中華民國第54屆中小學科學展覽會作品說明書

國中組 物理科

第二名

030118

飛「波」傳「電」

~ 6V 電池直流電源之無線電力傳輸與充電

學校名稱:高雄市立陽明國民中學

作者:

指導老師:

國二 許躍蘭

柯瑞龍

國二 朱庭毅

柯翠菱

關鍵詞:電磁感應、集膚效應、電磁共振

飛「波」傳「電」~6V電池直流電源之無線電力傳輸與充電

摘要

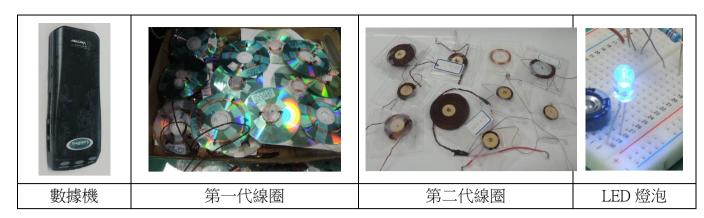
本次研究中,我們使用了直流電源進行感應電流的測試,實驗中發現,直流電源因為電流穩定,所以並無法產生感應電流,只有在一開始打開電源或關閉電源時才會有。於是我們用打點計時器設計了自動開啟與斷電的裝置,使直流電不斷地開啟與斷電,造成源源不斷地感應電流,但此裝置的輸出功率太小,於是我們使用了簡易的振盪器形成了振盪電路,使直流輸出的電源也可以有交流電的效果,透過多種測試,最後利用細線編織而成的麻花辮來繞線圈,解決因集膚效應所造成的損耗,接著利用倍壓式整流電路,將交流電轉成直流電搭配同步共振的電路,使原本的傳輸效率提升了 2~3 倍之多,而在充電式電容實際充電後發現,充電 5 分鐘,就可以使 3V 的 LED 燈泡點亮 25 分鐘以上。

壹、動機

手機充電,最麻煩的就是要帶一堆線,還要到處找電源,如果要和別人共享電源,又要準備一堆轉接頭或是換另一條線,現在有許多電器都可以用遙控的方式,不需要再接一堆雜亂的線,既然電器可以無線遙控,那麼"電"是否也可以無線傳輸呢?如果可以辦到,那就可以省去帶一堆線的麻煩了。為了達到這樣的目的,我們就開始了一連串的研究。

貳、目的

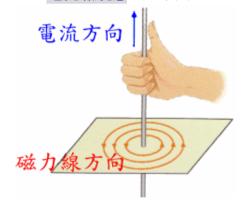

- 一、測試直流電的無線傳播。
- 二、直流電發射端的測試。
- 三、自動開關的設計。
- 四、直流轉交流的電路設計。
- 万、如何找到線圈的電感。
- 六、單芯線圈與發射功率的關係。

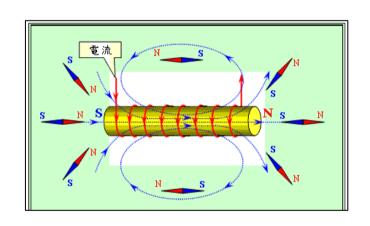

- 七、多芯線圈與發射功率的關係。
- 八、接收線圈與功率的關係。
- 九、如何將交流電轉成直流電。
- 十、如何加強接收線圈的功率。
- 十一、無線充電的效果。

參、器材

一、使用軟體:Logger Pro3

二、使用器材:

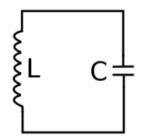




肆、原理及相關名詞

一、**集膚效應**:是指導體中有交流電或變化的電磁場時,導體內部電流不均勻的一種現象。 隨著與導體表面的距離增加,導體內電流密度遞減,即導體內電流會集中在導體表 面。與電流方向垂直的橫切面來看,導體的中心部分幾乎沒有電流,只在導體邊緣的 部分有電流。所以稱為集膚效應。

二、電流磁效應:如下圖。

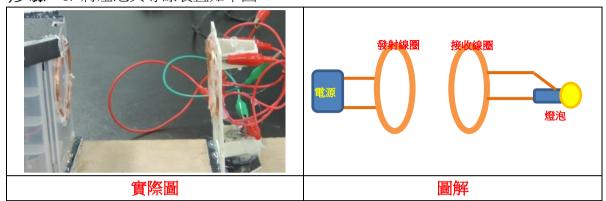


長直導線造成的磁場

螺線管造成的磁場

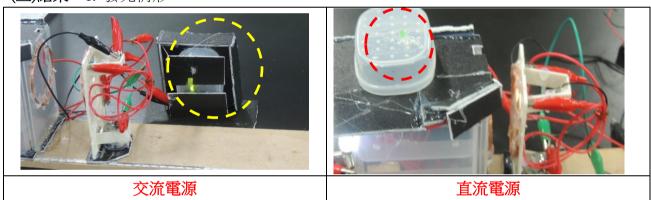
四、LC 電路:如右圖。

一秒內完成的週期性變化的次數叫做頻率。其固有週期用 $T=2\pi\sqrt{LC}$ 來表示。


伍、研究過程、結果及討論

研究一、測試直流電的無線傳播

探討 1、直流電源與交流電源在無線傳播上的可行性


(一)目的:測試不同電源的效果

(二)步驟:1. 將燈泡與導線裝置如下圖。

2.分別改變電源為 110V 交流電及 6V 直流電,觀察燈泡發亮情形。

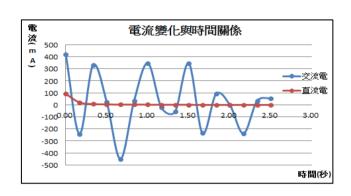
(三)結果:1. 發光情形

(四)討論: 1. 交流電造成的線圈,在短距離內可讓小燈泡發光,但直流電造成的磁場,只有 在打開開關的瞬間讓小燈泡亮一下無法持續。

探討2、感應電流的測試

(一)目的:測試感應電流的變化情形

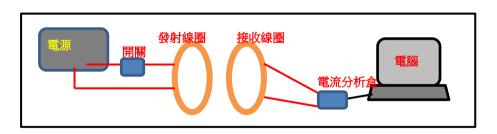
(二)步驟:1.接收端線圈接上毫安培計如下圖。

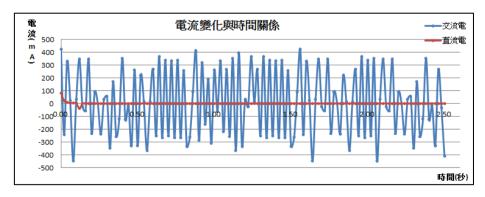


- 2.利用數位攝影機拍下電流的變化。
- 3.利用威力導演將影片分成一秒六格,將電流變化紀錄下來

(三)結果:1. 數據

時間(秒)	0	1/6	2/6	3/6	4/6	5/6	6/6	7/6
交流電電流(mA)	422	-242	331	24	-451	34	347	-23
直流電電流(mA)	92	21	7	4	2	2	2	1
時間(秒)	8/6	9/6	10/6	11/6	12/6	13/6	14/6	15/6
交流電電流(mA)	-56	346	-235	91	0	-238	34	56
直流電電流(mA)	1	1	0	0	0	0	0	0

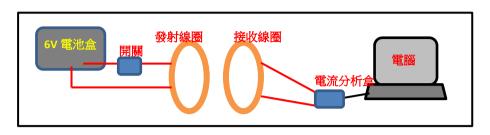

2.關係圖


- (四)討論: 1. 交流電電流方向一直變,使接收端不斷形成感應電流,所以可讓燈泡發亮, 直流電所以只有在一開始有感應電流無法持續感應。
 - 2.交流電擁有不穩定的電流,可以持續無線供電,但缺點是無法攜帶;直流電源雖容易攜帶,但無法無線供電。
 - 3.安培計無法完整地記錄下電流變化,必須要改良測試方法。

探討3、改良感應電流的測試法

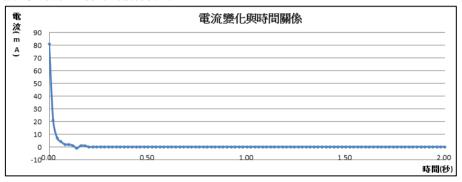
(一)目的:改良電流的測試法 (二)步驟:1.測試的裝置如下圖。

(三)結果:1. 電流變化與時間之關係圖


(四)討論:1.分析軟體,可將電流變化完整記錄下來,方便日後的分析。

研究二、直流電發射端的測試

探討1、測試接收線圈產生的電流


(一)目的:測試直流電產生的感應電流。

(二)步驟: 1.將產生電流的線圈接上 6V 的直流電與小燈泡,並和接收端架設如下圖。

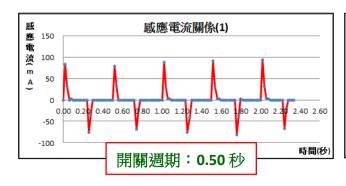
2.打開電池盒及電腦測試軟體,進行接收端的測試。

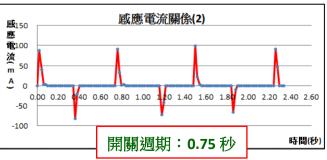
(三)結果:1.電流變化與時間的關係圖

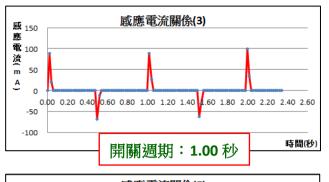
(四)討論: 1. 接收端的感應電流會在短時間消失,因直流電電壓穩定,只有在打開電源的 一瞬間有感應電流。

探討 2、開關時間間隔對感應電流的影響

(一)目的:測試不同開關間隔對感應電流的變化。

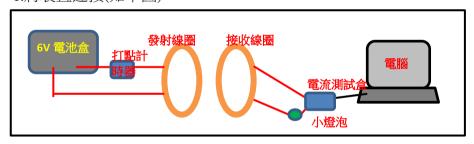

(二)步驟: 1. 將發射線圈與 6V 直流電及開關串聯。


2.固定接收端的直徑為 5cm,線圈導線的粗細為 0.55mm。

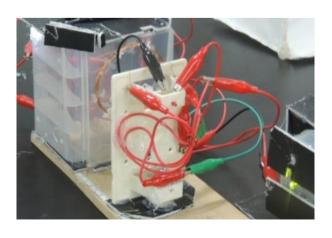

3.以人為控制開關的週期為 0.50 秒、0.75 秒、1.00 秒、1.25 秒及 1.75 秒。

4.將接收端的數據紀錄下來,並畫圖。

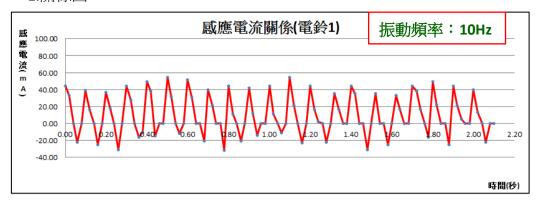
(三)結果:1.關係圖



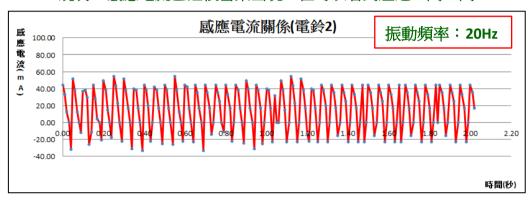
研究三、自動開關的設計


探討1、如何自製自動開關的裝置

(一)目的:設計自動開關的裝置 **(二)步驟**:1.將裝置連接(如下圖)。



2.調整打點計時器的頻率為 10Hz、20Hz, 測試電流的數據。


(三)結果:1.發亮情形

2.關係圖

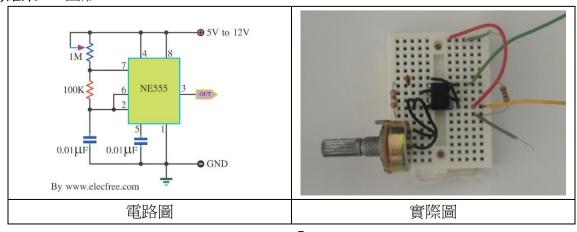
說明:感應電流已經較密集出現,但可以看到燈泡一閃一閃

說明:感應電流掉下來的時間變少,且用肉眼可以看到燈泡持續發亮

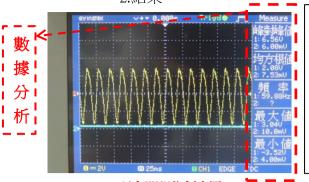
(四)討論: 1. 理化課本裡面的打點計時器裝置可自動斷電與通電,讓直流電可以瞬間產生又 消失。

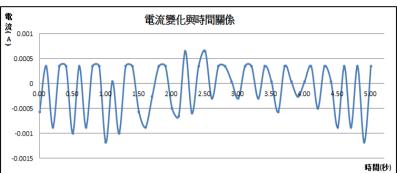
- 2.頻率達到 20Hz 時小燈泡可以順利地發亮,也完成直流電的無線傳電效果。
- 3.雖然完成了初步模組,但是電流仍不穩,這對 3C 產品是很大的傷害,也損耗了 能量,為了改善缺點,必須重新設計裝置。

研究四、直流轉交流的電路設計


探討 1、設計直流電轉交流電的電路(一)

(一)目的:設計直流電轉交流電的電路


(二)步驟:1.上網搜尋相關電路。


2.將電路接好並測試。

(三)結果:1.圖形

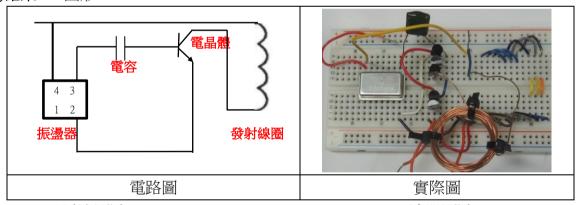
2.結果

示波器測試結果

電流計測試結果

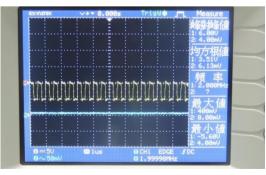
頻率(KHz)	頻率(KHz) 最大電壓(V)		最大電流(A)	最小電流(A)	
59.88Hz	3.04	-3.52	0.0007	-0.0011	

(四)討論: 1.NE555 雖可做出的振盪電路,但過程中會消耗能量,所以電流十分微小。 2.示波器可判斷電路的頻率及電壓,解決了測量的問題,電流則是透過電腦記錄 極值,以利接下來的分析及計算。


探討 2、設計直流電轉交流電的電路(二)

(一)目的:設計直流電轉交流電的電路

(二)步驟:1.上網搜尋相關電路。


2.將電路接好並測試。

(三)結果:1.圖形

2.電流測試

3.示波器測試

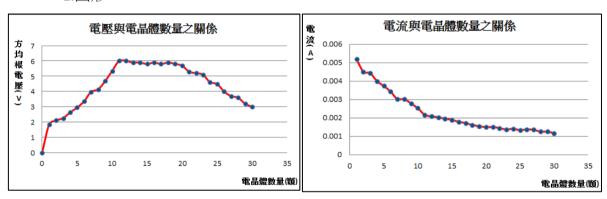
- (四)討論: 1.示波器可觀察電壓及振盪頻率,而石英振盪器的頻率為 2MHz,已遠遠超過數據機可量測的範圍(2.5KHz),必須要使用示波器才可量出電壓。
 - 2.利用石英震盪器及電晶體,可構成簡易振盪電路,但電流卻十分微小。

3.如果將燈泡並聯,就可以提高電流及整體電功率,那如果把振盪器當作輸出源, 電品體當作電器,將電品體並腦再接上線圈,是不是也會有類似的效果呢?

探討3、電晶體數量與電壓的關係

(一)目的: 測量電晶體數量與電壓的關係

(二)步驟:1.在麵包板上將電路接好。


2.將電晶體並聯接上電路,並逐漸增加數量。

3.將電晶體數量與對應的電壓值記錄下來作圖分析。

(三)結果:1.數據

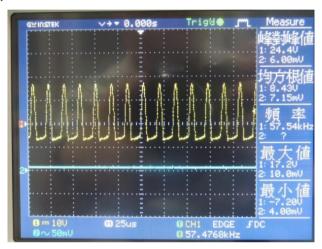
電晶體(顆)	1	2	3	4	5	6	7	8	9	10
電壓(V)	1.83	2.11	2.26	2.63	2.95	3.36	3.98	4.14	4.68	5.35
電流(mA)	5.20	4.51	4.43	4.00	3.73	3.43	3.02	3.02	2.78	2.53
電晶體(顆)	11	12	13	14	15	16	17	18	19	20
電壓(V)	6.00	6.00	5.90	5.90	5.81	5.90	5.82	5.90	5.80	5.72
電流(mA)	2.17	2.09	2.04	1.95	1.90	1.78	1.73	1.61	1.55	1.49
電晶體(顆)	21	22	23	24	25	26	27	28	29	30
電壓(V)	5.31	5.19	5.12	4.62	4.51	4.03	3.72	3.61	3.25	3.03
電流(mA)	1.51	1.45	1.38	1.42	1.34	1.38	1.36	1.25	1.26	1.17

2.圖形

- **(四)討論**:1.當電晶體逐漸增加時,電壓的方均根值逐漸增加,振幅也逐漸加大但電流卻逐漸下降。
 - 2.當電晶體到達某一個數量時,電壓會達到最大值,之後不會再上升,顯示電晶體 可以和線圈、振盪器及電容之間產生最佳的效果。
 - 3.發射電功率只有 0.015W 左右,依舊很低,主要的原因是石英振盪器的頻率過高 (2M),會造成過高的阻抗使電流降低,若要達到 5W 的電功率,必須要有相當高的電壓。

探討 4、設計直流電轉交流電的電路(三)

(一)目的:設計直流電轉交流電的電路


(二)步驟:1.使用中等頻率的振盪器設計電路。

2.將電路接好並測試。

(三)結果:1.電路圖及實際圖如下

2.示波器測試

(四)討論: 1.此振盪器為為中等頻率(約為 57.54K), 搭配不同的線圈, 會有些微不同的振盪頻率, 但若無線圈則完全無振盪效果, 所以其內部至少有一個電容和外部的線圈產生振盪的效果。

研究五、如何找到線圈的電感

探討1、測試電流與電壓以求得電感

(一)目的:找出線圈的電感大小

(二)步驟:1.將電路接好,用示波器找出電壓值及頻率。

2.將線圈和電流計串聯,找出電流。

3.將線圈接 6V 直流電,找出線圈的電流並計算電阻。

4.代入電感公式以求電感大小。

(三)結果:1.數據

線圈編號	頻率 f(Hz)	電壓(V)	電流(A)	阻抗 Z(Ω)	
A1330	55.25K	9.76	0.57	17.12	
線圈編號	頻率 f(Hz)	電壓(V)	電流(A)	電阻 R(Ω)	
A1330	0(無震盪)	5.76	1.80	3.20	

註: **線圈編號**由左到右看,A代表線圈種類(線芯粗細 0.55mm 漆包線)、1代表銅線芯數,3 表示內徑 3cm,30代表 30圈。

(四)討論:1.電感(L)計算公式為 $Z_L = 2\pi f L$,其中 Z_L 代表電感的感抗, f 表示振盪頻率, L 為電感大小。

2.線圈中的阻抗 Z 包含了銅線電阻(R)及線圈感抗(Z_L)[,]將線圈視為簡易 RL 電路,在 RLC 電路中,阻抗 Z 的大小可以表示為 $Z = \sqrt{R^2 + (Z_L - Z_C)^2}$,本電路沒有電容,所以容抗 $Z_C = 0$,假設銅線電阻(R)為定值,故公式 $Z = \sqrt{R^2 + Z_L^2}$ 所以電感(L)求法如下:

由 V=IR,求出穩定電流 $(Z_L=0)$ 下的導線電阻值為 3.2Ω ,

將
$$Z=17.12$$
 及 $R=3.2$ 代入公式 $Z=\sqrt{R^2+Z_L^2}$

$$\Rightarrow$$
 17.12 = $\sqrt{3.2^2 + Z_L^2}$ $\therefore Z_L^2 = 17.12^2 - 3.2^2$

$$\Rightarrow Z_L = \sqrt{17.12^2 - 3.2^2} = \sqrt{282.8544}\Omega$$
 將答案代人 $Z_L = 2\pi L$

$$\therefore L = \frac{Z_L}{2\pi f} = \frac{\sqrt{282.8544}}{2\pi \times 55.25 \times 10^3} \approx 0.04844727 \times 10^{-3} H = 48.44727 \mu H \quad \circ$$

若將阻抗Z視為 Z_L 代入 $Z_L = 2\pi JL$

可得
$$L = \frac{Z}{2\pi f} = \frac{17.12}{2\pi \times 55.25 \times 10^3} \approx 0.04931643 \times 10^{-3} H = 49.31643 \mu H$$

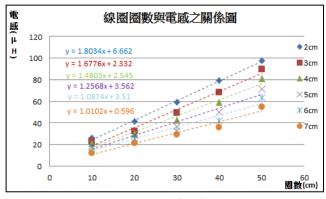
- 3.將阻抗Z 視為 Z_L 代入 $Z_L = 2\pi L$ 的公式中,可得到 $L = 49.31643\mu H$,與實際值 $L = 48.44727\mu H$ 只有微小差距 $(0.86916\mu H)$,表示導線電阻在整體阻抗中影響極小,故可忽略導線電阻,直接將阻抗Z 視為 Z_L 來求得電感值。
- 4.電流大小會隨著電壓不斷改變,為了計算電感,選擇用電壓和電流的極限值來做 比較,以獲得統一的標準

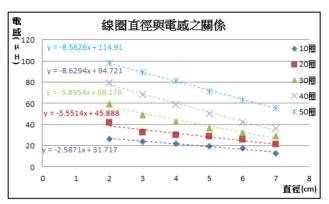
探討2、測試不同線圈的電感

(一)目的:找出不同線圈的電感大小

(二)步驟:1.將電路接好,並用示波器找出電壓值及頻率。

2.將線圈和電流計串聯,找出電流值。

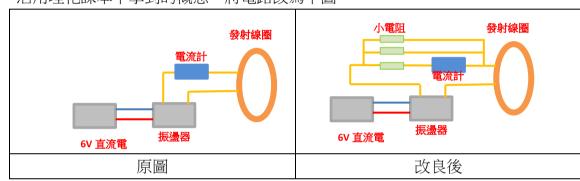

3.代入公式以求得電感。


(三)結果:1.結果

雷	同	留.	11	:	иΗ

直徑(cm) 圈數(圈)	2	3	4	5	6	7
10	26.35	23.51	21.62	19.11	17.53	12.33
20	41.36	32.61	30.12	28.89	25.37	21.09
30	59.33	49.32	42.76	36.77	32.12	29.58
40	79.16	68.33	59.15	50.33	42.11	36.25
50	97.62	89.53	81.12	71.23	63.53	55.26

2.圖形



圈數越多電咸越大

直徑越大電感越小

- **(四)討論**:1.在同樣的圈數下,半徑越小,電感值越大,在相同的直徑下,圈數越多的,電感值也,越大。
 - 2.電流計的最大量測值是 0.6A,超過就無法量測,為了完整記錄電流的變化,我們活用理化課本中學到的概念,將電路改為下圖:

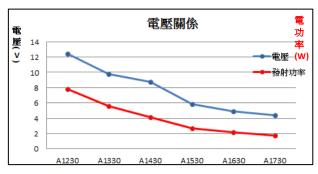
三個相同的小電阻形成並聯電路,電流計和其中一個串聯,如此測到的是總電流的 1/3,將結果乘於 3 倍,就是總電流。

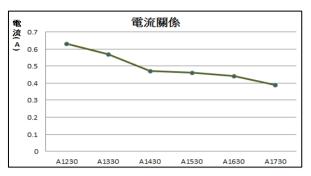
研究六、單芯線圈與發射功率的關係

探討 1、測試線圈直徑與最大發射功率的關係

(一)目的:找出線圈直徑與發射功率的關係

(二)步驟: 1.固定圈數為 30 圈,並改變直徑為 2cm、3cm、…、7cm。


2.將電路分別和線圈連接,並用示波器找出電壓值及頻率。


3.將線圈和電流計串聯,找出電流值。

(三)結果:1.數據

編號	A1230	A1330	A1430	A1530	A1630	A1730
最大電壓(V)	12.40	9.76	8.71	5.81	4.92	4.36
最大電流(A)	0.63	0.57	0.47	0.46	0.44	0.39
最大功率(W)	7.81	5.56	4.09	2.67	2.16	1.70

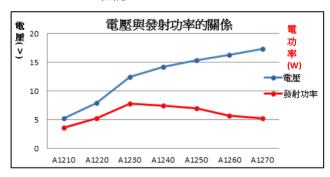
2.圖形

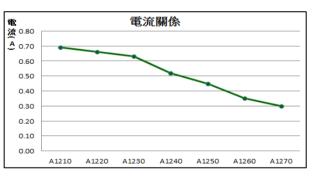
(四)討論:1.當線圈繞得越密其電壓越大,電流也越強,可以得到比較好的發射功率。

探討 2、測試線圈圈數與最大發射功率的關係

(一)目的:找出線圈直徑與發射功率的關係

(二)步驟: 1.固定線圈的直徑為 2cm,改變圈數為 10 圈、20 圈、 \cdots 、及 70 圈。


2.將電路接好,並用示波器找出電壓值及頻率。


3.將線圈和電流計串聯,找出電流值。

(三)結果:1.數據

編號	A1210	A1220	A1230	A1240	A1250	A1260	A1270
最大電壓(V)	5.23	7.92	12.40	14.22	15.33	16.25	17.32
最大電流(A)	0.69	0.66	0.63	0.52	0.45	0.35	0.30
最大功率(W)	3.61	5.23	7.81	7.39	6.90	5.69	5.20

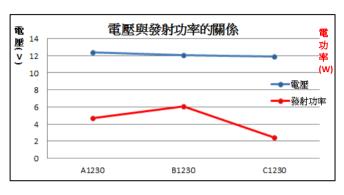
2.圖形

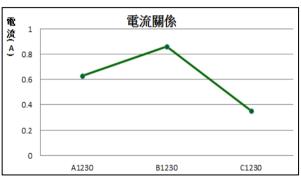
(四)討論: 1.一開始發射功率會隨著電壓的上升而上升,但到了 30 圈後就開始下降,原因是當圈數上升時,電感會跟著上升阻抗因而提升,造成電流下降,發射功率也下降。

探討3、測試線圈粗細與最大發射功率的關係

(一)目的:找出導線 組細與發射功率的關係

(二)步驟: 1.固定直徑為 2cm, 圈數為 30 圈, 改變粗細為 A(0.55mm)、B(1.00mm)及 C(0.30mm) 三種不同粗細。


2.將振盪電路分別和線圈連接,並用示波器找出電壓值及頻率。


3.將線圈和電流計串聯,找出電流值。

(三)結果:1.數據

編號	A1230	B1230	C1230
導線粗細(mm)	0.55	1.00	0.30
最大電壓(V)	12.40	12.07	11.88
最大電流(A)	0.63	0.86	0.35
最大功率(W)	7.812	10.380	4.158
頻率(KHz)	52.80	52.08	53.00
電感(µH)	59.33	42.89	101.93

2.圖形

(四)討論:1.在相同圈數下,線圈越粗發射功率越大,電感也越小。導線越細,則電感越大, 電流越小。

- 2.粗導線的最大發射功率可達到 10.38W。
- 3.我們發現了很有趣的現象,將 A、B、C 三種線圈做比較,其直徑比為 0.55:1:0.3,面積比為 0.3025:1:0.09 約為 3.3:11:1,電流比為 0.63:0.86:0.35,約 為 1.8:2.4:1,將其整理如下:

編號	A1230	B1230	C1230
導線粗細比	1.83	3.33	1
導線截面積比	3.3	11	1
導線電流比	1.8	2.4	1

導線的截面積比和電流比相差甚遠,但是導線的直徑比和電流比則較為接近。

- 4.越粗的導線可以容納越多的電子流過,就如同越粗的水管可以讓越大的水流通過, 所以電阻會和導線截面積成反比,在相同的電壓下電流和導線截面積成正比。但 是實際測量的結果卻反而和直徑比較接近。
 - 5.查閱文獻後發現,這叫做集膚效應,當電流來回振盪時,電流只在導線的表面流動,所以電流並沒有隨著截面積等比例放大,而跟直徑有明顯的關係。

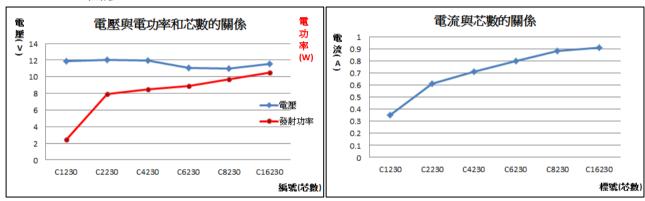
研究七、多芯線圈與發射功率的關係

探討 1、測試多芯線圈與發射功率的關係

(一)目的:找出多芯線圈與發射功率的關係

(二)步驟: 1.使用 0.3mm 的銅線,固定圈數為 30 圈,並改變芯數為 2 芯、4 芯、6 芯、8 芯及

16 於。


2.將振盪電路接通,並用示波器找出電壓及頻率。

3.將線圈和電流計串聯,找出電流。

(三)結果:1.數據

編號	C1230	C2230	C4230	C6230	C8230	C16230
最大電壓(V)	11.88	12.00	11.92	11.09	11.00	11.52
最大電流(A)	0.35	0.61	0.71	0.80	0.88	0.91
最大功率(W)	2.41	7.92	8.46	8.87	9.68	10.48
頻率(KHz)	53.00	51.55	52.35	53.22	53.15	55.16
電感(µH)	101.93	60.74	51.04	41.46	37.43	36.53

2.圖形

(四)討論:1.電壓與芯數的關係並不明顯,但電流卻隨著芯數的上升而逐漸提升。

2.芯數越多時,電流並未呈現正比成長,而有逐漸趨緩的現象,似乎芯數越多時, 又有集膚效應,因此要銅線都沒有內外的分別。

探討2、如何纏繞多芯線圈

(一)目的:利用多芯纏繞的方式纏線圈

(二)步驟:1.三芯麻花辮線圈:

(1)利用三芯纏繞的方式完成麻花辮。

(2)將麻花辮用自製的線圈模子纏繞成線圈。

2.二芯交纏線圈。


(1)先量取漆包線約5公尺長。

(2)將漆包線的一端纏在小馬達的風扇上面另一端由同學拉緊(如右圖)。

(3)啟動小風扇,另一端同學則拉著漆包線慢慢向前進,讓風扇將漆包線纏緊。

(三)結果:1.實際成果如下

(四)討論:1.三芯麻花辮在編織的過程會不斷地打結,只能以人工的方式慢慢編織,所以要花 費非常多的時間。

- 2.二芯交纏的線圈,可用小馬達纏線,纏繞的結也較平整。
- 3. 為了比較兩種線圈在實際使用上的差別,我們先用雙芯交纏的方式完成了2芯、 4芯、6芯、8芯及16芯的線圈再和3芯麻花辮進行比較。

探討3、測試多芯纏繞線圈與最大發射功率的關係

(一)目的:找出線圈直徑與發射功率的關係

(二)步驟: 1.使用 0.3mm 的銅線,固定圈數為 30 圈,以小馬達纏出多芯線圈。


2.將電路接通,用示波器找出電壓及頻率。

3.將線圈和電流計串聯,找出電流值。

(三)結果: 1.數據

){)結果:1.數據 註:D代表多芯								
	編號	D2230	D3230	D4330	D6230	D8230	D16230		
	電壓(V)	12.00	11.48	13.6	12.80	12.80	12.63		
	電流(A)	0.54	0.62	0.74	0.79	0.92	0.50		
	功率(W)	6.48	7.12	10.06	10.11	11.78	6.32		
	頻率(KHz)	50.63	52.16	52.76	53.68	53.36	47.08		
	電感(µH)	67.61	56.50	55.44	48.04	41.50	85.39		

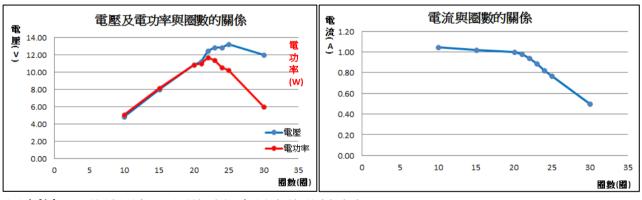
2.圖形

(四)討論: 1.隨著芯數的提高,電並無明顯變化,但電流卻大幅上升,功率也大幅提高,故可有效提高線圈的發射功率。

2.16 芯的線圈的功率竟然不如預期,我們觀察後發現,不同芯數的線圈,在相同的圈數下,繞出來的面積並不相同,線圈會由內向外越繞越大,造成不同的直徑,會影響發射功率效果。

探討 4、不同圈數的 16 芯線圈對發射功率的影響

(一)目的:測試不同芯數線圈與發射功率的關係


(二)步驟: 1.使用 0.3mm 的銅線,纏出 16 芯交纏導線。

2.利用此導線分別纏繞不同圈數線圈,測試電壓及電流。

(三)結果:1.數據

· //									
圏數(圏)	10	15	20	21	22	23	24	25	30
電壓(V)	4.80	8.00	10.80	11.20	12.40	12.80	12.80	13.20	12.00
電流(A)	1.04	1.02	1.00	0.98	0.94	0.89	0.82	0.77	0.50
功率(W)	5.02	8.15	10.82	10.95	11.69	11.39	10.51	10.19	6.00
頻率(KHz)	44.17	45.87	46.38	46.55	47.98	48.54	48.92	51.12	52.74
電感(µH)	16.55	27.25	36.98	39.17	43.62	47.17	50.92	53.26	73.03

2.圖形

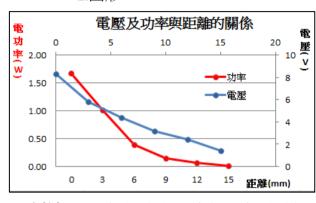
(四)討論:1.此線圈在22圈的時候有最大的發射功率。

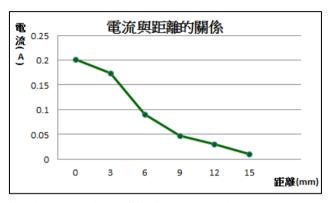
- 2. 圈數逐漸提高時,電壓及電感不斷地上升,電流則因電感提高阻抗變大而下降。
- 3.將 16 芯與 8 芯比較,兩者發射功率差不多,但 8 芯的線圈體積較小,故選擇用 8 芯的線圈。

研究八、接收線圈與功率關係

探討1、測試單芯接收線圈功率與距離的關係

(一)目的:測試發射功率的關係


(二)步驟:1.將振盪器、發射線圈裝置架設完成。


- 2.使用 A1330 的線圈作為接收線圈。
- 3.利用示波器及電流計測試其電壓及電流。
- 4.改變兩線圈的距離為 3mm、6mm、…、15mm, 重複步驟 1~3。

(三)結果:1.數據

距離(mm)	0	3	6	9	12	15
電壓(V)	8.3	5.8	4.4	3.2	2.4	1.4
電流(A)	0.202	0.174	0.09	0.048	0.03	0.01
功率(W)	1.68	1.01	0.40	0.15	0.07	0.01

2.圖形

(四)討論: 1.距離越遠時,電流和電壓越低,大約到 15mm 時,電流幾乎量不到。 2.以 A1330 為接收線圈時,接收功率為 1.68W。

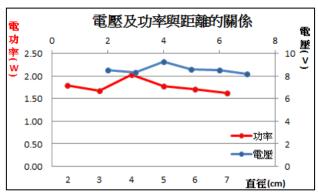
探討 2、測試單芯線圈功率與直徑的關係

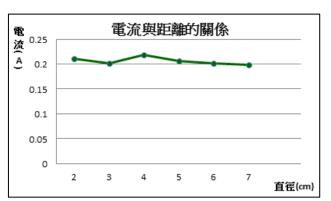
(一)目的:測試發射功率的關係

(二)步驟:1.將振盪器、發射線圈裝置架設完成。

2.將接收線圈放置於發射線圈的上方。

3.利用示波器及電流計測試其電壓及電流。


4.改變接收線圈直徑為 2cm~7cm, 重複步驟 1~3。


(三)結果: 1.數據

紅色數字表示直徑大小(單位:公分)

編號	A1230	A1330	A1430	A1530	A1 <mark>6</mark> 30	A1730
直徑(cm)	2	3	4	5	6	7
電壓(V)	8.5	8.3	9.3	8.6	8.5	8.2
電流(A)	0.211	0.202	0.218	0.206	0.202	0.198
功率(W)	1.79	1.68	2.03	1.77	1.72	1.62

2.圖形

(四)討論: 1.直徑 4cm 時有較好的接收功率,因此直徑剛好在發射線圈的內外徑 之間,所以有比較好的接收效果。

2.本次測試的功率為 2.03W, 約提升了 21%的效率。

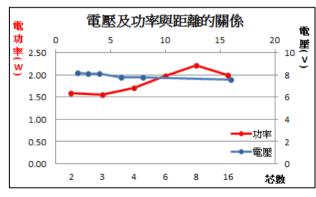
探討3、測試多芯線圈與功率的關係

(一)目的:測試多芯線圈與功率的關係

(二)步驟:1.將電路架設完成。

2.將接收線圈放置於發射線圈的上方。

3.用示波器及電流計測試其電壓及電流。


4.改變接收線圈芯數,重複步驟 1~3。

(三)結果:1.數據

註:D代表多芯纏繞

編號	D2230	D3230	D4330	D6230	D8230	D16230	
芯數	2	3	4	6	8	16	
電壓(V)	8.20	8.10	8.10	7.80	7.80	7.60	
電流(A)	0.193	0.192	0.211	0.253	0.284	0.262	
功率(W)	1.58	1.56	1.71	1.97	2.22	1.99	

2.圖形

(四)討論: 1.以 8 芯纏繞的線圈作為接收端時,有最好的功率(2.22W), 比原本的 1.68W 提升了 約 31%。

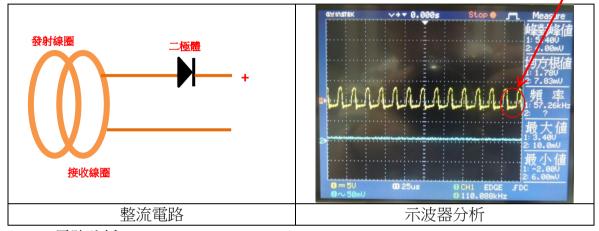
2. 咸應線圈輸為交流電,無法直接充電或部分電器使用,必須將其改成直流電。

研究九、如何將交流電轉成直流電

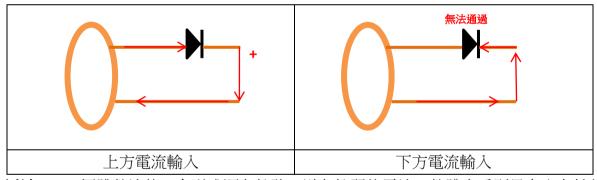
探討1、二極體對電壓的影響

(一)目的:測試二極體整流的效果

(二)步驟:1.將發射線圈與振盪器連接。


2.將接收線圈放在發射線圈的上方。

3.將二極體與接收線圈串聯。


4.利用示波器測試接收線圈的波形。

(三)結果:1.示波器分析

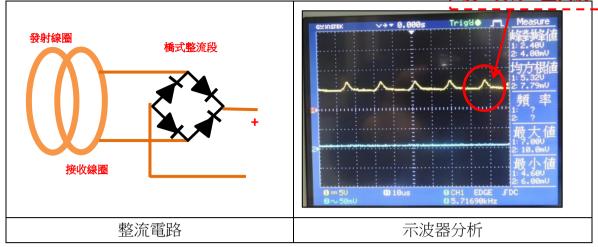
經二極體整流後,有 一半的波被濾掉。

2.電路分析

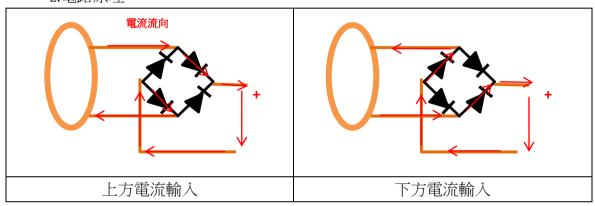
(四)討論: 1.二極體整流後,會形成順向較強,逆向較弱的電流,整體來看則是有方向性的間接式的直流電,但卻也消耗許多的能量。

探討 2、橋式整流段對電壓的影響

(一)目的:測試橋式整流段的整流的效果 (二)步驟:1.將發射線圈與振盪器連接。


2.將接收線圈放在發射線圈的上方。

3.將橋式整流段與接收線圈串聯。


4.利用示波器測試接收線圈的波形。

(三)結果:1.示波器分析

經橋式整流段整流

2.電路原理

(四)討論: 1.經橋式整流段作用,到了輸出端時,都可以維持固定方向,形成直流電。 2.從示波器波形可發現,電壓仍有少許突波。

探討3、倍壓式整流電路對電壓的影響

(一)目的:測試倍壓式整流電路的整流的效果

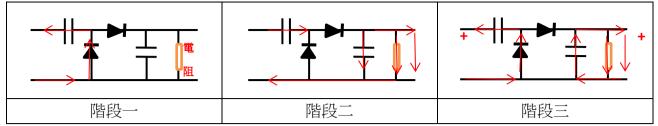
(二)步驟:1.將發射線圈與振盪器連接。

2.將接收線圈放在發射線圈的上方。

3.將倍壓式整流電路和接收線圈連接。

4.利用示波器測試接收線圈的波形。

::::: ::::: :::::


整流電路

(三)結果:1. 示波器分析

上下振盪只有 0.4V,為

21

2.電路原理

(四)討論:1.階段一電流從上方流回並對上方的電容進行充電。

- 2.階段二電流從上方輸出,連同電容一起放電,產生增強效果,流到右方,對右 方電容進行充電同時形成輸出。
- 3.階段三電流分兩邊進行,左邊重複階段一,右邊電容則進行放電以維持電流穩 定。
- 4.接著不斷地重複階段二與三,就可提供穩定的直流電輸出。
- 5.電路中的電阻選用高電阻,避免短路,並增強輸出端電流。
- 6.倍壓式整流電路可以得到較穩定且較強的直流電。

研究十、如何加強接收線圈的功率

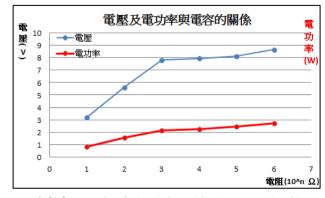
探討1、電組對接收線圈功率的影響

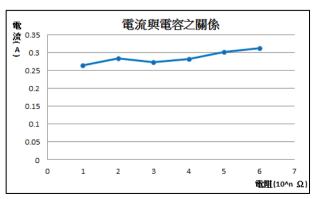
(一)目的:測試電阻對接收線圈的影響

(二)步驟:1.將發射線圈與振盪器連接。

2.將接收線圈放在發射線圈的上方。

3.將倍壓式整流電路和接收線圈連接。


4.用示波器測試接輸出端的波形,用電流計量電流。


5.改變電阻大小為 $10\Omega \times 100\Omega \times 1K\Omega \times 100K\Omega \times 100K\Omega \times 1M\Omega$, 重複步驟 1~4。

(三)結果:1.數據

(—)II—> 10 >010101						
電阻之 n 值(10°Ω)	1	2	3	4	5	6
電壓(V)	3.21	5.62	7.80	7.93	8.12	8.65
電流(A)	0.264	0.284	0.273	0.281	0.301	0.312
功率(W)	0.85	1.60	2.13	2.23	2.44	2.70

2.圖形

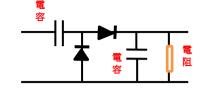
(四)討論:1.本電路原本是使用 $1K\Omega$ 的電阻,經測試後發現,電壓會隨著電阻的提升而變大,

電流則沒有太大差別。

2.經調整後,接收的功率達到 2.70W,比原本的 1.68W 提升了 61%。

探討 2、如何加強接收線圈的功率

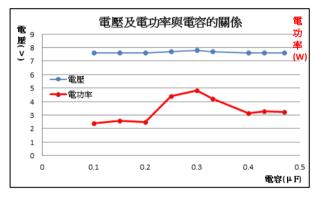
(一)目的: 電容對接收線圈功率的影響

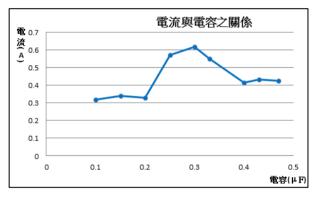

(二)步驟:1.將發射線圈與振盪器連接。

2.將接收線圈放在發射線圈的上方。

3.將倍壓式整流電路和接收線圈連接。

4.利用示波器測試輸出端的波形,並用電流計測試電流。


5.改變電容的大小為 $0.10 \,\mu F \cdot 0.15 \,\mu F \cdot 0.20 \,\mu F \cdot 0.25 \,\mu F \cdot 0.30 \,\mu F \cdot 0.33 \,\mu F \cdot 0.40 \,\mu F \cdot 0.43 \,\mu F \cdot 0.47 \,\mu F$,重複步驟 $1{\sim}4$ 。



(三)結果:1.數據

電容(µF)	0.10	0.15	0.20	0.25	0.30	0.33	0.40	0.43	0.47
電壓(V)	8.36	8.36	8.36	8.47	8.58	8.47	8.36	8.36	8.36
電流(A)	0.396	0.426	0.464	0.684	0.772	0.659	0.516	0.503	0.460
功率(W)	3.31	3.56	3.88	5.79	6.62	5.58	4.31	4.20	3.85

2.圖形

(四)討論: 1.本電路原是用 $0.033 \, \mu F$ 的電容,造成的效果並不好,故決定改變電容的大小,使電路有更好的效果。

2.根據LC電路的理論,振盪頻率的公式為 $f = \frac{1}{2\pi\sqrt{LC}}$,接收線圈受發射線圈影響,

頻率約為 45.8KHz, 其電感約為 41.50 μH, 計算後如下:

$$f = \frac{1}{2\pi\sqrt{LC}}$$
將數據代入後 $\Rightarrow 45.8 \times 10^3 = \frac{1}{2\pi\sqrt{41.50 \times 10^{-6} \times C}}$

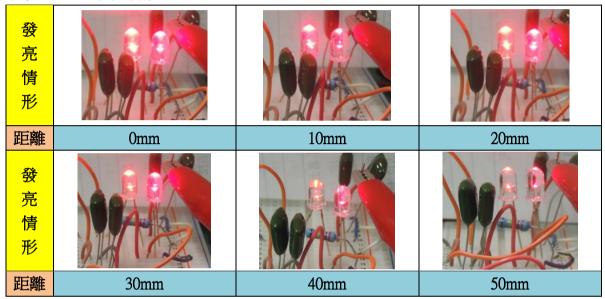
$$\therefore C = \frac{1}{45.8^2 \times 10^6 \times 4\pi^2 \times 41.50 \times 10^{-6}} \approx 2.91 \times 10^{-7} F = 0.291 \mu F$$

當電容 $C = 0.291 \mu F$ 時,LC 電路的頻率會和發射線圈的 45.5KHz 相同,這時電容與線圈間充放電頻率達到一致,效果最好。而實驗結果顯示,當電容為 $0.3 \mu F$ 時最好,與理論值 $0.291 \mu F$ 幾乎吻合,表示本實驗的電感推導,有相當高的準確度。 3.接收功率從原本的 1.68W 提升至 6.62W,大約提升了 3 倍之多。

研究十一、無線充電的效果

探討 1、接收線圈可以點亮小燈泡的最長距離

(一)目的:測試接收線圈可以點亮小燈泡的最長距離


(二)步驟:1.將發射線圈與振盪器連接。

2.將接收線圈放在發射線圈的上方。

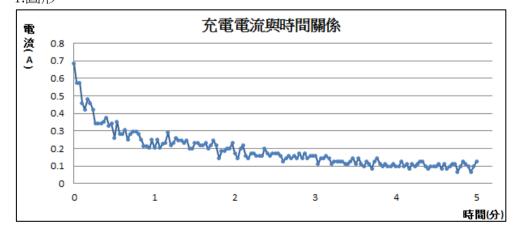
3.將倍壓式整流電路和接收線圈連接,在輸出端接上LED 燈泡。

4.分別改變線圈的距離為 0mm、10mm、20mm、...、直到燈泡不亮為止。

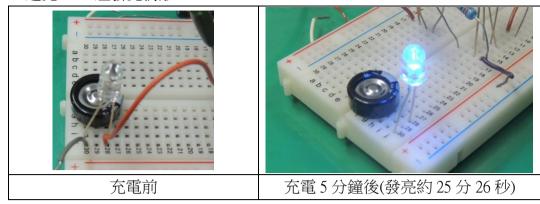
(三)結果:1.燈泡發亮情形

(四)討論: 1.當距離越來越遠時,燈泡的亮度會越暗,最大距離可以到 50mm 以上,顯示此模組在一段距離內仍然可以有效地傳送電力。

探討 2、接收線圈的充電效果


(一)目的:測試接收線圈的充電效果

(二)步驟: 1.將充電式電容(規格 $5.5V \times 0.1F$)和倍壓式整流段串聯。


2.將線圈和振盪器及整流段連接完成。

3.利用接收線圈對電容進行5分鐘的充電。

(三)結果:1.圖形

2.超亮 LED 燈發亮情形

- (四)討論: 1. 充電的初始階段電流較大,接著就慢慢趨緩,原因是電容一開始就好像沒有電阻 的導線一樣,電流可快速流過,但一段時間後,電容裡面帶了電荷,內部的反向 電壓也越來越大,所以就會造成電流越來越小
 - 2.實際充電後的電容進行放電,發現充電 5 分鐘的電容,可以讓超亮藍光 LED 持續發亮高達 25 分鐘以上,也說明了此模組在充電的應用上的實用價值。

陸、結論

- 一、交流電可以持續產生感應電流,所以燈泡會一直發亮,直流電則只有一開始具有感應電流,故無法持續發亮。
- 二、為了即時記錄電流變化關係,使用了電流計擷取數據,並利用 Logger Pro3 分析軟體, 將電流的情況記錄下來。
- 三、我們利用理化實驗常用的打點計時器製造不斷開關的效果,也成功地讓直流電源可以透過無線的方式,點亮數公分外的 LED 燈泡。
- 四、振盪電路的頻率過大,已遠遠超過數據機的擷取範圍,所以無法偵測其電壓和波形,因此我們使用了示波器,以得到更正確的結果。
- 五、在嘗試了 NE555、及石英振盪器後,最後找到了簡易的中頻振盪器,有著不錯的振盪效果(約 56K),也有較大的電流,形成高發射功率的振盪器。
- 六、我們用測到的數據,代入阻抗公式 $Z=2\pi fL$,算出了線圈的電感。從中發現,當線圈繞得比較密或是半徑比較小時,都會產生比較大的電感。
- 七、當線圈的直徑越小時,可以有比較好的振盪功率,而圈數越多時,會造成較大的阻抗, 因此電壓增強,電流下降,大約在30圈左右會和振盪器得到比較大的功率(7.81W)。
- 八、導線截面積越粗的漆包線會得到越好的發射功率(10.38W),但粗的線圈在振盪電路中會造成集膚效應,其電流的傳導效果就像中空導線,因此我們選用細漆包線,使集膚效應的影響減弱。
- 九、用多芯的方式直接繞線圈,功率從原本的 4.16W 提升至 10.48W,超越了原本的粗線, 但似乎也受到集膚效應的影響,所以功率也無法提升。
- 十、我們利用小馬達風扇自製纏線馬達,製作了2芯、4芯、6芯、8、及16芯纏繞的麻花 辦線圈,細線都可以由內繞到外再繞到內。當為8芯纏繞時,發射功率可以達到11.78W, 有最好的發射效果。
- 十一、和發射線圈有相同纏繞方式的線圈可以有最好的接收效果,其接收功率從一開始的 1.68W 提升至 2.22W,大約提升了 31%。
- 十二、為了將接收線圈的交流電轉成直流電,我們找到了倍壓式整流電路,讓直流電的上下 差距只有 0.4V 左右。
- 十三、我們使用了 10^1 ~ $10^6\Omega$ 的電阻及 $0.1~\mu F$ ~ $0.47~\mu F$ 範圍內的電容進行測試,最後發現當電阻越大功率越高,使用 $0.3~\mu F$ 的電容時,也使接收功率大大提升至 6.62W,約為一開始(1.68W)的三倍之多。
- 十四、充電模組在距離 50mm 左右仍然可使 LED 燈發亮,顯示其隔空傳輸的效果。
- 十五、我們對 0.1F 的電容進行 5 分鐘的充電後,可讓藍光超亮 LED 發光 25 分鐘之久。

柒、未來展望

本次的研究成功地利用隨處可得的乾電池進行無線充電,不僅可免去攜帶電線的麻煩, 也可以不受空間的限制,若能應用在 3C 產品的充電,一定可更加便利,也讓我們的研究更有 實用的價值。

捌、參考資料

- 一、康軒文教事業(2013)。自然與生活科技第六冊。第二章 電與磁。台北:康軒文教事業。
- 二、康軒文教事業(2013)。自然與生活科技第五冊。第一章 電。台北:康軒文教事業。
- 三、電磁感應 http://zh.wikipedia.org/zh-tw/%E7%94%B5%E7%A3%81%E6%84%9F%E5%BA%94
- 四、集膚效應 http://zh.wikipedia.org/wiki/%E9%9B%BB%E7%A3%81%E6%B3%A2
- 五、LC 電路 http://zh.wikipedia.org/zh-tw/LC%E7%94%B5%E8%B7%AF
- 六、戴明淳(2013),應用於 2.4 GHz 頻段之無線充電系統研究。

【評語】030118

- 1. 十分完整的研究成果,也很切合目前的科技發展。該團隊對自己作品也有充分掌握。建議在傳遞效率上可多加探討。
- 2. 設計內容稍難,如果能深入淺出做說明會更佳。
- 3. 很有應用價值。作者對電子學很有興趣,值得鼓勵。