩種模型,未來將可以藉由研究大學物理的阻尼振盪: over, under 及 critical damping,深入探討。我們初步認為, critical damping 應該出現在 濃度在 4.76%~5.66% 之間的 CMC 水溶液。
- 九、再建立「紙片模型」探究等效摩擦力 $f_e' = F_1 F_2 T(L_1 \sin \alpha_1 L_2 \sin \alpha_2)$,下壓時 的平均值 0.18gw 與先前 f_e 值 0.166 相當。並定義一個與表面張力同因次的物理量 B (Barrier tension) $B = \frac{f_e'}{L_2}$,在下移時 B 的得平均約 0.0067(gw/mm) 與表面張力 0.0074(gw/mm) 相當,故水滴形狀明顯與上拉時不同。

捌、展望與應用

- 一、改用甘油或其它液體,應該也可求得等效摩擦力fe、損耗係數D,得以比較它們 與水的異同。並可檢驗我們所發明的等效摩擦力fe、損耗係數D及障礙張力B, 這些物理量是否通用於所有液體,甚至可使用這些概念研究非牛頓流體的行為。
- 二、我們並未能解釋,為何在較高濃度的 CMC 溶液,其等效摩擦力 fe 或 D 值較小, 這有待進一步研究。
- 三、關於結論八所提的阻尼振盪: over, under 及 critical damping。我們如果另外研究 液體的振盪實驗,應該可以跟本實驗互相驗證,並可找出兩種實驗的物理連結點。
- 四、因此本實驗或許也可稱得上是研究液體阻尼特性的實驗,若能了解液體的阻尼性 質,應對機械的阻尼工程有極大貢獻。

玖、參考資料及其他

[1]Hugh D. Young 等, 2010, Fundamentals of Physics, 普通物理(上), 編譯:陳瑞和, 謝 奇文, 民 99, 全華圖書股份有限公司

[2]David Halliday 等, 2010, Fundamentals of Physics, 普通物理(下), 編譯:田麗文, 李佳榮, 民 99, 全華圖書股份有限公司

[3]高涌泉等, 99 課綱, 基礎物理 2B(上), 龍騰文化事業股份有限公司

[4]高涌泉等,99 課綱,基礎物理 2B(下), 龍騰文化事業股份有限公司

[5]Robert L. Mott, 2000, Applied Fluid Mechanics, 編譯:徐貴新, 徐瑞堂等人, 高立圖 書有限公司

【評語】040113

- 實驗數據與理論多所建樹。但是也可以從表面張力造成壓力著
 ,與課程中的壓力相互配合。
- 2. 主題及實驗都相當有趣,但是實驗數據無重覆性。