中華民國第53屆中小學科學展覽會作品說明書

國小組 生活與應用科學科

080804

應用拍翅飛鳥探討影響拍翅飛行因素

學校名稱:新北市私立及人國民小學

作者:

小四 李婕琳

小四 陳玟諭

小四 滕于萱

小四 羅凡菩

小四 茅瑋庭

指導老師:

張政義

黄仲佑

關鍵詞:拍翅飛鳥、飛行

應用拍翅飛鳥探討影響拍翅飛行因素

摘要

我們應用「拍翅飛鳥」探討飛行的特徵、原理以及影響「拍翅飛行」的因素 與變化。經過探討我們發現:一、拍翅飛鳥由翅膀、動力搖桿、身體、尾翼組成, 以橡皮筋為動力驅動連桿,使翅膀拍動,讓軟翅擾動氣流達到上升的目地,但是 無法載重。二、拍翅飛鳥有左彎、直線、右彎、曲折、S、螺旋型等六種飛行路 徑。三、高度、風向與強弱、動力大小、翅膀的夾角、翅膀的大小、尾翼角度會 影響「拍翅飛鳥」飛行的距離。四、「拍翅飛鳥」拍翅飛行時,翅膀會阻擋氣流, 使得氣流流速變慢、壓力變大,不利飛行。我們利用有趣的科學方式,增加科學 知識並應用在生活上,覺得科學研究很有意義。

關 鍵 詞:拍翅飛鳥、飛行

應用拍翅飛鳥探討影響拍翅飛行因素

壹、研究動機

有一次出國旅遊坐在飛機上,旁邊同時有直昇機飛過,覺得「飛」非常奧妙, 總是想了解它的原理。剛好暑假時,我們上製作「拍翅飛鳥」的課,看到它利用 橡皮筋產生動力,而可以在空中展翅飛翔,更覺得神奇。我們開始查詢各項有關 拍翅飛鳥飛行的資料,在研究討論過程中,讓我們覺得科學研究很有趣,希望藉 由這些過程,來探討更多關於「拍翅飛鳥」飛行的變化。

貳、研究目的

- 一、探討「拍翅飛鳥」飛行的特徵及原理。
- 二、了解影響「拍翅飛鳥」飛行的因素與變化。
- 三、利用有趣的科學方式,增加科學知識並應用在生活上。

参、研究問題

- 一、「拍翅飛鳥」的構造怎樣?它有什麼特徵?
- 二、高度不同會影響「拍翅飛鳥」飛行的距離嗎?
- 三、動力大小會影響「拍翅飛鳥」飛行的距離嗎?
- 四、翅膀的夾角會影響「拍翅飛鳥」飛行的距離嗎?
- 五、翅膀的大小會影響「拍翅飛鳥」飛行的距離嗎?
- 六、尾翼的角度會影響「拍翅飛鳥」飛行的距離嗎?
- 七、 铂翅飛鳥 」載重的能力怎樣?

拍翅飛鳥模型

肆、研究設備及器材

鉛筆、橡皮擦、尺、原子筆、立可帶、筆記本、橡皮筋、珍珠板、雙面膠、 木板、A4 白紙、訂書機、透明膠帶、竹籤、鐵絲、剪刀、許多飛行模型 電腦、拍翅飛鳥、隨身碟、印表機、照相機。塑膠袋。

伍、研究過程或方法

一、「拍翅飛鳥」的構造怎樣?它有什麼特徵?

【研究1】

方法:我們觀察拍翅飛鳥的外形,並加以分析。

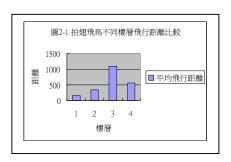
結果:

1. 拍翅飛鳥的構造:

名稱	翅膀	動力搖桿	身體	尾翼
照片				
數量	一組	一組	一隻	一隻
組合圖	側視圖 二	展開圖	完成圖	動力組圖
飛行時翅膀變化與特徵	1. 翅膀後面揚; 4. 翅膀後面落 7. 翅膀漸漸上	下。 5. 翅形		翅膀後面揚起。 翅膀漸漸落下。 9. 翅膀向上。

- 2. 拍翅飛鳥的組合步驟
- (1) 將竹製鳥身緊緊的分別放入前面及尾部的塑膠凹槽,固定鳥身。
- (2) 拿起前端連桿組的套子,再分別將連桿勾住左邊及右邊的翅膀,組合前端 連桿組。
- (3) 在竹製鳥身下,套上三條橡皮筋,完成拍翅飛鳥的組合。
- 3. 拍翅飛鳥的飛行原理
- (1) 利用橡皮筋之旋轉力為動力來源。
- (2) 驅動軸承帶動連桿,使翅膀拍動,讓軟翅擾動氣流達到上升的目地。

二、高度不同會影響「拍翅飛鳥」飛行的距離嗎?


【研究2-1】

方法:

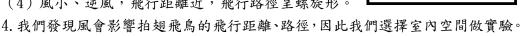
- 1. 我們將拍翅飛鳥❶翅膀保持180度(水平)❷橡皮筋旋轉30圈❸由2-5樓施放。
- 2. 各做五次,觀察紀錄飛行距離、路徑,並加以比較。

表 2-1 拍翅飛鳥不同樓層飛行距離比較

項目	2樓	3 樓	4 樓	5 樓		
樓層高度	472cm	800 cm	1100 cm	1500 cm		
第一次	100 cm	104 cm	810 cm	341 cm		
第二次	180 cm	58 cm	620 cm	330 cm		
第三次	200 cm	850 cm	1840 cm	1030 cm		
平均	160 cm	337 cm	1090 cm	567 cm		

樓層實測

施放拍翅飛鳥


測量距離

觀察長度

結果:

- 1. 我們發現樓層較高,飛的平均距離較遠;樓層較低,飛的平均距離較近。
- 2. 拍翅飛鳥最遠可以飛18公尺左右,飛行距離很遠。
- 3. 拍翅飛鳥的飛行會受風的影響:
- (1) 風大、順風,飛行距離遠,飛行路徑呈螺旋形。
- (2) 風大、逆風,飛行距離近,飛行路徑呈螺旋形。
- (3) 風小、順風,飛行距離近,飛行路徑呈螺旋形。
- (4) 風小、逆風,飛行距離近,飛行路徑呈螺旋形。

【研究2-2】

方法:

- 1. 我們在多功能教室分別以離地●50cm ❷100cm ❸150cm ❹200cm ❺250cm ⑤300cm的高度,將橡皮筋旋轉30圈、拍翅飛鳥翅膀保持180度(水平)施放。
- 2. 各做五次,觀察、紀錄飛行距離、路徑,並加以比較。

表 2-2-1	拍翅飛	:為 50 cr	n 高飛行.	距離、路	径觀察。
次 数4	0.	❷.	€.	4 .	⊖.
飛行距離4	85cm	76 cm	91cm	89 cm	82 cm
飛行路線。		,	" 【	" 【	, [

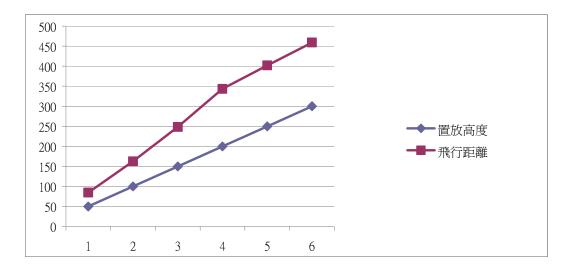
表 2-2-2	拍翅飛	鳥 100 c	cm 高飛行	近離、	格径觀察
次数の	O .:	Q .:	€.	4 .	6
飛行距離。	130cm	160 сп-	163cm	180 cm	180cm
飛行路線:	<u>.</u>	1	*	*	* \

表 2-2-3	拍翅飛	房 150	cm 高飛行	于距離、 和	络径视察
水 数点	0.	Ø,	€.	4 .	€.
教行距離の	220cm-	275cu-	290сия	227cu=	230сп≠
般行路線の	•	* \	• •	* J	•

表 2-2-4	拍翅飛	鸡 200	Cm 高飛行	于距离、5	各径视察:
次 数。	Ó	0	€.	9 .	0
発行距離。	333cm≠	420 cme	343cm≠	332cm≠	288ст-
飛行路線 。	• • • • • • • • • • • • • • • • • • •	.	· •	, T	, T

表 2-2-5	拍翅機	馬 250 (加高飛行	·距離、3	各径觀察
穴 数0	0.	❷.	€.	9 .	⊕.
选行距離 。	415cm	440 cm	370en≈	440cme	345сте
飛行路線 。			٩٧٠	, T	
	,		`	•	٦.

表 2	2-2-6	拍翅根	<u>ந்த</u> 300 க	cm 高飛行	行距離、	略極觀察,
46	900	0.	@	€.	Q .	6.
飛行	正龍の	420cm≥	505cm	460cm	475cm	435cm≥ «
飛行	路線の	•]	1 0		, T	

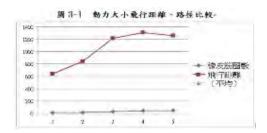

結果:

- 1. 拍翅飛鳥施放高度愈高,拍翅飛鳥飛得愈遠。
- 2. 拍翅飛鳥施放高度愈低,會垂直落到地面,無法飛行。
- 3. 拍翅飛鳥如果固定角度,高度愈高,飛行路徑變化愈大。
- 4. 拍翅飛鳥有左彎型、直線型、右彎型、曲折型、S型、螺旋型等六種不同的飛 行路徑。

表 2-2-7 拍翅飛鳥不同高度飛行距離、路徑比較

	1	1 C)(d))	1 1 1 1 1 3 2 3 1	71 距解 站	12.012			
編號	0	2	6	4	6	6		
	50cm	100 cm	150 cm	200 cm	250 cm	300 cm		
置放高度		A	1		-			
置放方式								
	1. 尾翼緊	貼牆面	2. 手固定的	動力連桿	3. 翼面保持 180 度			
飛行距離 (平均)	84.6 cm	162.6 cm	248.4 cm	343.2 cm	402 cm	459 cm		
飛行路線	J	•			\$			
	左彎型	直線型	右彎型	曲折型	S型	螺旋型		
觀察 測量 紀錄		ete d	A.					
	1. 觀	察	2. 測量		3. 記錄			

圖 2-2-1 拍翅飛鳥不同高度飛行距離比較圖


三、動力大小會影響「拍翅飛鳥」飛行的距離嗎? 【研究3-1】

方法:

- 我們在多功能教室,分別將橡皮筋旋轉
 ●10圈 200圈 300圈 400圈 500圈,在 300cm 的高度,將拍翅飛鳥翅膀保持 180度(水平)施放。
- 2. 各做五次,觀察、紀錄飛行距離、路徑 ,並加以比較。

	表 3-1	動力大小	飛行距離。	路径比較-	
幽 焚	0	0	0	0	0
橡皮筋圈數	10	20	30	40	- 50-
飛行距離 (平均)	640 cm	843, 2cm	1218. 4cm	1307, 3cm	1257. 3cm
飛行路線 (種類)	1	>	1	S	j

結果:

- 1. 橡皮筋扭轉圈數越多,拍翅飛鳥飛行距離越大, 最遠達 13 公尺。
- 2. 飛行路線仍在六種型態之內,橡皮筋扭轉圈數少,容易直接掉落。

【研究3-2】

- 我們分別將橡皮筋旋轉●10圈●20圈●30圈●40圈●50圈,在在戶外大樓2-4樓的高度,將拍翅飛鳥翅膀保持180度(水平)施放。
- 2. 各做三次,觀察、紀錄飛行距離、路徑,並加以比較。

表 3-2-1 室外動力大小飛行距離、路徑比較 (2F)

圈數		10.		20		30.				40	-	50.			
次数	15	2>	3.2	1+	24	3.	15	2-	3≠	1-	2-	3.	16	2	34
飛行距離。 (cm)	593	563	493	499	563	339-	865	338	581	846-	453	628	930	700-	796
平均。	1	549.7	7.4		467-			594, 7	lec T		642.	3.	808.7		
飛行。 方向: ひま経験 → 未方向。	1. 祖 2. 祖 3. 祖	E	ga.	1. 初 2. 初 3. 和		\$61 **	1. 社 2. 社 3. 社	*	- 4 - 4	1. 43 2. 43 3. 43	٨.	**************************************	1. 2. 43 3. 44	1.	en.

表 3-2-2 室外動力大小飛行距離、路徑比較 (3F)

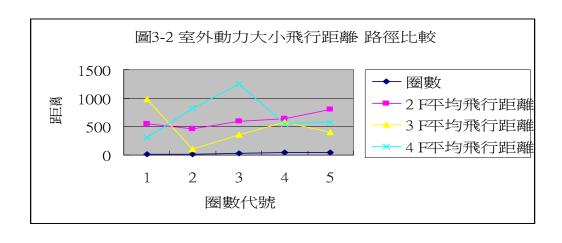

图數。		10.		20.				30		1 1	40		50-		
次數	12	20	3.	14	2.	3/	Te	2	3.	15	2=	3.	1.	2	3-
飛行距離。 (cm)。	1019	700-	1200	290	0.	0-	377	704	0.	871-	390	480	360	481	350
平均。		973		lei i	96. 7-		- 4	360.3		71.3	580. 8	3.	397		
飛行。 方向。 ひも整備。 →未方向。	1. 在 2. 在 3. 在 3. 在 4.	-		1. 往 2. 往 3. 往	1	pe - a Saa,	1. 往 2. 往 3. 往 3. 往		en	1. 在 2. 在 3. 在 1 1	Ψ.	- 4	1. 社 2. 社 3. 社		en La

表 3-2-3 室外動力大小飛行距離、路徑比較 (4F)

图數		10-			20=			30-			40-			50-	
尖数	I.	28	3-	10	2-	3-	1.	2.	3-	10	2-	3	Tz	2.5	3
飛行距離。 (cm)。	200-	336-	406	965=	965-	505	504	1435	1787	760	874	0.	0	0.	0
平均。	ji	314		L	811. 7	7		1242	+	1.5	544. 7	2		582, 5) a
飛行。 方向- O A 編集を	1. 社2. 社3. 社	-	14	1. 社2. 社3. 社		16	1. 和 2. 独 3. 和	1	16	1. 社 2. 祖 3. 和	4	10	2. 裆	L→ L→ L←	**
→ 表为·⑥。	***		-	1 2		100	re:	W.		-	W.	-4	2	D.	- de 10 M

3-2-4 室外動力大小平均飛行距離比較

圏數		10	20	30	40	50
平均	2 F	549.7	467	594. 7	642.3	808.7
飛行距離	3 F	973	96. 7	360.3	580.3	397
(cm)	4 F	314	811.7	1242	544. 7	582. 5

- 1. 我們發現拍翅飛鳥在室外飛行,它的飛行距離、路徑受風的影響很大;3至4 樓飛行時,會多呈螺旋形下降飛行,樓層越高螺旋飛行越多圈。
- 2. 拍翅飛鳥在室外飛行時也有橡皮筋扭轉圈數越多,飛行距離越大的趨勢。
- 3. 橡皮筋扭轉圈數在 30 圈時, 飛行距離最遠, 我們認為和翅膀的拍動快慢有關, 也就是翅膀的拍動太快或太慢, 都飛不遠。

四、翅膀的夾角會影響「拍翅飛鳥」飛行的距離嗎? 【研究4】

- 我們將拍翅飛鳥翅膀分別固定夾角為●80度●100度
 \$120度●140度● 160度●180度● 200度●220度。
- 2. 在300cm高度不用橡皮筋動力,將拍翅飛鳥水平放下。
- 3. 各做五次,觀察、紀錄飛行距離、路徑,並加以比較。

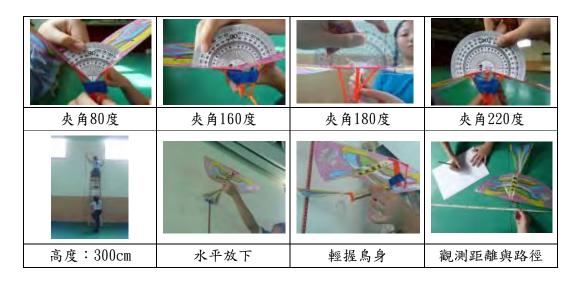
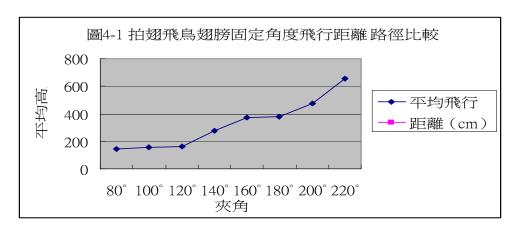



表4-1 拍翅飛鳥翅膀固定角度飛行距離、路徑比較

編	號	0	2	6	4	6	6	0	8
觀察	角度	80°	100°	120°	140°	160°	180°	200°	220°
平均到距離(142.8	153. 6	164.8	275. 4	371. 2	381	475. 4	656.8
飛行	路線	•	•			•			

- 1. 翅膀夾角角度愈大,飛行距離愈遠;夾角角度愈小,飛行距離愈近。
- 2. 翅膀夾角角度愈小,飛行路線變化愈少,都是直直飄落。

五、翅膀的大小會影響「拍翅飛鳥」飛行的距離嗎?

【研究5】

- 2. 組裝六種不同翅膀,以300cm高度、橡皮筋30圈動力,將拍翅飛鳥水平放下。
- 3. 各做五次,觀察、紀錄飛行距離、路徑,並加以比較。

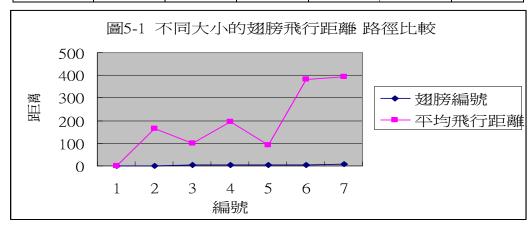
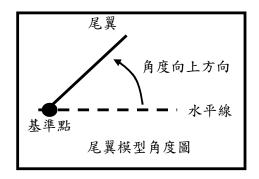



表5-1 不同大小的翅膀飛行距離、路徑比較

編	號	0	2	8	4	6	6
平均距離	飛行 (cm)	165. 6	100	195. 2	90	382. 6	395
	路線 落下)	С	С	0	С	Q	С



- 1. 翅膀越大, 飛的距離越遠。
- 2. 翅膀變小時,飛行距離、路徑不穩定。
- 3. 翅膀改變時,大都以螺旋路徑飛行。

六、尾翼的角度會影響「拍翅飛鳥」飛行的距離嗎?

【研究6】

- 我們用鐵絲、塑膠紙製作尾翼模型, 改變尾翼向上角度❶0度❷30度❸40度
 ◆50度❸60度⑤70度⑥80度❸90度。
- 2. 以300cm高度、橡皮筋30圈動力,將拍 翅飛鳥水平放下。
- 3. 各做三次,觀察、紀錄飛行距離、路徑 ,並加以比較。

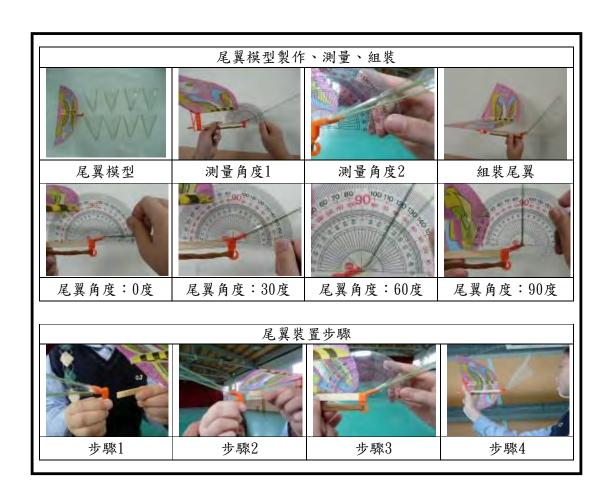


表6-1 改變尾翼的角度飛行距離、路徑比較

編	號	0	0	8	4	6	6	0	8
尾翼角	角度	0度	30 度	40 度	50 度	60 度	70 度	80 度	90 度
平均和 距離(202	194. 3	121.6	130	110.6	88. 6	67	14
飛行路	各線	Q	Q	Q	Q	Q	Э	Э	Q

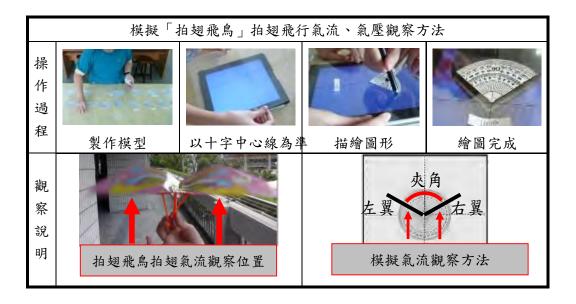
- 1. 尾翼角度越大, 飛行距離越小。
- 2. 尾翼角度改變,大多以螺旋形的路徑飛落。

七、 铂翅飛鳥」載重的能力怎樣?

【研究7】

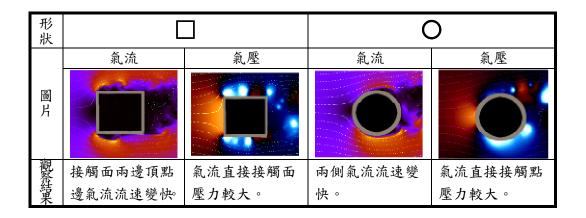
方法:

- 1. 我們將鉛筆橫放在拍翅飛鳥的竹身上,找出重心。
- 2. 畫下重心點後,把杯子穿繩綁在重心點上。
- 3. 由 1 個、2 個、3 個……逐漸在杯子增加螺絲帽。
- 4. 將拍翅飛鳥的橡皮筋分別轉轉 10、20、30、40、50 圈,在 300cm 的高處放下。
- 5. 觀察並記錄拍翅飛鳥飛行的距離、路徑和其他變化。


表 7-1 拍翅飛鳥載重觀察表

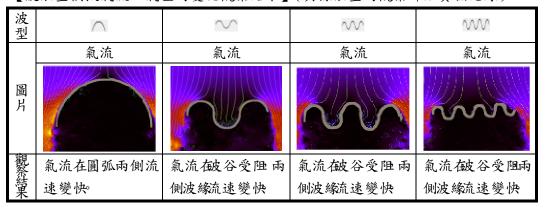
扭轉圈數	10	20	30	40	50
飛行距離 (cm)	0	0	0	0	0
飛行路線	無	無	無	無	無

結果:拍翅飛鳥加螺絲帽的重量後,都飛不起來。


陸、討論

- 一、我們發現:
- (一)拍翅飛鳥在室外飛行,它的飛行距離、路徑受風的影響很大;3至4樓 飛行時,會多呈螺旋形下降飛行,樓層越高螺旋飛行越多圈。
- (二)拍翅飛鳥在室外飛行時,橡皮筋扭轉圈數越多,飛行距離越大的趨勢。
- (三)橡皮筋扭轉圈數在 30 圈時,飛行距離最遠,我們認為和翅膀的拍動快慢 有關,也就是翅膀的拍動太快或太慢,都飛不遠。
- 二、為了進一步了解這些變化的原因,我們做了以下的探討。
- (一) 我們用 WIND TUNNEL 軟體在 ipad 中,模擬觀察「拍翅飛鳥」拍翅飛行時,氣流、氣壓的變化。
- (二) 我們做出●基本型 (△、▽、□、○) ②角度型 (夾角 80 度到 220 度) ❸ 波浪型 (△、◇、、◇◇、◇◇) ④拍翅型四類型模型,分別放置在劃有十字中心線的透明膠片上,再放在 ipad 上,繪出圖形觀察分析。
- (三) 參考研究 6 尾翼向上的角度,繪出圖形觀察分析。

【基本型模擬氣流、氣壓的變化觀察結果】


形狀		Δ	∇		
	氣流	氣壓	氣流	氣壓	
圖片					
觀察結果	氣流在兩側頂點	氣流直接接觸點	接觸面兩邊頂點	氣流直接接觸面	
結果	邊流速變快。	壓力較大。	邊氣流流速變快。	壓力較大。	

【角度型模擬氣流、氣壓的變化觀察結果】(其餘角度的觀察詳如實驗記錄)

角度	80°^	180 ° ^	220 ° ^
	氣流	氣流	氣流
圖片	0.0.000 mg.		
觀祭結果	氣流在兩側 灩 流速變快		氣流在兩側 黲 流速變快

【波浪型模擬氣流、氣壓的變化觀察結果】(其餘浪型的觀察詳如實驗記錄)

【拍翅型模擬氣流、氣壓的變化觀察結果】

拍翅方向				
	向上	拍翅	向下	拍翅
	氣流	氣壓	氣流	氣壓
圖片				
觀察結	氣流碰到翅膀末端	氣流碰到翅膀末端	氣流碰到翅膀末端	氣流碰到翅膀末端
無結果	時,速度變快。	時,壓力變小。	時,速度變快。	時,壓力變小。

(四)經過探討之結果分析,我們發現:

- 1. 氣流流速、壓力會受形狀影響;流速快、壓力小,流速慢、壓力大。
- 2. 氣流受到物體阻擋時,流速變慢、壓力變大。
- 3.「拍翅飛鳥」拍翅飛行時,翅膀會阻擋氣流,使得氣流流速變慢、壓力變大,不利飛行。
- 4.「拍翅飛鳥」拍翅飛行時,剛開始橡皮筋的動力,比氣流壓力大,容易振 翅飛行;當橡皮筋的動力減弱時,氣流壓力大,影響飛行。

三、我們分析拍翅飛鳥跟一般的鳥的差別,如下:

拍翅飛鳥	一般的鳥
非生物是人工製造而成	是生物不是人工製造而成
翅膀是用塑膠做成的軟翼	翅膀有豐厚的羽毛
翅膀是一片的	翅膀有層疊的羽毛
需要人工動力才可以飛	不需要人工動力就可以飛
沒有生活作息需要	有生活作息
需要橡皮筋做為動力	不需要橡皮筋做為動力

柒、結論

- 一、「拍翅飛鳥」的構造、特徵、飛行原理:
- (一)拍翅飛鳥由翅膀、動力搖桿、身體、尾翼所組成。
- (二)拍翅飛鳥利用橡皮筋之旋轉力為動力來源。
- (三)旋轉橡皮筋可以驅動軸承帶動連桿,使翅膀拍動,讓軟翅擾動氣流達到上 升的目地。
- 二、高度、風向與強弱會影響「拍翅飛鳥」飛行的距離。
- (一)拍翅飛鳥在較高的地方,飛的距離較遠;較低的地方,飛的平均距離較近。
- (二)拍翅飛鳥最遠可以飛18公尺左右,飛行距離很遠。
- (三)拍翅飛鳥的飛行會受風的影響:
 - 1. 風大、順風,飛行距離遠,飛行路徑呈螺旋形。
 - 2. 風大、逆風,飛行距離近,飛行路徑呈螺旋形。
 - 3. 風小、順風,飛行距離近,飛行路徑呈螺旋形。
 - 4. 風小、逆風,飛行距離近,飛行路徑呈螺旋形。
- (四)拍翅飛鳥有左彎型、直線型、右彎型、曲折型、S型、螺旋型等六種不同 的飛行路徑。

三、動力大小會影響「拍翅飛鳥」飛行的距離:橡皮筋扭轉圈數越多,拍翅飛鳥 飛行距離越大。

四、翅膀的夾角會影響「拍翅飛鳥」飛行的距離。

- (一)拍翅飛鳥如果固定角度為180度,高度愈高,飛行路徑變化愈大。
- (二) 翅膀夾角角度愈大,飛行距離愈遠;夾角角度愈小,飛行距離愈近。
- (三) 翅膀夾角角度愈小,飛行路線變化愈少,會直直飄落。

五、翅膀的大小會影響「拍翅飛鳥」飛行的距離。

- (一) 翅膀越大, 飛的距離越遠; 翅膀越小, 飛行距離、路徑不穩定。
- (二) 翅膀改變時,大都以螺旋路徑飛行。

六、尾翼的角度會影響「拍翅飛鳥」飛行的距離。

- (一) 尾翼向上角度越大, 飛行距離越小。
- (二) 尾翼角度改變,多會以螺旋形的路徑飛落。

七、铂翅飛鳥」無法載重。

捌、參考資料

- 1.名堂創意生活館:拍翅飛鳥。 http://www.pcstore.com.tw/mingtong/M08210104.htm
- 2.關渡自然科學博物館(2013)。到關渡自然科學博物館去參觀鳥類翩翩飛起 的姿態 http://museum.moc.gov.tw/frontsite/museum/ museumListAction.do? method=doMuseumDetail&museumId=131
- 3. 簡介白努力: http://www.ling.fju.edu.tw/phonetic/Bernoulli.htm

【評語】080804

研究主題從探討玩具原理出發,學生發揮合作探究精神,測試 各種不同條件下產生的效果,運用適當的科學方法研究生活中感興 趣的問題,可先訂出測試最佳化的目標,嘗試更多的變因,增加研 究題材的豐富度和應用性。