中華民國第53屆中小學科學展覽會作品說明書

高中組 化學科

040206

不同濃度層離子躍遷行為之研究

學校名稱:新竹市立建功高級中學

作者:

高一 黄彦鈞

高一張 哲

高一 徐紫芸

指導老師:

羅湘鈞

王建民

關鍵詞:離子遷移速度、電雙層、離子獨立運動

摘要

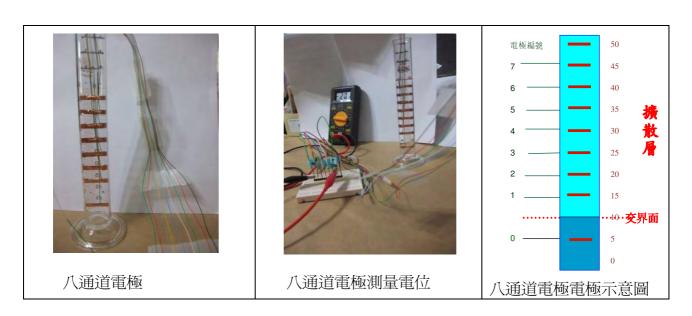
將不同濃度的氯化鈉溶液分別放在上下層,因濃度差發生擴散現象。正、負離子帶著相反的電荷,以不同的離子遷移速度進行同方向擴散,會形成正負離子電荷分布不均現象,引起各溶液界面薄層中出現電雙層,產生類似電化學氯化鈉電容。正負離子在溶液中遷移速度是不同的,Na⁺和 CI⁻離子兩者電量相等,但是 Na⁺離子半徑較小,在水溶液中 Na⁺電荷密度大,離子水合半徑大,在水中移動的阻力愈大,所以 Na⁺離子遷移速率比 CI⁻離子小。設計特殊八通道電極,在不同濃度氯化鈉水溶液擴散層,沿垂直方位擺置八個電極,連續偵測離子擴散電荷產生的電位差,由垂直方位電位值的變化趨勢,探討 Na⁺和 CI⁻離子擴散的運動模式,由實驗數據可觀測到微觀離子相對運動情形。

壹、研究動機

2012 高中生「化學創意闖關比賽」題目之一,將不同濃度的食鹽水密度分層。但是不同濃度的食鹽都是水溶液,各層彼此會擴散,應該會混合成均勻溶液?在歷屆科展題目「揭開溶液的五四三」(*參考資料一),也做出分層溶液可以做到保持分層一星期以上,與我們所認知粒子的熱運動,粒子不斷的無規則運動,並伴隨頻繁碰撞而均勻分布有所出入。

造成食鹽水分層的原因只是因爲密度大小嗎?查資料過程,發現氯化鈉水溶液中鈉離子、氯離子遷移速度不同,會形成正負離子電荷分布不均現象,水合離子的界面吸附和偶極分子的定向排列能引起電荷的分離和有序分佈,引起各溶液界面薄層中出現雙層,產生類似電化學氯化鈉電容。於是我們爲了要探討氯化鈉溶液的離子遷移狀況,進行了下列實驗。

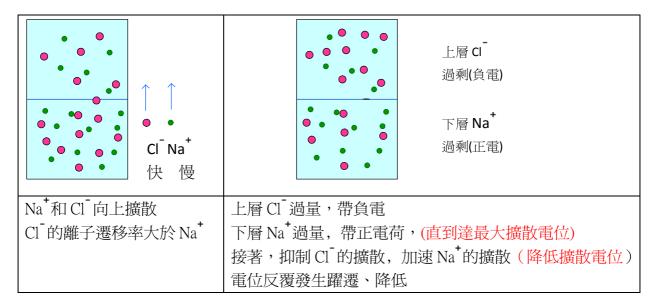
貳、研究目的

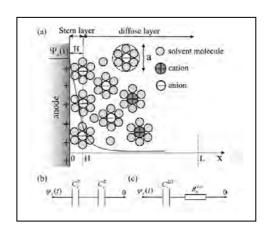

爲了探討氯化鈉水溶液擴散時,氯離子、鈉離子的遷移速度變化,同時發生有電雙層現象,所以設計不同特殊的電極『「八通道電極」』予以偵測,包括第一個方向由數據判讀不同濃度層的離子擴散行爲,了解在擴散歷程 Na[†]和 Cl[¯]離子相對運動情形。第二個方向是改變不同的濃度大小,由電位值的變化,探討濃度高時因離子氛造成的電位變化,還有濃度無限稀釋時,離子獨立運動,造成的相同的電位。

- 一、「八通道電極」偵測氯化鈉水溶液與純水擴散分層電位,探討擴散層電位變化趨勢。
- 二、「八通道電極」連續 3 天偵測氯化鈉水溶液與純水擴散電位,探討各垂直位置擴散電位隨長時間變化
- 三、「微電極」偵測不同濃度氯化鈉水溶液與純水擴散,前180秒(180個數據)擴散電位資料,判讀微觀的氯離子、鈉離子真實運動模式。
- 四、「微電極」偵測不同濃度氯化鈉水溶液與純水擴散,電位「最大値」,探討濃度變因。
- 五、「微電極」偵測不同濃度氯化鈉水溶液與純水擴散,隨時間變化時電位變化趨勢。

參、研究設備及器材

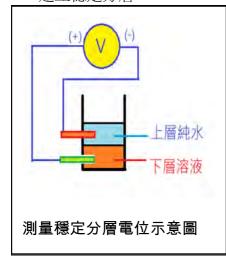
- 一、研究設備及器材
 - (一)藥品:氯化鈉、氯化鉀、硝酸鉀、醋酸鈉、硫酸鈉、硫酸鋅
 - (二) 數字型三用電表
 - (三) 投影片
 - (四) 焊接線材
 - (五) 量筒 50mL X2
 - (六) 燒杯 250mL X2
 - (七) 燒杯 50mL X2
 - (八) 塑膠滴管 X2
 - (九) 電子天平
 - (十)注射針筒
 - (十一)Ulead Video Stuid 11 影片播放擷取軟體


二、自製儀器:八通道電極設計

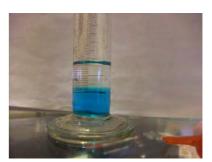

肆、研究過程或方法

一、研究原理:擴散電雙層的電位成因

不同濃度的氯化鈉水溶液直接接觸,濃溶液內的 Na^{\dagger} 和 Cl^{-} 會自發地向稀溶液擴散。由於 Cl^{-} 的遷移速度較大,使稀溶液一側積聚過量的 Cl^{-} ,帶負電荷;在濃溶液一側則相對 Na^{\dagger} 過量,帶正電荷,從而建立界面擴散電位,有電位分布。該擴散電位作用力又抑制 Cl^{-} 的擴散,加速 Na^{\dagger} 的擴散。最終形成穩定得雙電層,使兩者速率相等,達到電勢和濃差的相對穩定擴散狀態。



不同濃度電解質水溶液交界面的擴散現象,產生與雙電層電容器(EDLC)效果類似電雙層,本實驗也有擴散分層的電荷分布不均,也有各分層的化學擴散電位產生。本實驗探討氦化鈉水溶液濃度差擴散雙電層中,正負離子的電位分布變化趨勢與變因。


雙電層電容器(EDLC)擴散層(*參考資料二)

二、建立穩定分層

氯化鈉水溶液與純水的液/ 液界面分層

利用有顏色的硫酸銅溶液代替,可以看到明顯的交界面

- (一)濃電解質溶液層中底部刻度 5mL 位置電極編號為 0
- (二) 刻度 10mL 位置爲濃電解質溶液層與純水層的交界面。
- (三) 刻度 15、20、25、30、35、40、45mL 位置,分別爲擴散層電極編號 1、2、3、 4、 5、6、7。
- (四)以麵包板固定八通道電極的偵測端,三用電表「正極」接編號 0 電極,三用電表「負極」依序移動調整到編號 1、2、3、4、5、6、7 電極測量。

三、研究過程

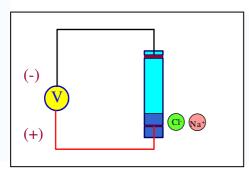
- (一)「八通道電極」偵測氯化鈉水溶液與純水擴散分層電位,探討擴散層電位變化趨勢
 - 1 配製 2M 氯化鈉水溶液,分別以滴管吸取 10mL,垂直滴入 50mL 量筒底部。
 - 2 八通道電極垂直放入量筒中,碰觸到底部。

- 3以針筒裝置純水,沿量筒壁,一滴滴慢慢滴入,即形成穩定水膜層介面。
- 4 當注入水位達 50mL 刻度位置,開始測量 1、2、3、4、5、6、7 電極電位,連續取 25 組數據。
- (二)「八通道電極」偵測氯化鈉水溶液與純水擴散分層電位,探討擴散層電位變化趨勢 由實驗步驟(一)數據,「八通道電極」連續3天偵測氯化鈉水溶液與純水擴散電位。
- (三)「微電極」偵測不同濃度氯化鈉水溶液與純水擴散,前180秒(180個數據)擴散電位資料,判讀微觀的氯離子、鈉離子真實運動模式。
 - 1.配置不同濃度氯化鈉水溶液爲下層溶液,分別爲4M、2M、1M、0.5M、0.25M、0.125M、0.0625M、0.03125M。
 - 2.用滴管量取6mL氯化鈉水溶液,滴入50mL量筒的底部,小心不要碰觸量筒壁。
 - 3. 放入「微電極」裝置,並用玻璃棒下壓使電極底部(負極)位於5mL刻度,恰好浸泡 於下層溶液。
 - 4.檢測三用電表歸零後連接成通路。
 - 5.將注射針頭裝入6mL純水,靠在量筒壁,因附著力緩緩滴入,形成純水層。
 - 6.開始攝影機對著三用電表數字攝影。
 - 7.當水位達12mL刻度,停止注入水。
 - 8.使用 Ulead Video Stuid 11 影片擷取軟體播放影片,讀取零值後的開始數值,每隔1 秒讀取一個數據,連續讀180秒,並將此資料會製成圖,根據電位高低變化,判讀 每一瞬間溶液內離子間的相對運動模式。
 - 9.同樣讀取濃度2、1、0.5、0.25、0.125、0.0625、0.03125M,比較不同濃度時離子運動模式的差異。
 - 10.清洗電極,並擦拭乾燥。電位歸零後再將相同溶液測量三次。

利用「Ulead Video Stuid 11 」影片播放軟體讀取數據

- (四)「微電極」偵測不同濃度氯化鈉水溶液與純水擴散,電位最大値,探討濃度變因。 將上述步驟(三)不同濃度氯化鈉水溶液,播放影片讀取「最高」電位值,三次取平 均值。
- (五)「微電極」偵測不同濃度氯化鈉水溶液與純水擴散,隨時間變化時電位變化趨勢。 將上述步驟(三)不同濃度氯化鈉水溶液,播放影片讀取「最高」電位值,之後每一 分鐘讀取影片中電位,連續30分鐘,紀錄電位值隨時間變化關係。

伍、研究結果

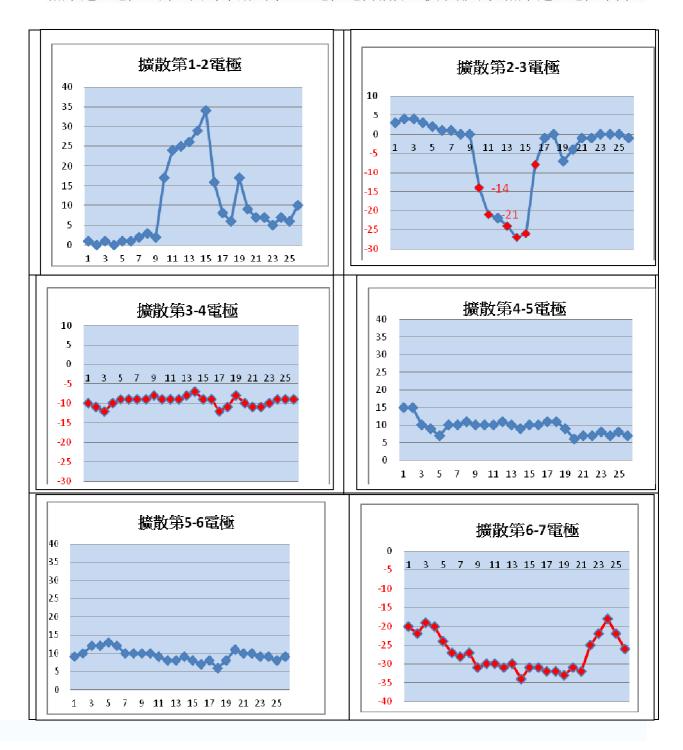

一、「八通道電極」偵測氯化鈉水溶液與純水擴散分層電位,探討擴散層電位變化趨勢。

(一) 2M 氯化鈉水溶液不同擴散電雙層電位值

測量次數	第一電極	第二電極	第三電極	第四電極	第五電極	第六電極	第七電極
1	224	225	228	218	233	242	222
2	225	225	229	218	233	243	221
3	224	225	229	217	227	239	220
4	224	224	227	217	226	238	218
5	224	225	227	218	225	238	214
6	225	226	227	218	228	240	213
7	225	227	228	219	229	239	211
8	225	228	228	219	230	240	213
9	226	228	228	220	230	240	209
10	226	243	229	220	230	240	210
11	227	251	230	221	231	240	210
12	227	252	230	221	232	240	209
13	228	254	230	222	232	240	210
14	228	257	230	223	232	241	207
15	224	258	232	223	233	241	210
16	224	240	232	223	233	240	209
17	227	235	234	222	233	241	209
18	228	234	234	223	234	240	208
19	222	239	232	224	233	241	208
20	229	238	234	224	230	241	210
21	229	236	235	224	231	241	209
22	229	236	235	224	231	241	216
23	230	235	235	225	233	242	220
24	228	235	235	226	233	242	224
25	229	235	235	226	234	242	220

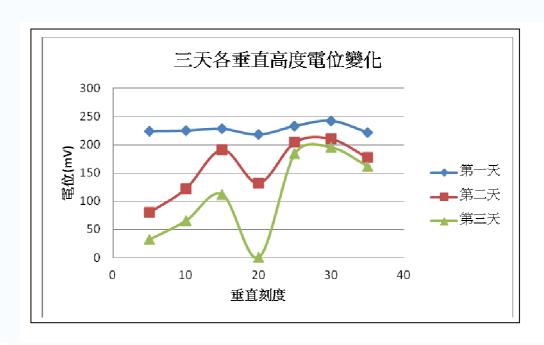
(二) 2M 氯化鈉水溶液不同擴散層電雙層電位變化量

測量次數	1~2	2~3	3~4	4~5	5~6	6~7
1	1	3	-10	15	9	-20
2	0	4	-11	15	10	-22
3	1	4	-12	10	12	-19
4	0	3	-10	9	12	-20
5	1	2	-9	7	13	-24
6	1	1	-9	10	12	-27
7	2	1	-9	10	10	-28
8	3	0	-9	11	10	-27
9	2	0	-8	10	10	-31
10	17	-14	-9	10	10	-30
11	24	-21	-9	10	9	-30
12	25	-22	-9	11	8	-31
13	26	-24	-8	10	8	-30
14	29	-27	-7	9	9	-34
15	34	-26	-9	10	8	-31
16	16	-8	-9	10	7	-31
17	8	-1	-12	11	8	-32
18	6	0	-11	11	6	-32
19	17	-7	-8	9	8	-33
20	9	-4	-10	6	11	-31
21	7	-1	-11	7	10	-32
22	7	-1	-11	7	10	-25
23	5	0	-10	8	9	-22
24	7	0	-9	7	9	-18
25	6	0	-9	8	8	-22

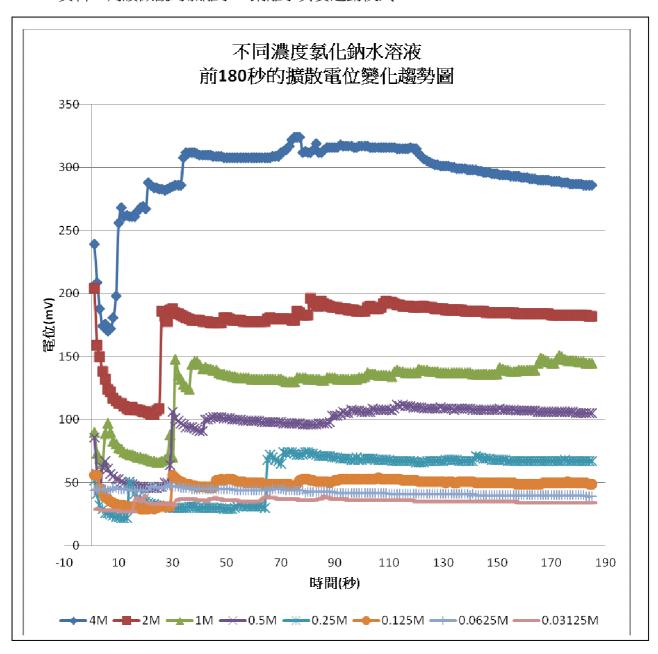

電位數值「正負」代表的意義:

電位正値:遷移速度 Cl'>Na⁺ ,上方累積負電荷多電位負値:遷移速度 Cl'<Na⁺,上方累積正電荷多電位 0 値:等電點

在垂直方位裝置八個電極,發現不同溶液界面薄層電位有正直與負值出現,表示垂直高度雖具有濃度梯度,但是內層離子的分布並非均勻分布,由不同電極測到各階段分層小電容電位,可能鈉離子濃度比上層氯離子濃度少,卻比下層的氯離子濃度大,造成局部正,局部負的雙電層現象。

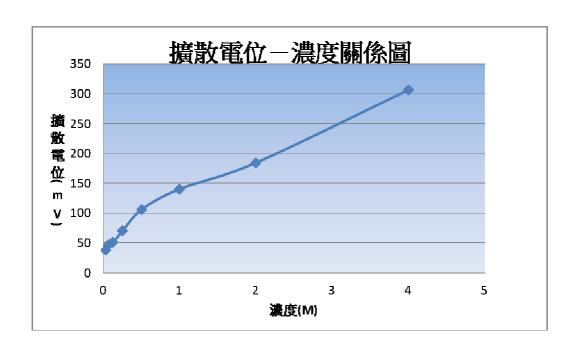

(三) 不同高度的擴散層隨著時間歷程電位變化

每個擴散層隨著時間歷程,電位有連動關係,如第九次測量值第1-2電極急遽上升,同時第2-3電極急遽上升。可能在該時刻因電荷累積達一定量造成第1-2電極的氯離子突然躍遷,電位上升;同時牽動到第2-3電極電荷消除,使氯離子突然躍遷,電位下降。


發現底部的電位最劇烈。由於底層源源不斷擴散,增添更多氯離子、鈉離子的數量,所 以有明顯電位變化。 二、「八通道電極」連續 3 天偵測氯化鈉、氯化鈉水溶液與純水擴散電位,探討各垂直位置 擴散電位隨時間變化。

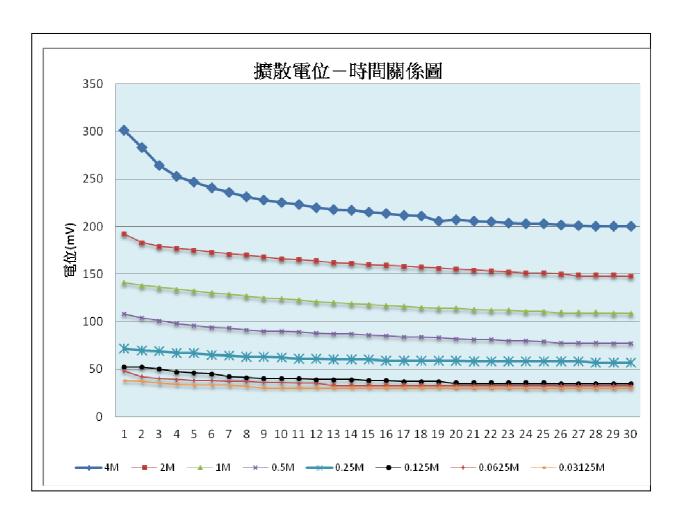
與交界面	第一天	第二天	第三天
距離刻度	分 八	尔 一八	另一 人
5	224	80	32
10	225	122	65
15	228	191	112
20	218	132	0
25	233	204	184
30	242	210	195
35	222	177	162

第一天,整體溶液的電位變化很小,表示離子分層尚未明顯,但是第二、三天後發 現電位分布隨著垂直高度先升後降,再升高再下降,各分層的電位差逐漸加大,雖然 氯離子與鈉離子會進行擴散運動,但是離子電雙層的動力反而讓各層有明顯的穩定作 用力,推斷讓食鹽水分層的原因應該就是電雙層的力量。


三、「微電極」偵測不同濃度氯化鈉水溶液與純水擴散,前180秒(180個數據)擴散電位資料,判讀微觀的氯離子、鈉離子真實運動模式。

以秒計,追蹤每秒正負離子微觀變化,由開始氯離子遷移速度快產生了正電位,但是氯離子的累積達一定量時,對氯離子的遷移速度反而因排斥作用而減少,而鈉離子的遷移速度反而因引力作用而增加,造成電位緩緩下降。當電雙層被抵消到一定的程度,氯離子受到的斥力消除甚至有過多鈉離子的吸引力,造成氯離子突然躍遷,使得電位曲線突然上升,反覆躍遷、下降並逐漸趨向穩定。

四、「微電極」偵測不同濃度氯化鈉溶液與純水擴散,電位變化「最大値」,探討濃度變因。 表1不同濃度的擴散電位最高値


	4M	2M	1M	0.5M	0.25M	0.125M	0.0625M	0.03M
第一次	310	190	141	106	72	52	48	38
第二次	304	183	142	108	70	49	46	39
第三次	305	180	138	108	68	51	45	37
平均値	306.3	184.3	140.3	106.7	70.0	50.7	46.3	38.0

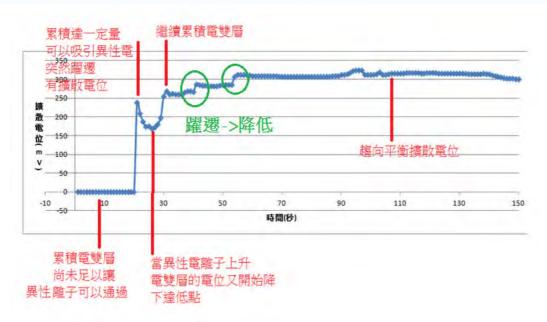
由圖表得知濃度差越大,擴散電位越大。根據菲克定律當濃度越大,擴散越快。 發現濃度越大反而變化趨緩,是因爲濃度越大,離子間的距離越小,正負離子 產生的靜電力越強,造成正負離子的遷移速度減慢,所造成的結果。

五、「微電極」偵測不同濃度氯化鈉水溶液與純水擴散,隨時間變化時電位變化趨勢。

時間(分)	4M	2M	1M	0.5M	0.25M	0.125M	0.0625M	0.03125M
1	310	190	141	106	72	52	48	38
2	283	183	138	104	70	52	42	37
3	264	179	136	101	69	50	40	35
4	253	177	134	98	67	47	39	34
5	247	175	132	96	67	46	38	33
6	241	173	130	94	65	45	38	33
7	236	171	129	93	64	42	37	33
8	231	170	127	91	63	41	37	32
9	228	168	125	90	63	40	36	31
10	225	166	124	90	62	40	36	31
11	223	165	123	89	61	40	35	31
12	220	164	121	88	61	39	35	31
13	218	162	120	87	60	39	34	31
14	217	161	119	87	60	39	34	31
15	215	160	118	86	60	38	34	31
16	214	159	117	85	59	38	34	31
17	212	158	116	84	59	37	34	31
18	211	157	115	84	59	37	34	31
19	206	156	114	83	59	37	34	31
20	207	155	114	82	59	36	33	31
21	206	154	113	81	58	36	33	31
22	205	153	112	81	58	36	33	31
23	204	152	112	80	58	36	33	31
24	203	151	111	80	58	36	33	30
25	203	151	111	79	58	36	33	30
26	202	150	110	78	58	35	33	30
27	201	149	110	78	58	35	33	30
28	200	149	110	78	57	35	33	30
29	200	149	109	77	57	35	33	30
30	200	148	109	77	57	35	33	30

不同濃度氯化鈉水溶液與純水,擴散電位隨「時間」變化趨勢。

氯化鈉水溶液擴散電位達最大值後,開始偵測電位,每一分鐘連續記錄30分鐘,由擴散電位-時間關係圖,我們發現無論任何濃度,最終都會趨近一個定值,表示慢慢達到平衡電位,此時正負離子擴散速度相等。


要注意在很稀的溶液0.125M、0.0625M、0.03125M時,最後電位都接近30mV,此值應該為無限稀釋濃度下,離子獨立運動下的遷移造成的固定擴散電位,離子遷移速度僅與離子本性有關。

陸、討論

一、本實驗自行設計八通道電極,在氯化鈉水溶液濃差分層界面,正負離子自發擴散,因爲正負離子遷移速度差異所以會產生雙電層,希望藉由測量氯化鈉水溶液各擴散分層的電位,來探討容器內正負離子的擴散電位分布情形。

的確發現氯化鈉水溶液產生雙電層的現象,而電位值會因不同垂直高度的擴散情形而有不同變化,在垂直液面裝置八個電極,發現各不同擴散層電容電位有正直與負值出現,電位正值:遷移速度 CI>Na⁺,上方累積負電荷多。電位負值:遷移速度 CI<Na⁺,上方累積正電荷多。電位 0 值:達等電點。整杯垂直液面內層離子的分布並非均勻分布,與我們平時所理解電解質水溶液的離子均勻分布情形,有很大的差異。可以間接推斷電解質水溶液內離子擴散的真實運動模式。

- 二、「八通道電極」連續3天偵測氯化鈉,初期各層電位並不大,其電位數值在不同垂直高度有起伏變化。經過三天後,各層電位值加大,但是數值穩定。隨著時間歷程,電解質水溶液內部建立穩定的電雙層,分層的電位愈益明顯,離子電雙層的作用力反而讓各層有明顯的穩定作用力,此效果讓氯化鈉水溶液擴散後有穩定的垂直分層。
- 三、 氯化鈉水溶液擴散後,以秒計測得電位,可以由電位起伏變化,推斷電解質水溶液 內正負離子微觀運動的相對動力學關係,由電位不斷躍遷、下降,慢慢趨於平衡,彷彿 真的可以透視離子的真實運動。對於研究電解質水溶液的電雙層動力,能有具體的證明。 以4M氯化鈉溶液爲例說明:

- (一)起始電位都是0,所以從第一個數值開始測量,數值都是由數值0直接向上躍升, 濃 度越大躍升的擴散電位越大。
- (二)躍升電位後所讀到的數值就緩緩降低,因爲同電荷離子相斥反而減速,而異性電荷離子因爲吸力反而加速,快者減慢,慢者加快,導致電位降低。
- (三)當擴散電雙層被中和之後,又繼續累積電雙層,因此擴散電位又開始發生躍遷。
- (四)一次一次的躍遷、中和,逐漸趨向穩定的平衡電位。
- (五)逐次的擴散電位越來越小,發生的週期時間也越來越長,整個系統趨向穩定。
- 四、 改變電解質水溶液濃度,發現擴散層的濃度梯度差異,濃度差越大的擴散層產生電位 也越大,遵守涅斯特方程式。

當離子濃度越大反而變化趨緩,是因爲濃度越大,離子間的距離越小,正負離子產生的靜電力越強,造成正負離子的遷移速度減慢,所造成的相對的負偏差。

五、 當電解質水溶液濃度逐漸稀釋,發現電位幾乎是趨向定值,表示慢慢達到電位平衡。 尤其是在稀溶液0.125M、0.0625M、0.03125M時,最後電位都接近30mV,此值應該爲 無限稀釋濃度下的離子遷移造成的擴散電位。 在無隔膜的狀況下,不同濃度差的電 解質水溶液直接與水接觸,根據菲克定律,整個溶液垂直高度會形成濃度梯度,再加 上正負離子遷移速度不同,擴散層產生擴散電位,其電位變化仍遵守涅斯特方程式, 有液接電勢濃差電池電動勢計算:

$$E = \frac{RT}{F} \frac{u^{+} - u^{-}}{u^{+} + u^{-}} ln \frac{c_{1}}{c_{2}}$$

(*參考資料六)

表 8-1 298. 15K 时离子的极限电迁移率[©]

离子	$u^{\infty} \times 10^{8}/\mathrm{m}^{2} \cdot \mathrm{s}^{-1} \cdot \mathrm{V}^{-1}$	离子	$u^{\infty} \times 10^{8} / \text{m}^{2} \cdot \text{s}^{-1} \cdot \text{V}^{-1}$
H ⁺	36. 2	OH-	20. 6
Li*	4.0	CI~	7.9
Na+	5. 2	Br-	8. 1
K+	7.6	I	8.0
Ag ⁺ Cu ²⁺	6. 4	CO}-	. 7.2
Cu²+	5. 9	Ac-	4.2
Zn²+	5. 5	NO;	7.4
Ba ²⁺	6. 6	SO ₄ -	8. 3

① 由于压力对电迁移率的影响很小,电迁移率数据一般不标注压力。

離子的極限電遷移率(*參考資料十二)

柒、結論

- 一、設計的八通道電極可以藉由擴散電位數值上升下降,可以間接推斷電解質水溶液內離子 擴散的不同垂直高度,正負離子的真實相對運動模式。
- 二、改變電解質水溶液濃度,濃度差越大的擴散層產生電位越大,濃度越大時,正負離子間 的距離越小,正負離子產生的靜電作用力很強,造成正負離子的遷移速度減慢,而產生 負偏差。
- 三、改變電解質水溶液濃度,濃度無限稀釋時,發現擴散電位幾乎趨近於相同數值,因爲濃度無限小時,正負離子之間的距離很大,正負離子產生的靜電作用力很小,幾乎可忽略 不計,所以呈現離子獨立運動,擴散電位僅與離子本性有關,所以得到相同的固定電位。
- 四、每隔一秒測量發現微觀電位變化,由零值直接躍遷到極大的電位,又逐漸降低,一次一次的躍遷、中和,逐漸趨向穩定的平衡電位。逐次的躍遷變化愈來愈小,發生的時間週期愈來愈長,可以推斷微觀的正負離子的動力學關係。
- 五、利用簡單的自行設計電極,追蹤離子擴散隨時間歷程變化趨勢,發現離子的擴散行爲不 是只是向四面八方運動,而是離子間存在有交互的作用力,彼此牽引,甚至形成電雙層, 與我們一般所認知物質擴散行爲有很大的突破。
- 六、未來,擬改變不同價數型態的電解質,探討價數、離子強度對擴散雙電層的影響,或添加其他物質,可以讓擴散電容的電壓值再提升,以增加其實用性。

捌、參考資料與其他

- 一、吳宇、林羿岑、林庭安、林品良。揭開溶液的五四三。中華民國第四十五屆中小學科 學展覽會
- — Hainan Wang, Laurent Pilon /2012/ Intrinsiclimitations of impedancemeasurements in
 determiningelectricdouble layer capacitances / Electrochimica Acta Volume 63, 29 February 2012,
 Pages 55 − 63
- 三、洪玫英、呂宜靜、 陳玟凌。哪個離子跑得快?中華民國第四十八屆中小學科學展覽會
- 四、王凱雄、朱优峰。水化學。第二版。北京市。化學工業出版社。2009.9。P49~55
- 五、胡啓章。電化學原理與方法。初版。台北市。五南圖書出版社。2003。p16~18
- 六、生物學習之家 擴散電位 http://www.shengwu8.com/article-10710.html
- 七、朱文濤 物理化學(下) 1995 清華大學出版社,P8
- 八、張志玲 離子濃度影響電流生成量 科學發展 2009年6月 438期
- 九、史紅兵 於養信 高光華 。電解質溶液自擴散係數的布朗動力學模擬 。《高等學校化學 學報》2004 年第 25 卷第 12 期 2317-2321 頁
- 十、陳秋炳 基礎化學(二)1-2離子鍵與離子晶體 翰林出版社 2011 p8~10
- 十一、陳秋炳 選修化學(上)3-2 溶液 翰林出版社 2012 p90~95
- 十二、劉志明 吳也平 金麗梅 編。應用物理化學 化學工業出版社 2010年 7月 P154~155

附錄各種不同氯化鈉水溶液液/液界面的前180秒(180個數據)擴散電位資料

秒數	4M	2M	1M	0.5M	0.25M	0.125M	0.0625M	0.03125M
	1 239	204	90	86	52	56	44	29
	2 209	159	73	57	41	56	45	29
	3 188	150	69	45	32	46	45	28
	4 174	138	65	62	29	42	45	28
	5 176	132	89	67	26	38	45	28
	5 170	124	97	61	26	37	44	28
,	7 172	122	90	57	25	35	44	28
	181	117	83	55	24	34	46	28
	9 198	115	81	53	23	33	46	28
10	256	113	78	53	23	32	45	27
1	1 268	113	77	51	22	32	45	27
1.	2 261	111	74	50	22	32	45	27
1:	3 262	109	73	49	22	31	45	27
14	4 261	108	72	49	51	31	44	27
1:	5 261	110	72	49	48	31	44	27
10	5 261	108	71	48	41	31	44	38
1	7 265	108	70	47	38	30	44	36
1	3 268	107	70	47	37	29	44	35
19	269	106	69	47	35	29	44	39
20	267	106	69	46	35	29	44	34
2	1 288	105	68	46	34	29	44	34
2:	2 286	104	67	46	33	30	47	33
2:	3 284	104	67	46	33	29	47	33
24	4 284	107	66	46	32	30	46	33
2:	5 283	109	66	47	32	31	46	33
20	5 283	186	67	47	31	31	46	33
2'	7 282	182	68	50	31	31	47	33
2	8 283	178	70	50	31	31	48	33
25	9 284	187	88	64	30	31	48	33
30	285	188	70	106	30	56	47	32
3	1 286	185	148	101	30	54	47	36
32	2 286	184	135	99	30	52	47	37
3:	3 286	183	132	97	30	51	46	37

34	308	182	128	96	30	50	46	37
35	312	181	126	94	30	49	46	37
36	312	180	124	94	31	49	46	37
37	312	179	144	94	31	48	45	37
38	312	179	146	93	31	48	45	36
39	311	179	146	92	30	47	45	36
40	310	179	144	91	30	47	45	36
41	310	178	140	91	30	47	45	36
42	310	178	142	100	30	47	45	35
43	310	178	140	100	30	46	45	37
44	310	177	140	101	30	47	45	37
45	309	177	139	102	30	46	45	38
46	309	177	139	102	30	52	45	37
47	309	177	137	102	30	52	45	37
48	309	177	136	102	30	53	45	36
49	308	181	136	101	29	52	45	36
50	308	181	135	101	29	53	45	36
51	308	180	135	101	29	53	45	36
52	308	179	134	100	29	53	45	36
53	308	179	134	100	30	52	44	36
54	308	179	133	100	31	51	44	35
55	308	179	133	100	32	51	44	35
56	308	178	133	99	31	51	44	35
57	308	178	133	99	31	50	44	35
58	308	178	133	99	31	50	44	35
59	308	178	132	99	31	50	44	35
60	308	178	132	99	31	50	44	35
61	308	178	132	99	31	50	44	35
62	308	178	132	99	31	50	44	36
63	308	178	132	98	31	50	44	38
64	308	178	132	98	30	48	44	39
65	308	180	132	98	68	49	44	38
66	308	181	132	98	72	49	44	38
67	309	180	132	98	70	49	45	38
68	309	180	132	98	68	49	45	37
69	309	180	132	98	67	49	45	37
70	312	180	132	98	65	49	45	37
71	313	180	131	97	74	49	45	37

72	314	180	130	97	73	49	44	37
73	317	180	130	97	74	49	44	37
74	322	179	130	97	74	48	44	37
75	324	179	130	97	73	48	44	37
76	324	186	133	97	72	49	44	36
77	324	185	133	97	72	52	44	36
78	312	183	133	96	72	53	44	36
79	313	183	133	96	74	53	42	36
80	312	183	132	96	74	53	43	36
81	312	196	132	96	73	52	43	36
82	314	193	132	96	73	52	43	36
83	319	191	132	96	72	51	43	37
84	312	190	132	97	71	51	43	37
85	312	194	131	97	71	51	43	39
86	314	192	131	97	71	51	43	38
87	316	191	133	97	71	51	43	38
88	316	190	133	98	71	50	43	37
89	316	189	133	103	70	51	43	
90	316	189	133	103	70	52	42	
91	316	189	132	103	70	52	42	37
92	318	188	132	104	69	53	42	37
93	317	188	132	106	69	53	42	37
94	317	188	132	105	69	53	42	36
95	317	187	132	105	69	53	42	36
96	317	187	132	108	68	53	42	36
97	316	187	132	107	68	53	42	36
98	316	186	132	107	70	53	42	
99	317	186	133	107	68	53	42	
100	317	186	133	106	68	53	42	
101	317	186	134	106	69	53	42	
102	317	189	137	106	69	53	42	
103	316	190	136	106	69	53	42	36
104	316	189	136	109	69	53	42	36
105	316	188	136	108	68	53	42	
106	316	188	135	108	68	54	42	36
107	316	189	135	108	68	53	42	
108	316	192	135	108	68	53	42	
109	316	194	135	108	68	53	42	36

110	316	193	135	108	68	53	41	36
111	316	193	134	107	67	53	41	36
112	316	192	138	109	67	53	41	36
113	315	191	139	112	67	53	41	36
114	315	191	138	111	67	53	41	36
115	315	190	138	112	67	52	41	36
116	315	190	137	111	67	52	41	36
117	315	190	137	111	67	52	41	36
118	316	190	137	111	67	52	41	36
119	315	189	137	110	67	52	41	35
120	315	189	137	110	66	52	41	35
121	311	189	140	110	66	51	41	35
122	309	190	139	110	66	51	41	35
123	307	190	139	109	66	51	41	35
124	305	189	139	109	67	51	41	35
125	304	189	138	109	67	51	41	35
126	303	189	138	109	67	51	41	35
127	302	188	138	109	67	51	41	35
128	302	188	138	109	67	51	41	
129	301	188	137	110	67	51	41	35
130	301	188	137	109	67	51	41	35
131	301	187	137	109	68	50	41	35
132	301	187	137	109	68	51	41	35
133	300	187	137	109	68	51	41	35
134	300	187	137	108	68	50	41	35
135	299	187	137	109	68	50	41	35
136	299	187	137	109	67	51	41	35
137	299	187	137	109	67	51	41	35
138	299	186	137	109	67	51	41	35
139	298	186	137	109	67	51	41	
140	298	186	137	109	67	51	40	
141	298	186	136	108	67	51	41	35
142	298	186	136	108	71	50	40	35
143	297	186	136	108	70	50	40	35
144	297	186	136	108	70	50	40	35
145	296	186	136	108	69	50	40	35
146	296	185	136	108	69	50	40	35
147	296	185	136	108	69	50	40	35

148	295	185	136	108	68	50	40	35
149	295	185	136	108	68	50	40	
150	295	185	136	108	68	50	40	35
151	294	185	141	109	68	50	40	
152	294	185	140	108	68	50	40	
153	294	185	139	108	68	50	40	
154	294	185	139	108	67	50	40	35
155	293	185	138	108	67	50	40	35
156	293	185	138	108	67	50	40	35
157	293	184	138	107	67	49	40	34
158	293	184	139	107	67	49	40	34
159	292	184	139	107	67	49	40	34
160	292	184	139	107	67	49	40	34
161	292	184	139	107	67	49	40	34
162	291	184	139	107	67	49	40	34
163	291	184	139	107	67	49	40	34
164	291	184	139	107	67	49	40	34
165	290	184	145	106	67	49	40	34
166	290	184	149	106	67	49	40	34
167	290	184	148	106	67	50	40	34
168	290	184	147	106	67	50	40	34
169	290	184	146	106	67	50	40	34
170	289	183	145	106	67	50	40	34
171	289	183	145	106	67	50	40	34
172	289	183	148	106	67	50	40	34
173	289	183	151	106	67	50	40	34
174	288	183	150	106	67	50	40	34
175	288	183	148	106	68	50	40	34
176	288	183	147	106	67	51	40	34
177	287	183	147	106	67	50	40	
178	287	183	147	106	67	50	40	34
179	287	183	147	105	67	50	40	34
180	287	183	146	105	67	50	40	34

【評語】040206

- 1. 部分研究為延續作者之一國中時之研究,但未能明確的說明研究結論和原有作品之不同處。
- 2. 即使是自己之前之作品,亦宜列於參考資料中。