中華民國第53屆中小學科學展覽會作品說明書

國小組 生活與應用科學科

第三名

080801

綠色寶笛

學校名稱:新北市蘆洲區仁愛國民小學

作者:

小六 楊庭堯

小六 洪巧蓁

小六 張景瀚

小六 陳宥豪

小六 葉佳昀

指導老師:

陳秀蕙

張霙秀

關鍵詞:寶特瓶、頻率、面積

綠色寶笛

摘要

實驗發現,寶特瓶的開孔總面積越大,聲音越高,與陶笛發聲原理相似。我們自製各開孔工具,仿照直笛指法在瓶上開孔,找出頻率(X)與總開孔面積(Y)的公式:

- (1)標示 600 ml 透明寶特瓶開孔公式: $y = 0.00005x^2 0.0174x + 3.3838$
- (2)標示 580 ml 霧面寶特瓶開孔公式: $y = 0.000142x^2 0.0627x + 9$
- (3)標示 2000 ml 透明寶特瓶開孔公式: $y = 0.00004x^2 + 0.0131x 2.3964$

公式適用範圍:

- (1)寶特瓶正立或倒立皆可,指孔需打在氣孔下方,瓶蓋開口需在氣孔上方。
- (2)波爾公式適用 330 ml~700 ml(準確到 So)的透明寶特瓶。
- (3)波爾公式適用音域從 4C~5E。

我們向同學收集寶特瓶,套用公式精準開孔,容量、材質、形狀不同,也可做出音程相同的寶特瓶笛,同學拿到都能馬上拿來吹奏曲子,成功地讓回收桶裡的寶特瓶變身為可演奏樂曲的綠色寶笛!

研究動機

自然課有個單元要我們自製樂器,我們這組用鐵釘將寶特瓶打了幾個洞,吹出幾個不同的音,但沒辦法吹出曲子。老師建議我們打不同大小的洞試試看,看能不能做出可以吹奏樂曲的樂器,於是開始向班上同學收集寶特瓶,開始寶特瓶笛的研究。

研究目的

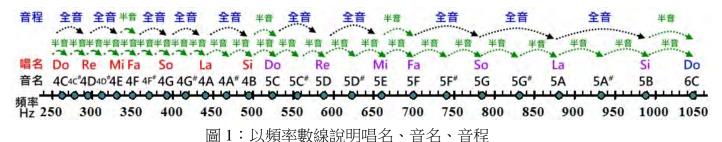
- 一、探討吸管及開孔對寶特瓶笛發音的頻率有什麼影響?
- 二、探討寶特瓶笛開孔面積與音高的關係
- 三、 所有的寶特瓶都可以做成寶特瓶笛嗎?

研究設備及器材

寶特瓶、筆電、調音軟體 AP Tuner 3.07、分貝計、吸管、膠帶、美工刀、剪刀、鐵 絲、酒精燈、尖嘴鉗、鑽子、電子秤、燒杯、量筒、滴管、直笛、乖乖積木。

研究過程或方法

參考資料分析 名詞解釋 【影響寶特瓶笛聲音的因素】 吸管口徑、角度、開口形狀 吹奏力量、氣孔大小 指孔數量、位置、間距 【找出開孔面積與頻率的關係】 600 ml 透明寶特瓶 580 ml 霧面寶特瓶 2000 ml 透明寶特瓶


做出各種 寶特瓶笛

參考資料分析

- 1.「陶笛 D.I.Y.---創意空罐笛」教學活動設計中,用吸管來吹打洞的寶特瓶,能發出聲音,但無法吹奏樂曲。
- 2. 自然課「聲音與樂器」學到:容量大聲音低,重量大聲音低,空氣柱長聲音低,反之聲音變高;用力演奏,聲音會變大。

名詞解釋

- 1. 唱名與音名:
 - (1) 以**圖 1** 來說明,「唱名」**Do**、Re、Mi、Fa、So、La、Si、**Do**,相對應的「音名」是 C、D、E、F、G、A、B、C,第 2 個 Do 比第 1 個 Do 聲音高,假如第 1 個 Do 叫 **4C**(頻率 261.63Hz),第 2 個 Do 就叫 **5C**(頻率 523.25Hz),5C 的頻率是 4C 的 2 倍;4C 一般稱為中音 Do,5C 稱為高音 Do,所以 3C 稱為低音 Do。
 - (2) 從圖1可以看出,聲音越高,音與音的頻率差距越大。

2. 音高:

以**圖 2** 來說明,調音軟體顯示的 4C+20 的+20 意思是聲音比 4C 高了從 4C(261.63 Hz) ~ 4C#(277.18 Hz) 的 20%,頻率為 264.74 Hz(算式 1);而 4C-20 的頻率比 4C 低了從 3B(246.94 Hz)~4C(261.63 Hz)的 20%,頻率為 258.69 Hz(算式 2);當聲音的頻率比 4C 高過「4C#-4C」的 50%時,調音軟體的顯示會從 4C+X 變成為 4C#-X, $X \le 50$,例如 4C#-45;當音高在 ± 49.9 内,都算在標準音高的範圍內,以 4C 為例, $4C\pm 49.9$,音高仍判定為 4C,4C 的標準頻率為 261.63 Hz,所以頻率範圍在 254.28(4C+49.9)~269.40 (4C-49.9)之間,都算 4C。

(1)算式 1:4C+20=4C+(4C#-4C)×20%=261.63+(277.18-261.63)×20%=264.74

(2)算式 2:4C-20=4C-(4C-3B)×20%=261.63-(261.63-246.94)×20%=258.69

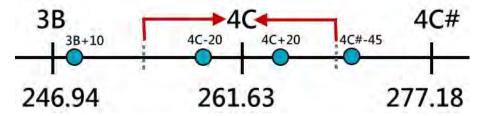


圖 2:調音軟體數據說明

3. 音程:

看**圖 3**,4C→4C#為半音,4C#→4D 為半音,4C→4D 相隔 2 個半音為全音,以 C 大 調為例,4C~5C 的音程為「全音→全音→全音→全音→全音→全音→全音→半音」,若以 4D 當做 Do,當音程與 C 大調相同時,標準音高為「4D→4E→4F#→4G→4A→4B→5C#→5D」,聲音聽起來會是 Do、Re、Mi、Fa、So、La、Si、Do;所以不論對應的標準音高是不是 4C~5C,只要音程與 C 大調相同,都能吹出 Do~Do。

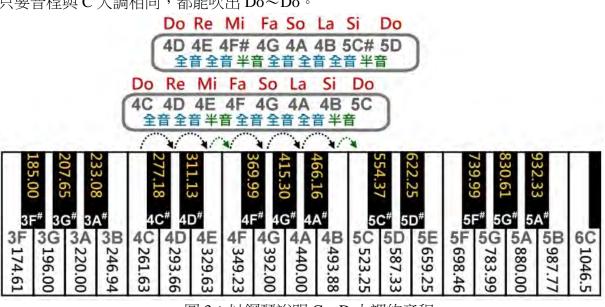


圖 3:以鋼琴說明 C、D 大調的音程

4. 數據:實驗後各表中的數據,是由 4~5 位同學各吹奏 3 次,記錄後再平均呈現的。

一、探討吸管及開孔對寶特瓶笛聲音有什麼影響?

實驗 1-1▶ 如何用吸管吹出聲音?

1. 方法:用吸管來吹寶特瓶氣孔,改變吸管角度,觀察對聲音有何影響。

2. 結果:

表 1-1-1: 吸管以不同角度吹氣孔的音高變化

吸管角度	同學 A	同學 B	同學 C	同學 D
60°	吹不出聲音	吹不出聲音	吹不出聲音	吹不出聲音
45°	吹不出聲音	吹不出聲音	吹不出聲音	吹不出聲音
30°	吹不出聲音	吹不出聲音	吹不出聲音	吹不出聲音
15°	4C+31	4C+30	4C+15	4C+25
接近 0°	4C+20	4C+19	4C+25	4C+15

3. 實驗討論:

- (1) 吸管角度低於 15 度,才能吹出聲音,角度越低越好吹。
- (2) 吸管角度對音高影響不明顯。

實驗 1-2▶ 吸管口徑大小對聲音的影響

1. 方法:用不同粗細的吸管吹寶特瓶氣孔,將結果記錄後平均,觀察對聲音的影響。

2. 結果:

表 1-2-1:以不同口徑吸管吹氣孔的音高變化

吸管口徑	音高	頻率(Hz)	響度(dB)
1.2 公分		吹不出聲音	
1.2 公分(一半貼膠帶)	4C-18	258.83	77.9
0.6 公分	4C+19	264.58	81.4
0.5 公分	4C+27	265.83	80.7

3. 討論:

- (1)1.2 公分的口徑太大,吹出的氣不集中,不容易吹出聲音。
- (2)根據我們吹的感覺, 0.6 公分的吸管比 0.5 公分的容易吹出聲音。

實驗 1-3 ▶吸管開口的形狀對聲音的影響

1. 方法: 將口徑 0.6 公分的吸管,剪成不同的開口來吹氣孔,接著壓扁後再吹,觀察對聲音的影響。

2. 實驗結果:

表 1-3-1:不同開口形狀的吸管吹氣孔的音高變化

吸管開口形狀	有沒有壓扁	音高	頻率(Hz)	響度(分貝)
平口	正常	4C+25	265.52	79.5
尖口 60 度	正常	4C+47	268.94	81.7
尖口 30 度	正常	4C+26	265.67	80.2
平口	壓扁	4C+10	263.19	82.1
尖口 60 度	壓扁	4C+22	265.05	82.6
尖口 30 度	壓扁	4C+25	265.52	78.6

3. 實驗討論:

- (1) 吸管開口形狀對音高及音量沒有明顯影響。
- (2) 我們覺得壓扁的吸管吹出的氣較集中,尖口 60 度的吸管比較容易控制吹氣的方向,所以接下來會將尖口 60 度的吸管壓扁來吹寶特瓶。

實驗 1-4 ▶ 吹奏的力量對聲音的影響

1. 方法:

- (1)音樂老師示範吹直笛時,響度約在80分貝(dB)左右,這樣吹的力量叫。正常」。
- (2)音樂老師用力吹時,發出較尖銳的聲音,此時響度約在 90 分貝(dB)以上,這樣吹的力量叫「用力」。
- (3)以2種不同的力氣吹直笛及陶笛,觀察對音高的影響。

表 1-4-1: 不同力量吹直笛後的頻率記錄表

	八								
唱名		正常吹		用力吹					
恒位	音高	頻率(Hz)	響度(dB)	音高	頻率(Hz)	響度(dB)			
Do	5C-06	521.38	82.3	6C+18	1056.26	91.8			
Re	5D-03	586.28	78.6	6D+07	1179.59	93.6			
Mi	5E-08	656.29	79.3	6E+12	1327.91	96.3			
Fa	5F+06	700.95	79.4	6F+22	1415.18	95.9			
So	5G-06	781.19	81.9	6G+40	1605.28	99.9			
La	5A-08	875.81	84.9	6A+21	1781.99	99.6			
Si	5B-04	985.42	86.5	7C-40	2043.20	96.8			

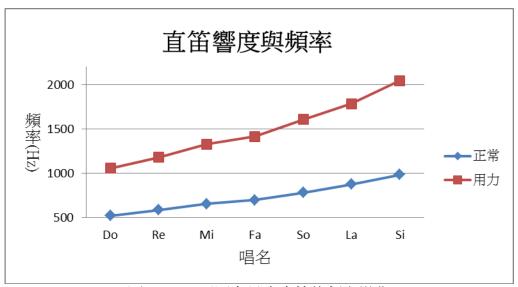


圖 1-4-1: 不同力量吹直笛的頻率變化

表 1-4-2:不同力量吹陶笛後的頻率記錄表

		正常吹	<u> </u>	用力吹			
唱名	音高	頻率(Hz)	響度(dB)	音高	頻率(Hz)	響度(dB)	
Do	5C+47	537.9	83.2	5E+20	667.09	92.5	
Re	5D#-23	613.7	79.1	5F+06	700.95	92.9	
Mi	5E+03	660.4	78.9	5G-22	773.73	95.3	
Fa	5F#-36	724.2	80.1	5G#-35	813.32	94.8	
So	5G+40	802.6	82.9	5A-43	857.50	98.7	
La	5A+10	885.2	84.9	5A#+05	935.10	98.6	
Si	5B+30	1005.4	86.5	6C+22	1058.42	97.8	
Do	6C-14	1038.9	86.7	6C#+18	1114.02	98.8	
Re	6D-35	1150.3	87.2	6D#-13	1234.88	99.6	
Mi	6D#+18	1257.8	87.9	6F+06	1401.89	100.2	

圖 1-4-2: 不同力量吹陶笛的頻率變化

- (1) 「用力」吹直笛,響度變大,每個音的都比「正常」吹高八度,像 6C 比 5C 高八度,6C 的頻率是 5C 的 2 倍。
- (2) 用力吹陶笛,響度變大,每個音的都比正常吹高,增加的音高在1個「半音」到2個全音之間,比直笛增加得少。
- (3) 我們用「正常」吹直笛或陶笛的力量(響度80分貝左右)來吹寶特瓶比較恰當。

實驗 1-5 ▶ 氣孔大小對聲音的影響

1. 方法:改變氣孔大小,觀察氣孔面積對聲音有何影響。

表 1-5-1: 氯孔面積與音高記錄表

	1-J-1 · 亲自自由的		
氣孔尺寸 cm×cm (寬×長)	氣孔面積 (cm ²⁾	音高	頻率 (Hz)
1×1.5	1.5	3A#+45	239.32
1×1.6	1.6	3B-30	242.53
1×1.7	1.7	3B-17	244.44
1×1.8	1.8	3B+06	247.82
1×1.9	1.9	3B+28	251.05
1×2.0	2.0	3B+46	253.70
1×2.1	2.1	4C-42	255.10
1×2.2	2.2	4C-20	258.52
1×2.3	2.3	4C-05	260.85
1×2.4	2.4	4C+23	265.21
1×2.5	2.5	4C+40	267.85
1×2.6	2.6	4C#-35	271.41
1×2.7	2.7	4C#-10	275.53
1×2.8	2.8	吹不	出聲音

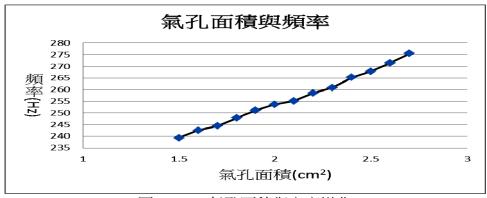


圖 1-5-1: 氣孔面積與音高變化

- (1) 氣孔面積越大,聲音越高;氣孔太長時,不易吹出聲音。
- (2) 波爾寶特瓶的氣孔面積在 2.1~2.5 cm² 時,都能吹出 4C 的音高,4C 對應的唱名是 Do,假如能繼續找出 Re(4D)、Mi(4E)...等標準音,就能做出可演奏的樂器。
- (3) 氣孔面積在 2.3 cm^2 時,頻率最接近 4C(261.63 Hz),假如改成同面積不同形狀的氣孔,對聲音會有什麼影響呢?

實驗 1-6 ▶ 氣孔形狀對聲音的影響

1. 方法:改變氣孔形狀,觀察對聲音有何影響。

2. 結果:

表 1-6-1:面積相近、形狀不同的氣孔與音高

矩形氣孔				正方形氣孔				圓形氣孔			
寬×長	面積	立古	頻率	邊長	面積	音高	頻率	直徑	面積	音高	頻率
(cm×cm)	(cm ²)	音高	(Hz)	(cm)	(cm ²)	百百	(Hz)	(cm)	(cm ²)	日同	(Hz)
1× 2.1	2.1	4C-42	255.10	1.45	2.1	4C-38	255.72	1.65	2.14	4C-15	259.30
1×2.3	2.3	4C+7	262.72	1.5	2.25	4C-10	260.08	1.7	2.27	4C+09	263.03
1×2.5	2.5	4C+40	267.85	1.6	2.56	4C#-44	269.93	1.8	2.54	4C+45	268.63

3. 討論:

- (1) 氣孔面積相近時,雖然形狀不同,但吹出的音高相近。
- (2) 矩形的氣孔較長,較難吹出聲音;矩形和正方形的氣孔有角,容易因為吹到 直角就發不出聲音;圓形氣孔只要能吹到圓周,都能吹出聲音,比矩形和正 方形好吹。
- (3) 圓形氣孔中,直徑 1.7 cm 吹出的聲音最接近 4C(261.63 Hz),所以接下來的 氣孔都打成直徑 1.7 cm 的圓形。

實驗 1-7 ▶ 指孔數量對聲音的影響

1. 方法:

- (1) 在氣孔下方打直徑 1 cm 的指孔,試吹後記錄音高;再依垂直方向往下增加 1 個指孔,試吹後,繼續往下增加指孔,觀察對聲音的影響。
- (2) 取另一個相同的寶特瓶,在氣孔下方垂直距離 3 cm 的地方,打直徑 1 cm 的 指孔,試吹後記錄音高;再依水平方向增加 1 個指孔,試吹後,繼續往水平 方向增加指孔,觀察對聲音的影響。

表 1-7-1: 指孔數量與音高

	次 * / * 1110至 / 11回									
	垂直				水平					
指孔 數量	音高	頻率 (Hz)	備註	指孔 數量	音高	頻率 (Hz)	指孔 數量	音高	頻率 (Hz)	
1	4D#+16	314.09		1	4D#+12	313.35	8	5D+20	594.31	
2	4F+10	351.30		2	4F+06	350.48	9	5D#-30	611.77	
3	4G#+40	425.18		3	4G+42	401.79	10	5D#+12	626.69	
4	4G#+26	421.72		4	4G#-02	414.83	11	5D#+32	634.09	
5	4A#+5	467.54	不易吹出聲音	5	4A#-06	464.59	12	5D#+40	637.05	
6	5C#+7	556.67	不易吹出聲音	6	5C+42	536.32	13	5E+02	660.03	
7	7 吹不出聲音			7	5C#-12	550.64	14	5E+04	660.82	

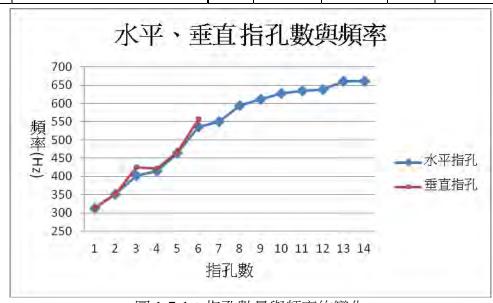


圖 1-7-1: 指孔數量與頻率的變化

- (1) 水平或垂直的指孔數量越多,開孔總面積越大,聲音越高。
- (2) 水平與垂直的指孔數相同時,開孔總面積也相同,能吹出相近的音高,但垂直的音都比水平略高一些。
- (3) 除了氣孔外,垂直的指孔數 5個(含)以上時,非常不容易吹出聲音。
- (4) 水平的指孔數開到 14 個時(無法再增加),仍能吹出聲音;水平的指孔都在 同一個高度,聲音卻能隨著孔數增加而變高,所以振動空氣柱的長短不是影 響寶特瓶笛音高的因素,開孔總面積才是影響音高的因素,這點和直笛的發 聲原理不同。
- (5) 水平開孔容易吹出聲音,但與手指指法方向不合,我們想用類似直笛的指法,以垂直方向排列指孔。

實驗 1-8 ▶ 指孔位置及間距對聲音的影響

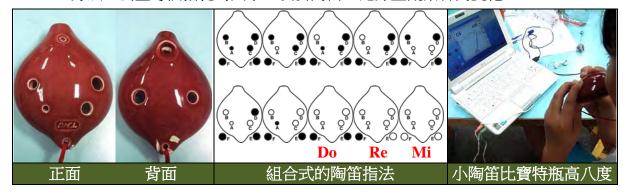
1. 方法:

- (1) 在第 1 個寶特瓶的氣孔下方垂直間距 1 cm 的地方,打 1 個直徑 1 cm 的指孔, 試吹後記錄;在第 2~5 個寶特瓶的氣孔下方垂直間距 3、5、7、9 cm 的地方, 打 1 個直徑 1 cm 的指孔,試吹後記錄,觀察對聲音的影響。
- (2) 拿另一個寶特瓶,在氣孔下方垂直間距1 cm 的地方,打1個直徑1 cm 的指孔,垂直間距2 cm 的地方,再打1個直徑1 cm 的指孔,試吹後記錄;另拿3個寶特瓶,以間距4、6、8 cm 打指孔,觀察對聲音有何的影響。

2. 結果:

表 1-8-1: 指孔位置與音高

	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7									
垂直指孔	音高	頻率(Hz)	垂直間距 (cm)	音高	頻率(Hz)					
指孔 1	4D#-45	302.81	2	4F+10	351.31					
指孔 2	4D#-06	310.02	4	4F+14	352.14					
指孔 3	4D#+10	312.98	6	4F+19	353.17					
指孔 4	4D#+16	314.09	8	4F+38	357.12					
指孔 5	4D#+30	316.68								


3. 討論:

- (1) 指孔的位置越低,頻率稍高一些,但音高都在 4D#±45 以內。
- (2) 指孔的間距越大,頻率稍高一些,原因可能和討論(1)一樣,因為第2個指孔的位置變低,才使頻率稍微升高,但音高都在4F±38以內。
- (3) 吹出的音高在±49.9 範圍內,都算準確,所以用寶特瓶來製作笛子時,洞的 位置及間距對音準的影響不大。

二、 探討寶特瓶笛開孔面積與音高的關係

實驗 2-1 ▶ 陶笛開孔面積與音高的關係

1. 方法:測量每個指孔的大小,吹奏陶笛,記錄並觀察音高變化。

2. 結果:

表 2-1-1: 陶笛開孔面積與頻率

吹口	唱	TF- /-F-	* -	頻率	總開孔面積	新增開孔面積
正面	名	指法	音高	(Hz)	(cm^2)	(cm ²)
4孔面積	Do	全按	5C+47	537.9	0	0
B0.31 D0.64	Re	放掉 A	5D#-23	613.7	0.0079	0.0079
A0.10 C0.44	Mi	放掉 B	5E+3	660.4	0.0755	0.0676
	Fa	放掉 A+B	5F#-36	724.2	0.0833	0.0079
\sim	So	放掉 A+C	5G+40	802.6	0.1599	0.0766
氣孔	La	放掉 A+B+C	5A+10	885.2	0.2354	0.0755
背面	Si	放掉 B+C+D	5B+30	1005.4	0.3937	0.1583
2孔面積	Do	放掉 A+B+C+D	6C-14	1038.9	0.4016	0.0079
F0.50 E0.50	Re	放掉 A+B+C+D+E	6D-35	1150.3	0.5979	0.1963
	Mi	放掉 A+B+C+D+E+F	6D#+18	1257.8	0.7943	0.1963

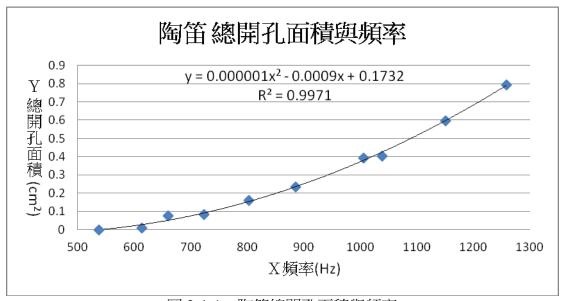


圖 2-1-1: 陶笛總開孔面積與頻率

3. 討論:

- (1) 調音軟體測試後,5C 陶笛吹出的音高,並非標準音高,但仍能拿來吹奏樂曲,這是因為音程變化相同(參考名詞解釋 3)。
- (2) 陶笛的總開孔面積越大,聲音越高,和實驗 1-7 寶特瓶笛的發聲原理相似;圖 2-1-1 是利用 EXCEL 找出散布圖的趨勢線及公式,陶笛總開孔面積(Y)與頻率(X)的關係為 $y=0.000001x^2-0.0009x+0.1732$,發聲原理相似的寶特瓶笛也能找到類似的公式嗎?
- (3) 上升半音時(例如 Si~Do),增加的面積比較小;上升全音時(例如 La~Si),增加的面積比較大;音高更高,增加的面積更大,是因為音與音的頻率差距變大(參考名詞解釋 1-(2))。
- (4) 陶笛的指法太複雜,我們希望做出讓同學一拿到就會吹奏的寶特瓶笛,所以 決定仿照直笛的指法來打指孔。

實驗 2-2 ▶ 波爾寶特瓶開孔面積與頻率的關係

1. 方法:

- (1) 依實驗 1-6,在寶特瓶打直徑 1.7 cm 的氣孔,加瓶蓋,吹出 4C(Do)後,仿直笛指法,在氣孔下方依序打指孔,找出音高 4D~5C(Re~Do)的指孔面積。
- (2) 5 位同學各做一個寶特瓶笛,將 5 個寶特瓶的指孔面積平均後,製成圖表。

2. 結果:

表 2-2-1:波爾寶特瓶開孔面積與頻率

音名	開孔情形	音高	頻率 (Hz)	新增氣孔/指孔 直徑(cm)	增加的面積 (cm²)	總開孔面積 (cm²)
Do	Co	4C+0.1	261.63	1.7	2.27	2.27
Re		4D+9.9	295.39	0.65	0.33	2.60
Mi		4E+3.3	330.28	0.7	0.38	2.99
Fa		4F+3.2	349.89	0.6	0.28	3.27
So		4G+7.4	393.72	1.1	0.95	4.22
La		4A+3.7	440.97	1.2	1.13	5.35
Si		4B+20	499.75	1.6	2.01	7.36
Do		5C+20	529.47	0.8	0.50	7.86

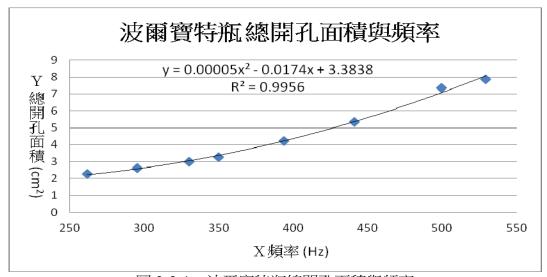


圖 2-2-1:波爾寶特瓶總開孔面積與頻率

- (1) 寶特瓶笛的總開孔面積越大,吹出的聲音越高。
- (2) 總開孔面積(Y)與頻率(X)的關係,為 $y = 0.00005x^2 0.0174x + 3.3838$,R²值高達 0.9956,相當符合實驗數值分布情形。
- (3) 指孔直徑超過 1.2 cm 時,只有拇指能將指孔完全按住,像表 2-2-1 吹奏波爾 寶特瓶指孔直徑 1.6 cm(Si)時,我們 2 人一起合作按孔才能測試。所以除了 拇指按孔,其他指孔超過 1.2 cm 時,會分成兩孔來打洞(1 孔面積=2 孔面積和)。
- (4) 按照公式計算出來的指孔直徑來打洞,是否能做出標準音高的寶特瓶笛?

實驗 2-3 ▶公式寶特瓶笛開孔面積與頻率的關係

1. 方法:

(1) 按照實驗 2-2 的公式,計算開孔直徑,在波爾寶特瓶上依序打洞,加瓶蓋, 記錄吹奏結果。

2. 結果:

表 2-3-1:波爾寶特瓶公式的開孔面積與頻率

			用波爾	耐公式計算出的	孔徑	微調後	測試結果	
唱 名	音名	頻率 X (Hz)	總開孔面積 Y (cm²)	新增 氣孔/指孔 面積(cm²)	新增 氣孔/指孔 直徑(cm)	新增 氣孔/指孔 直徑(cm)	音高	頻率 (Hz)
Do	4C	261.63	2.25	2.25	1.69	1.7	4C+18	264.43
Re	4D	293.66	2.59	0.33	0.65	0.65	4D+16	296.46
Mi	4E	329.63	3.08	0.50	0.79	0.8	4E+09	331.39
Fa	4F	349.23	3.41	0.32	0.64	0.65	4F+13	351.93
So	4G	392.00	4.25	0.84	1.03	1.05	4G+17	279.98
La	4A	440.00	5.41	1.16	1.22	1.2	4A+06	278.17
Si	4B	493.88	6.99	1.58	1.42	1.0+1.0	4B+10	496.82
Do	5C	523.25	7.97	0.98	1.12	1.1	5C+12	526.98

3. 討論:

- (1) 我們肉眼可見的最小尺規為 0.05 cm,公式的指孔直徑會經過微調再實際打出指孔,像 1.69 cm 改成 1.70 cm, 0.64 cm 改成 0.65 cm,這樣仍能吹出在標準音高的範圍內的頻率(參考名詞解釋 2)。
- (2) 經過測試確定,波爾寶特瓶笛的總開孔面積(Y)與頻率(X)的關係,可依公式

- $y = 0.00005x^2 0.0174x + 3.3838$ 來計算,製作出 $4C\sim5C$ 的標準音高寶特瓶笛,比實驗 2-1 陶笛的音還標準!
- (3) 我們拿 30 個相同的波爾寶特瓶笛給同學吹,由於指法仿照直笛,他們馬上就能吹奏出樂曲,我們終於成功的把寶特瓶做成樂器了!
- (4) 類似大小的寶特瓶也能依公式來製作嗎?

三、 所有的寶特瓶都可以做成寶特瓶笛嗎?

實驗 3-1 ▶ 寶特瓶的重量、容量對音高的影響

1. 方法:將寶特瓶秤重後,在同一高度打上直徑 **1.7** cm 的氣孔,加瓶蓋,記錄吹奏結果。

表 3-1-1: 不同寶特瓶只打氣孔的頻率

NO	品名	容量	(ml)	重量(g)	音高	頻率	材質
NO	四石	標示	實測	含蓋	目同	(Hz)	彻貝
1	天味米酒	600	629	45.64	4C#+15.8	279.78	透明
2	悅氏青草茶	600	629	43.11	4C-17	259.13	透明
3	可口可樂	600	657	31.00	4D-18.6	290.59	透明
4	黑松沙士	600	636	25.77	4C#-16.3	274.65	透明
5	麥香	600	629	24.77	4C+13.3	263.70	透明
6	多喝水	600	629	24.55	4C+7.3	262.77	透明
7	波爾	600	636	18.46	4C-10	260.16	透明
8	黑松純水	600	629	16.95	4C+2.5	262.02	透明
9	泰山 twist	600	629	15.47	4C-6	260.75	透明
10	大西洋芭樂汁	580	614	36.24	3B+35.8	252.20	霧面
11	御茶園雙茶花	580	614	35.70	3A#+7.8	234.16	霧面
12	黑松茶花綠茶	580	614	30.15	3B+15.8	249.26	霧面
13	富維克礦泉水	500	539	19.35	4D-1.8	293.36	透明

- (1)表 3-1-1中,霧面寶特瓶的頻率都比透明寶特瓶低,所以材質會影響頻率。
- (2) 依**資料分析 2**,樂器重量越重,聲音應該越低。但表 3-1-2,4 種透明寶特瓶的容量材質相同,重量不同,音高卻幾乎相同;還有表 3-1-3,2 種霧面寶特瓶的容量材質相同,重量較重的大西洋芭樂汁音高卻比較高;所以我們認為**寶特瓶笛的重量不會影響音高**(頻率)。

表 3-1-2:容量材質相同的 4 種透明寶特瓶

品名	實測容量(ml)	重量(g)	音高	頻率(Hz)	材質
麥香	629	24.77	4C+13.3	263.7	透明
多喝水	629	24.55	4C+7.3	262.77	透明
黑松純水	629	16.95	4C+2.5	262.02	透明
泰山 twist	629	15.47	4C-6	260.75	透明

表 3-1-3: 容量材質相同的 2 種霧面寶特瓶

品名	實測容量(ml)	重量(g)	音高	頻率(Hz)	材質
大西洋芭樂汁	614	36.24	3B+35.8	252.2	霧面
黑松茶花綠茶	614	30.15	3B+15.8	249.26	霧面

(3) 根據**資料分析 2**,容量越大,聲音越低,反之,聲音越高。表 3-1-4 **的寶特瓶** 容量由大到小,頻率也由低到高,所以**寶特瓶笛的容量會影響音高**。

表 3-1-4:7 種容量由大到小的透明寶特瓶

品名	實測容量(ml)	重量(g)	音高	頻率(Hz)	材質
波爾	636	18.46	4C-10	260.16	透明
麥香	629	24.77	4C+13.3	263.70	透明
多喝水	629	24.55	4C+7.3	262.77	透明
黑松純水	629	16.95	4C+2.5	262.02	透明
泰山 twist	629	15.47	4C-6	260.75	透明
悅氏青草茶	629	43.11	4C-17	259.13	透明
富維克礦泉水	539	19.35	4D-1.8	293.36	透明

- (4) 表 3-1-5, 天味米酒和悅氏青草茶容量、重量、材質相近,但天味米酒高了半音(頻率多 20.65Hz),推測可能是形狀不同(有細長的瓶身)的關係。表 3-1-6,黑松沙士和波爾容量一樣,但聲音高了 14.49 Hz,容量更大的可口可樂,聲音竟比波爾高了 30.43Hz,推測這也和中間變細的 S 型瓶身有關。
- (5) 另外拿台鹽鹼性水(1500ml)和福樂一番鮮奶(1830ml)來測試,發現容量較大 但有細長頸子的福樂一番鮮奶(3F)聲音比台鹽鹼性水(3D#)還高。證明寶特 瓶的形狀會影響音高,有較細形狀的寶特瓶聲音會比較高。

表 3-1-5: 天味米酒和悅氏青草茶

品名	實測容量(ml)	重量(g)	音高	頻率(Hz)	材質	形狀
天味米酒	629	45.64	4C#+15.8	279.78	透明	有細長瓶身
悅氏青草茶	629	43.11	4C-17	259.13	透明	

表 3-1-6: S 型瓶身的寶特瓶

品名	實測容量(ml)	重量(g)	音高	頻率(Hz)	材質	形狀
可口可樂	657	31	4D-18.6	290.59	透明	S型瓶身
黑松沙士	636	25.77	4C#-16.3	274.65	透明	S型瓶身
波爾	636	18.46	4C-10	260.16	透明	

實驗 3-2 ▶ 用波爾寶特瓶笛的公式,能將不同的透明寶特瓶,都做成 4C 寶特瓶笛嗎?

1. 方法:利用波爾寶特瓶笛公式,為不同的透明寶特瓶打氣孔和指孔,加蓋後吹奏,觀察並記錄結果。

表 3-2-1: 容量不同透明寶特瓶與音高

пН	77.	開扎	330 ml	350 ml	350 ml	500 ml		600 ml	700 ml				
唱名	音名	直徑	大西洋	悅氏	加味	可力噢	泰山	黑松	多喝水	統一	悅氏	可口	h-h
乜	4	(cm)	蒸餾水	綠茶	氣泡水	冰河水	twist	純水	多场小	麥香	青草茶	可樂	竹炭水
Do	4C	1.7	4F+32	4E+38	4F#+02	4D#+16	4C+15	4C-20	4C+28	4C+35	4C-16	4D-16	4C+02
Re	4D	0.65	4G+16	4F#+45	4G#-40	4F+02	4D+16	4D-10	4D-22	4D+40	4D+32	4E+12	4D+32
Mi	4E	0.8	4A+42	4G#-05	4A+48	4G-21	4E+22	4E-42	4E-16	4E+46	4E+15	4F#-06	4E+23
Fa	4F	0.65	4A#-02	4A+20	4 A #+38	4G#-16	4F+18	4F-35	4F-45	4F+16	4F+23	4G-08	4F+38
So	4G	1.05	5C+37	4B+10	5C+32	4A#-36	4G+15	4G-45	4G-20	4G-02	4G-29	4A-35	4G+32
La	4A	1.2	5D-23	5C#-32	5D-02	4B+49	4A-10	4A+40	4A-42	4A+12	4A-45	4B-30	4G#+42
Si	4B	1.0+1.0	5D#+32	5D+03	5E-23	5C#+46	4B+17	4B+45	4B-40	4B-42	4B+40	4C#-42	5C#+26
Do	5C	1.1	5F+25	5E-15	5F-12	5D+42	5C+05	5C+20	5C-35	5C-32	5C-28	5D-45	5D-42

表 3-2-2: 容量不同透明寶特瓶與頻率

	1				ТЕП	1 4~~ >43	크 17기원기	1//\			
唱	大西洋	悅氏	加味	可力噢	泰山	黑松	多喝水	統一	悅氏	可口	竹炭水
名	蒸餾水	綠茶	氣泡水	冰河水	twist	純水	沙咽小	麥香	青草茶	可樂	门火小
Do	355.87	337.08	370.43	314.09	263.96	258.52	265.98	267.07	259.14	290.86	261.94
Re	395.73	379.89	405.42	349.65	296.46	291.91	289.82	300.65	299.25	331.98	299.25
Mi	450.99	414.07	452.56	387.11	333.94	321.40	328.45	338.65	332.57	368.67	334.14
Fa	465.61	445.23	476.69	411.35	352.97	341.96	339.89	352.55	354.00	390.14	357.12
So	534.76	496.82	533.21	456.18	395.50	381.52	387.34	391.53	385.24	430.84	399.46
La	579.30	543.82	586.63	508.27	437.38	450.46	429.01	443.14	428.23	485.07	425.67
Si	634.09	588.38	650.23	569.53	498.87	507.10	482.13	481.54	505.63	540.53	562.94
Do	708.84	653.70	693.48	602.00	524.81	529.47	512.36	513.29	514.54	571.62	572.66

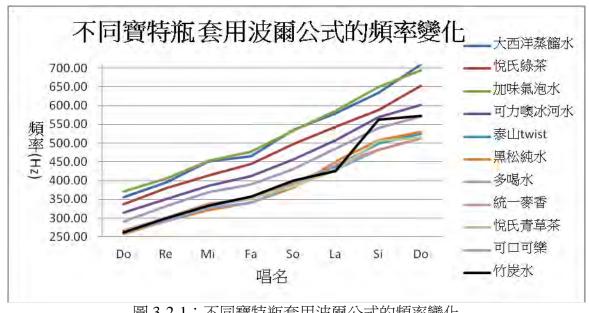


圖 3-2-1:不同寶特瓶套用波爾公式的頻率變化

90

.63

.63

- (1) 由結果看來,材質透明、標示容量 600 ml,形狀相近的寶特瓶,可套用波 爾公式來製作 4C 寶特瓶笛。
- (2) 實驗 3-1 發現,可口可樂因中間較細的 S 型瓶身,聲音變高,套用波爾公式 後,變成聲音較高、音程相同的 4D 大調寶特瓶笛(參考圖 3-2-2)。
- (3) 加味氣泡水和悅氏綠茶都是 350 ml, 整體聲音比悅氏綠茶高,可能是加味氣 **泡水**是易開罐,開口沒瓶蓋可以蓋,增加了開孔面積,讓聲音變高了。我們 將實驗 3-2 的寶特瓶都不加蓋,整體聲音都變高了,但因為音程相同,所以 聽起來仍是 Do~高音 Do,仍能吹奏樂曲。
- (4) 不加蓋但使聲音變高,應該是增加了瓶子開口面積,我們推測開口不在氣孔 **下方,所以聲音音程不受影響**;我們將波爾寶特瓶**倒過來**製作,能吹出標準 4C 音程,打開瓶蓋後,音程改變,無法吹出 Do~高音 Do 的音。所以波爾 寶特瓶公式適用在氣孔下打指孔,瓶蓋開口需在氣孔上方。
- (5) 從表 3-2-1 可知,最小到 330 ml 都能做成音程相同、聲音較高的寶特瓶笛; 從表 3-2-1 及圖 3-2-1 可以看到,700 ml 的竹炭水 Do~So 的音很準,但從 La~ 高音 Do 的音不準。因此波爾寶特瓶公式可適用 330 ml~700 ml(準確到 So) 透明寶特瓶,做成可吹奏樂曲的寶特瓶笛。
- (6) 利用公式算出音更高的開孔面積(如表 3-2-3), 可準確吹出 5D~5E, 5F以上 就不準,所以波爾寶特瓶公式適用音域從 $4C(D_0)\sim 5E(高音 M_i)$ 。受限於手 指不夠按,我們選擇只做 4C~5C 的寶特瓶笛。

表 3-2-3:波爾寶特瓶公式的開孔面積與頻率(5D~5G)

		用波爾公式計算出的孔徑			微調後	測試	結果	
唱 名	音名	頻率X (Hz)	總開孔面積 Y (cm²)	新增 氣孔/指孔 面積(cm²)	新增 氣孔/指孔 直徑(cm)	新增 氣孔/指孔 直徑(cm)	音高	頻率 (Hz)
Re	5D	587.33	10.41	2.44	1.76	1.0+1.0+1.1	5D+05	589.08
Mi	5E	659.25	13.64	3.23	2.03	1.15+1.2+1.2	5E+10	663.17
Fa	5F	698.46	15.62	1.98	1.59	1.05+1.2	5E+35	672.97
So	5G	783.99	20.47	4.85	2.49	1.0+1.0+1.15+1.2+1.2	5F+18	705.94

4E 4F#4G#4A 4B 5C#5D#5E 全音全音半音全音全音全音半音 悅氏綠茶350 寶特瓶 4D 4E 4F# 4G 4A 4B 5C# 5D 可樂600寶特瓶 全音 全音 半音 全音 全音 半音 4C 4D 4E 4F 4G 4A 4B 5C 波爾600寶特瓶 全音 全音 半音 全音 全音 半音 4D# 4G# 5G[†] 5F | 5G 3G 4D 4E 4G 4A 4B 5C 5D 5E 5A 5B 6C 174.61 392. 493 987 246 293 329 523 587. 659 880. 1046.5 261. 349 196 20

圖 3-2-2: 悅氏綠茶及可口可樂的音程變化圖

.99

.0

實驗 3-3 ▶用波爾寶特瓶笛的公式,可以將不同的霧面寶特瓶,都做成 4C 寶特瓶笛嗎?

1. 方法:用波爾公式,為 580 ml 霧面寶特瓶打上氣孔和指孔,加瓶蓋吹奏,觀察音高是否相同。

2. 結果:

表 3-3-1:580 ml 霧面寶特瓶開孔面積與音高

音名	音高	開孔直徑 (cm)	總開孔面積 (cm²)	御茶園雙茶花	大西洋芭樂汁	黑松茶花綠茶
Do	4C	1.65	2.14	3A#+10	3B+46	3B+28
Re	4D	0.75	2.58	3B+30	4C#+32	4C#+26
Mi	4E	0.80	3.08	4C+15	4D+07	4D+11
Fa	4F	0.65	3.41	4D-15	4E-19	4E-17
So	4G	1.00	4.20	4D+20	4E+16	4E+15
La	4A	1.15	5.24	4F-17	4G-24	4G-23
Si	4B	1+0.95	6.73	4F#-8	4G#-12	4G#-6
Do	5C	1.35	8.16	4G+25	4G#+30	4G#+27

3. 討論:

- (1) 由結果看來,波爾公式無法套用在 580 ml 霧面寶特瓶上。
- (2) 580ml 霧面寶特瓶,也有自己的公式嗎?

實驗 3-4 大出霧面寶特瓶笛開孔公式

1. 方法:仿直笛指法,在黑松茶花綠茶(580 ml 霧面寶特瓶)上依序打洞,找出音高 4D~5C(Re~Do)的開孔面積。

表 3-4-1: 黑松茶花綠茶寶特瓶 開孔面積與頻率

音名	指孔位置	開孔直徑 (cm)	增加的面積 (cm²)	總開孔面積 (cm²)	音高	頻率 (Hz)
Do		1.75	2.41	2.41	4C+08	262.87
Re		0.85	0.57	2.99	4D+11	295.58
Mi		0.9	0.64	3.63	4E+05	330.61
Fa		0.65	0.33	3.96	4F-13	346.68
So		1.2+1.25	2.36	6.32	4G+15	395.50
La		1.25+1.25	2.45	8.77	4A-10	437.53

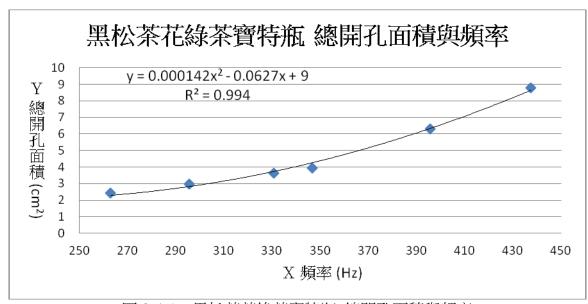


圖 3-4-1: 黑松茶花綠茶寶特瓶 總開孔面積與頻率

- (1) **黑松茶花綠茶**可吹出 4C(Do)到 4A(La),若再增加開孔面積,可以再增加音高,但手指不夠用,所以音域只做 4C~4A 為止。
- (2) 黑松茶花綠茶可用 $y = 0.000142x^2 0.0627x + 9$ 來計算開孔面積, R^2 值 = 0.994,非常符合實驗數值分布情形。

實驗 3-5 ▶用黑松茶花綠茶霧面 580 ml 寶特瓶笛的公式,可以將類似的寶特瓶,都做成4C 寶特瓶笛嗎?

1. 方法:

- (1) 用實驗 3-4 的公式,在黑松茶花綠茶寶特瓶打上氣孔和指孔,觀察音高變化。
- (2) 將公式應用到其他霧面 580 ml 寶特瓶,觀察音高變化。

表 3-5-1: 黑松茶花綠茶公式的開孔面積與頻率

			用黑松茶花絲	象茶公式計算	章出的孔徑	微調後	測試	結果
唱名		總開孔面積 Y (cm²)	新增 氣孔/指孔 面積(cm²)	新增 氣孔/指孔 直徑(cm)	新增 氣孔/指孔 直徑(cm)	音高	頻率 (Hz)	
Do	4C	261.63	2.32	2.32	1.72	1.75	4C+28	265.98
Re	4D	293.66	2.83	0.52	0.81	0.8	4D+09	295.23
Mi	4E	329.63	3.76	0.93	1.09	1.1	4E+11	331.79
Fa	4F	349.23	4.42	0.66	0.92	0.9	4F+15	352.34
So	4G	392.00	6.24	1.82	1.52	1.1+1.1	4G+22	397.13
La	4A	440.00	8.90	2.66	1.84	1+1+1.2	4A+26	446.80

表 3-5-2: 不同霧面寶特瓶與音高

	唱名	音名	新增開孔直徑(cm)	御茶園雙茶花	大西洋芭樂汁
1.75	Do	4C	1.75	3A#+05	4C+05
	Re	4D	0.8	4C+11	4D+12
0.0	Mi	4E	1.1	4D+06	4E+12
0.9 1.0 1.0	Fa	4F	0.9	4D#19	4F+08
1.1 1.1 1.1 O	So	4G	1.1+1.1	4F+14	4G+20
0.8 1.1	La	4A	1+1+1.2	4G-12	4A-13

- (1) **大西洋芭樂**汁可以套用公式,做成 4C 寶特瓶笛;而**御茶園雙茶花**與實驗 3-2 一樣,可以做成音程相同,聲音較低的寶特瓶笛。
- (2) 容量、形狀相近的霧面寶特瓶,可以套用黑松茶花綠茶公式做成寶特瓶笛。

實驗 3-6 ▶ 『形狀相似,容量較大』的 2000 ml 透明寶特瓶,也能做成寶特瓶笛嗎?

- 1. **波爾公式、黑松茶花綠茶公式**無法套用在大寶特瓶上,所以另外找出 2000 ml 透明寶特瓶的開孔面積。
- 2. 方法:仿直笛指法,在 2000 ml **雪碧寶特瓶**依序打洞,找出能吹出標準音高的開孔面積。

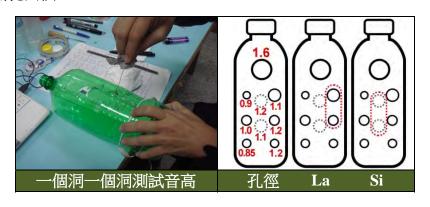


表 3-6-1: 雪碧 2000 ml 寶特瓶與音高

音名	指法	新增開孔直徑	增加面積	總開孔面積	音高	頻率
		(cm)	(cm ²)	(cm ²)		(Hz)
Do		1.6	2.01	2.01	3G+05	196.00
Re		0.85	0.57	2.58	3A+08	220.00
Mi		1.0	0.79	3.36	3B+12	246.94
Fa		0.9	0.64	4.00	4C-09	261.63
So		1.2	1.13	5.13	4D+02	293.66
La		1.2+1.1	2.08	7.21	4E-15	329.63
Si		1.2+1.1	1.13	8.34	4F#+10	369.99

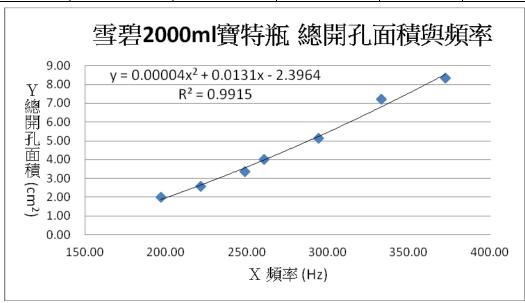


圖 3-6-1: 雪碧 2000 ml 寶特瓶 總開孔面積與頻率

表 3-6-2: 雪碧 2000 ml 公式的開孔面積與頻率

唱 名 名 名	頻率 X (Hz)	用雪碧 2000 ml 公式計算出的孔徑			微調後	測試結果		
		總開孔面積 Y (cm²)	新增 氣孔/指孔 面積(cm²)	新增 氣孔/指孔 直徑(cm)	新增 氣孔/指孔 直徑(cm)	音高	頻率 (Hz)	
Do	3G	196.00	1.71	1.71	1.47	1.5	3G+10	197.17
Re	3A	220.00	2.42	0.71	0.95	0.95	3A+08	221.05
Mi	3B	246.94	3.28	0.86	1.04	1.05	3B+14	249.00
Fa	4C	261.63	3.77	0.49	0.79	0.8	4C+02	261.94
So	4D	293.66	4.90	1.13	1.20	1.2	4D+05	294.53
La	4E	329.63	6.27	1.37	1.32	0.9+1	4E+06	330.81
Si	4F#	369.99	7.93	1.66	1.45	1+1.1	4F#+15	373.29

- (1) **2000 ml 雪碧寶特瓶**可用 $y = 0.00004x^2 + 0.0131x 2.3964$ 來計算開孔面積, R^2 值 = 0.9915,相當符合實驗數值分布情形。
- (2) **2000 ml 雪碧寶特瓶**可以製作出 3G 大調寶特瓶笛,吹出 3G~4F#(Do~Si)的 聲音。
- (3) 將 **2000 ml 雪碧公式**套用在**可樂 2000 ml、蘋果西打 2000 ml、黑松沙士 2000 ml**,也可做出 3G 大調的寶特瓶笛。

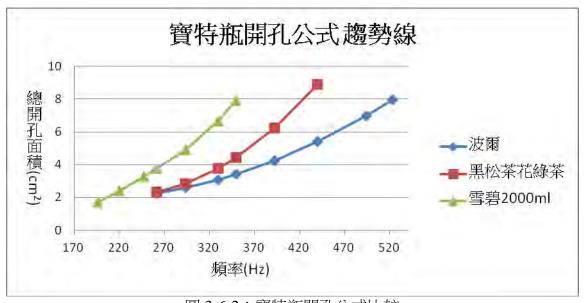


圖 3-6-2: 寶特瓶開孔公式比較

結論

- 一、吸管對音高沒有影響,選用直徑 0.6 公分尖口吸管壓扁後比較容易吹出聲音。
- 二、寶特瓶上的總開孔面積越大,吹出的聲音越高,發聲原理與陶笛相似。
- 三、相似的瓶子可以找出頻率(X)和總開孔面積(Y)共通的公式來開孔:
 - (1)標示 600 ml 透明寶特瓶開孔公式: $y = 0.00005x^2 0.0174x + 3.3838$
 - (2)標示 580 ml 霧面寶特瓶開孔公式: $\mathbf{v} = \mathbf{0.000142x^2} \mathbf{0.0627x} + \mathbf{9}$
 - (3)標示 2000 ml 透明寶特瓶開孔公式: $\mathbf{v} = \mathbf{0.00004x^2 + 0.0131x 2.3964}$

四、 開孔公式適用範圍:

- (1) 瓶子正立倒立皆可,指孔需打在氣孔下方,瓶蓋開口需在氣孔上方。
- (2) 波爾公式適用 330 ml~700 ml(準確到 So)的透明寶特瓶。
- (3) 波爾公式適用音域從 4C(Do)~5E(高音 Mi)。
- 五、 所有的寶特瓶都可以做成吹出標準音高或音程相同的寶特瓶笛, 就算寶特瓶笛壞了, 也能完全再回收, 一點也不浪費資源, 是真正的綠色寶笛。

參考資料及其他

- 一、聲音與樂器。國小自然與生活科技六上翰林版第四單元。
- 二、「陶笛 D.I.Y.---創意空罐笛」教學活動設計,李淑芬。 http://web.thps.tp.edu.tw/science/陶笛/陶笛 DIYT 創意空灌笛.doc.doc

【評語】080801

本作品實驗資料豐富,能與生活、環境相結合。

研發的寶特瓶笛能簡易的製成樂器,具有應用價值。

惟,在研究法與先前相關作品重疊性過多,應強化說明彼此的 差異性,優劣性(例如頻率預測準確性、製作便利性、應用範圍... 等等),以突顯本研究的價值。