中華民國第53屆中小學科學展覽會作品說明書

國中組 生活與應用科學科

030813

變「型」綠巨人,天空之「塵」終結者一探討樹的滯塵力

學校名稱:新北市立義學國民中學

作者:

國二 李睦樂

國二 王冠人

國二 蘇冠中

指導老師:

陳又君

洪寬亮

關鍵詞:滯塵、形狀、結構

摘要

本研究以風洞穩定輸入麵粉模擬灰塵來探討樹滯塵力。製作各種模型,可控制其他變因,並分別比較樹型、內部結構及葉形如何影響滯塵。研究發現迎風面積、乘載空間及擾流情形是主因。棕櫚型可擾流,迎風面積大,故滯塵力最佳。依實際植物組合葉片種類、總葉柄及小葉柄著生角度三因子,發現滯塵力都不同,其中總葉柄著生角度影響最大,因總葉柄控制整個葉片。各葉形中,圓形面積最集中,故滯塵力最佳。葉片質地方面,紙質表面粗糙,易卡住灰塵,上有附屬物更佳。本研究比較各類別的滯塵量,換算成相對百分等級,可量化評估各樹的滯塵力,並分析主要滯塵的原因。結果可做行道樹選擇的依據、樹木修剪的參考,減少灰塵入侵。

壹、 研究動機

聯合報《新聞中的科學》曾報導行道樹解析,提到樹有吸塵、防噪、耐空汙等功能,我們對吸塵特別有興趣;每年春季大陸吹來的沙塵暴嚴重影響台灣空氣品質,若樹有吸塵能力, 雨就可洗去葉面上的灰塵,減少空氣中的灰塵,減少致病率。參考相關研究可知,吸塵的能力即滯塵力,大部分的研究是採葉子、測灰塵重量,而本研究進一步想了解樹的結構如何影響滯塵能力。

貳、 研究目的

- 一、製作評估滯塵能力的裝置
- 二、觀察樹的結構並參考植物分類的型態定義以製作模型
- 三、評估各種結構對滯塵能力的影響
- 四、發展出一個量化評估樹滯塵力的模式

參、 研究設備及器材

- 一、研發裝置測定植物滯塵力
 - (一)選擇灰塵篩網、滑石粉、麵粉、地瓜粉、痱子粉
 - (二) 製作灰塵 電源供應器、麵粉、漏斗、篩網、馬達、螺絲、螺帽、風扇
 - (三) 輸入灰塵 風洞、塑膠瓦楞板、風速計、培養皿、油
- 二、了解樹的結構對吸塵力的影響
 - (一)模型製作麵包樹樹葉、鐵蓋、黏土、電子秤、鐵絲、模具、烘箱
 - (二) 測量滯塵力 電子秤、鐵蓋、銅線、鐵絲、黏土、相機

肆、 研究過程及方法

一、研發裝置測定滯塵力

為了比較植物滯塵力,以機械輸入灰塵,必須控制輸入的速度和方向都一致,也就 是要有穩定的流場。實驗室有一座學長為研究蝴蝶飛翔時製作的風洞,風洞有整流板可 以整流使風平行輸入,也可控制速度一致,故決定採風洞當作實驗裝置。

圖一、風洞

以風洞提供穩定流場,粉末來模擬灰塵,並讓灰塵穩定輸入風洞,裝置分為兩部分:

(一) 灰塵製造部

1. 風洞整流板前架設灰塵製造裝置

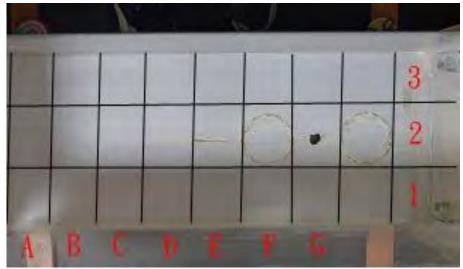
要在整流版前放置自動灑麵粉的裝置,即需一個平台來支撐,故以瓦楞板製作延長的部分。

圖二、以瓦楞板在風洞的整流板前圍一圈

2. 選擇合適的粉末模擬灰塵

將滑石粉、麵粉、地瓜粉、痱子粉等粉狀物使用篩網灑落在空中,利用篩網將灰塵平均的落下,挑選哪種粉狀物可以快速的從篩網上掉落,就選定其來當作模擬灰塵的物品。

3. 研發以機械輸入灰塵的裝置


表一、輸入灰塵裝置的研發

	1/4/ 4/2 (SEE 1/4-1/4)		
	第一代	第二代	第三代
作	(1)在風洞的整流板外面加上用	(1) 將漏斗挖洞並黏上	(1) 依照上一代的裝
法	瓦楞板作的外框。	篩網。	置,但將馬達改裝於
	(2)在外框上挖一個正方形的洞	(2) 將積木黏在漏斗上	支撐漏斗的積木上
	放置篩網。	作為支撐,並固定在	方。
	(3)將馬達裝上扇葉,放在適當的	瓦楞板上。	(2) 轉動重心不平均的
	位置,使馬達可剛好削到篩網	(3) 在積木上加裝螺絲。	馬達,進而產生震
	的邊緣使麵粉掉落下來。	(4) 用馬達帶動螺絲旋	動,使麵粉掉落。
		轉來敲擊積木上的	
		螺絲,使漏斗震動,	
		讓麵粉掉落。	
裝			
置			
圖	一直の表現を表現を表現を		
	Marian Company		Dinnis.
			ey la

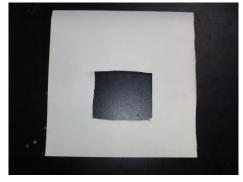
(二) 以風洞輸出灰塵

1. 風洞內的流場檢測

為了再次確認風洞流場是穩定的,把內部分成 24 個區塊,並以風速計測量各區塊的風速,而區塊大小是以培養皿直徑當作長,方便以後測量落塵量。

圖三、風洞內的分區

2. 決定待測物在風洞中擺放的位置


- (1) 本研究嘗試的不同方法來收集落塵量,依序是:
 - A. 雙面膠:用雙面膠黏在紙板上。
 - B. 空的培養皿: 將大小相同的培養皿置於風洞。
 - C. 裝水的培養皿:培養皿裡面加入少許的水。
 - D. 裝油的培養皿:培養皿裡面加入少許的油。

(2) 測量風洞內各點落塵量

將風洞內放滿培養皿,並以麵粉取代灰塵進行落塵,使麵粉進入風洞,在 各點落下,找出落塵量最大的位置。

(3) 待測物在風洞中的定位

將一片紗布裁成 30x30 公分的大小, 放在風洞裡與風向垂直,輸入三十克麵 粉,將麵粉在紗布上分布的部分,描在紙 上,並把此區域剪下,每次實驗時皆以這 張紙來校正模型的擺放位置。

圖四、定位框

3. 灰塵量的選擇

因為灰塵很輕,學校電子秤最低可以測到小數第三位,而實驗需要有足夠的量才可以比較落塵量,故改變輸入的麵粉量,並測定風洞各點的落塵量。將裝油培養皿置於各點,分別輸入十克、十五克及三十克的麵粉。

4. 測量滯塵力

在風洞底部挖一個洞,下面放電子秤,並製作植物座台擺在秤上,從洞中穿出來,將待測物置於座台上,以風洞輸入灰塵後,可以直接從下面的秤讀數。

圖五、秤重的方法

二、了解樹的滯塵力

(一) 觀察樹的結構

實際觀察樹後,發現不同樹的外型、內部結構、葉形、 葉片材質都不同,若要了解單一因子對滯塵力的影響,就要 製作模型來控制其他變因。

圖六、樹結構的觀察

(二) 樹形對滯塵力的影響

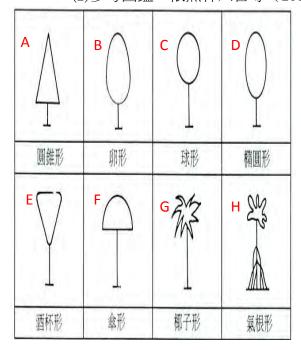
- 1. 選擇研究的樹型
 - (1)實際觀察樹型

圖七、橢圓型

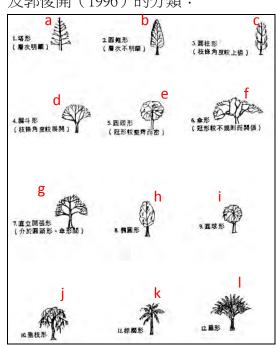
圖八、圓型

圖九、傘型

圖十、棕櫚型



圖十一、圓錐型



圖十二、酒杯型

(2)參考圖鑑:依照林六合等(2003)及郭俊開(1996)的分類:

圖十三、樹型分類圖 (林六和,2003)

圖十四、樹型分類圖 (郭俊開,1996)

綜合兩種樹型分類法配合實際樹型的觀察,本研究決定樹型比較六種:圓錐型(A)、球型(C)、橢圓型(D)、酒杯型(E)、傘型(F)、椰子型(G)。

- A. 圓錐型(A)包含層次明的塔型(a)及層次不分明的圓錐形(b)。
- B. 球型(C)包含圓球形(i)及冠形較整齊而密的圓頭形(e)。
- C. 橢圓型(D)包含枝條角度較上揚的圓柱形(c)及橢圓形(h)。
- D. 酒杯型(E)包含枝條角度較展開的漏斗形(d)。
- E. 傘型(F)包含冠形較不規則而張開的傘形(f)、扇形(l)及介於圓頭形、傘形間的 直立張開形(g)。
- F. 椰子型(G)包含垂枝形(j)及棕櫚形(k)。

2. 模型站台

- (1) 凹折銅線,形成一尖端
- (2) 固定在鐵蓋上

3. 樹型的製作

- (1) 以等量黏土 200 克,做成橢圓形、圓形、棕櫚形、圓錐形、酒杯形、傘形
- (2) 將樹模型插在台座上並測量灰塵落在模型上的重量

圖十五、植物座台

圖十六、黏土照

(三) 內部結構對滯塵力影響

内部結構分三個部份,葉片種類、總葉柄著生角度和小葉柄著生角度。

- 1. 模型製作
 - (1) 支持結構

本實驗使用鐵絲模擬總葉柄及小葉柄,並使 用鐵絲做出各結構的形狀。作法是將兩鐵絲互相 纏繞,再折成各種結構。

圖十七、鐵絲模型製作

(2) 控制葉片等面積

為了控制大小及計算方便,本實驗以圓形紙片模擬葉片。欲了解內部的結 構如何影響滯塵力,必須控制各結構的面積,才能比較結構的影響。經計算之 後,決定單葉為一片紙片,紙片半徑3公分;一回羽狀複葉為四片紙片,半徑 1.5公分;二回羽狀複葉為九片紙片,半徑1公分。

- A.以 GSP 分別畫出半徑 1 公分、1.5 公分、3 公分的圓
- B.將圓紙片裁下
- C. 將圓紙片分別對應到該結構的鐵絲,並用兩片圓紙片將鐵絲「夾」起來

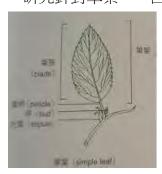
圖十八、半徑 1 公分

圖十九、半徑 1.5 公分

圖二十、半徑 1 公分

圖二十一、剪出兩片 葉子

黏雙面膠

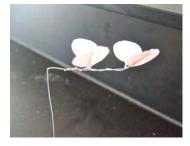

H

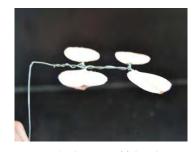
圖二十二、其中一片 圖二十三、黏在鐵絲 圖二十四、將兩片黏 起來

2. 內部結構-葉片種類

葉片種類分很多種,依照章錦瑜(2007),分成單葉與複葉,複葉又可分成奇 數與偶數羽狀複葉,羽狀複葉依照其複雜程度又分一、二、三回…羽狀複葉。本 研究針對單葉、一回偶數羽狀複葉及二回奇數羽狀複葉進行討論。

圖二十五、單葉


葉



圖二十六、一回偶數羽狀複 圖二十七、二回奇數羽狀複 葉

3. 內部結構-小葉柄著生角度

行道樹種類繁多,小葉柄與其總葉柄著生角度也不盡相同,故本實驗決定增 加小葉柄上揚、水平及下垂三種角度為變因以使實驗完善。

圖二十八、小葉柄上揚 45 度 圖二十九、小葉柄水平

圖三十、小葉柄下垂 45 度

4. 內部結構 - 總葉柄著生角度

每棵行道樹總葉柄與其枝幹著生角度不盡相同,故本實驗將總葉柄角度分成 上揚、水平及下垂三種角度作為變因,並探討其變化。

圖三十一、總葉柄上揚 45 度

圖三十二、總葉柄水平

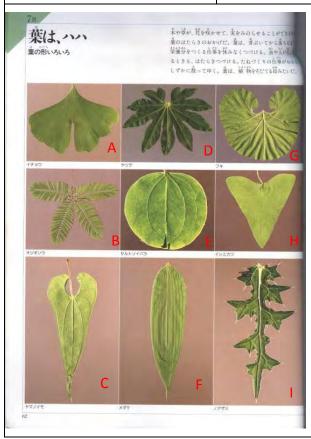
圖三十三、總葉柄下垂 45 度

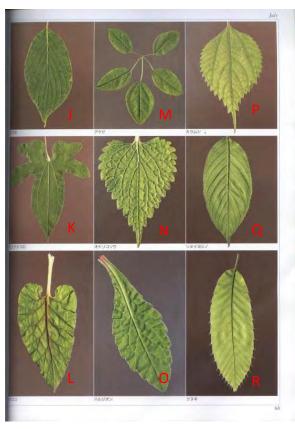
5. 結合葉片種類、總葉柄及小葉柄著生位置,共有 21 類型(單葉只有總葉柄著生角度變化)

表二、二十一種內部結構之模型

化一	總葉柄上揚	總葉柄水平	總葉柄下垂
單葉	A	В	
<u> </u>		小葉柄上揚	
回偶數羽狀	D	小葉柄水平	
複		小来们八	
葉		H	
		小葉柄下垂	
	F		
		小葉柄上揚	
回奇數羽	M		S
狀		小葉柄水平	
複 葉	800		
		小葉柄下垂	
	0	R	.U

(四) 葉片形狀對滯塵力的影響


1. 葉片外形


不同的植物葉片外形都不一樣,不同的外形也可能與滯塵力有關係。

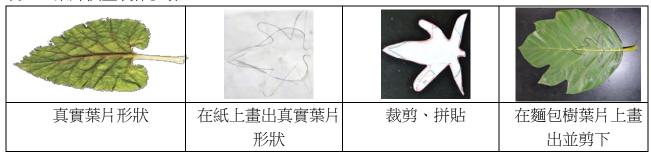
(1) 選擇葉型,根據埴沙萌(1993年)

葉形很多種,以整形狀而言,可分為倒卵形(面積集中上半部,下半部較細)、圓形(面積集中,邊緣呈圓弧狀)、菱形(面積集中,上下半部較細)、扇形(上半部較細,下半部較寬)、掌形(葉片分岔,導致有碎裂)、橢圓形(面積不集中,分散成細長形)至於裂葉情形或葉脈突出程度,將另設計實驗探討。本實驗把不同的葉形歸納成六種葉形來比較。

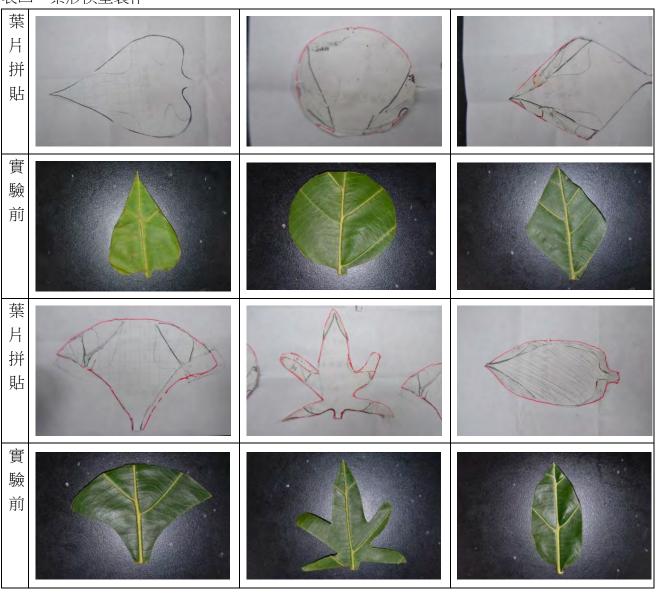
倒卵形 (C、H、N、L)	圓形 (E、G)	菱形 (鳥臼、P)
扇形 (A)	掌形 (D、B、I、K、M)	橢圓形 (F、O、Q、R、J)



圖三十四、葉形分類

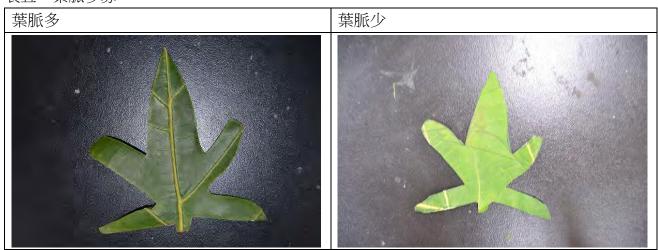

(2) 葉片模型作法

- A. 製作一個葉片基本型
- B.將基本型分成許多較小的部分
- C. 將這些部分重新排列成欲製作的六種葉形
- D.以膠水將這些部分黏貼在一起
- E. 將其自紙上剪下
- F. 將葉子拼貼的形狀描在麵包樹的葉片上
- G.沿著描出來的邊剪下
- H.用風洞測試滯塵力



圖三十五、葉片基本型

表三、葉片模型製作步驟


表四、葉形模型製作

2. 了解葉脈多寡對滯塵力的影響

取同一麵包樹的葉子製作葉片,分別選葉脈數量較多及較少的部分,用掌形的葉形來製作成兩個模型。

表五、葉脈多寡

3.了解樹葉碎裂程度對滯塵力的影響 將相同形狀的葉面分別不剪碎、剪碎一層、剪碎兩層來進行實驗。

表六、各碎裂層級

(五) 了解葉片質地對滯塵力的影響

不同的葉子觸感都不一樣,植物分類學依質地可將葉片分為:紙質、革質、肉質等,本研究選校園中的紙質(桑樹)、革質(鴨腳木)、肉質(落地生根)及表面上長有硬毛(構樹)的葉片作為比較。

1. 選取葉片

選擇不同材質的葉片,並用顯微鏡進行細部觀察

表七、各材質葉片

2. 製作模型

為避免葉形的影響,將各種葉片裁成同樣的形狀及大小,可單純比較質地的 影響

圖三十六、模型 圖三十七、各葉片裁切完成圖 (六) 評估樹的滯塵力

圖三十八、植物座台

- 1. 依各種類別滯塵量,找出比例換算成百分等級:將各類別滯塵量最好的當 100 分,其他依滯塵量大小等比例化為百分等級。
- 2. 定義不同種類的百分等級數值,評估不同樹的滯塵能力

表八、滯塵力的評分

結構的種類	各型態百分比					
樹型	圓錐型 球型		酒杯型	棕櫚型	橢圓型	傘型
	63 38		50	100	38	13
單葉	總葉植	万上揚	總葉柄水平		總葉柄下垂	
	3	4	73		100	
一回羽狀複葉			葉片」	上揚		
	3	9	3	2	76	
			葉片ス	K平		
	1	0	49		100	
			葉片下垂			
	29		51		56	
二回羽狀複葉			葉片上揚			
	80		73		61	
			葉片水平			
	32		22		61	
			葉片下垂			
	29		5	4	76	
葉片形狀	橢圓形	扇形	倒卵形	菱形	圓形	掌形
	15	35	18	57	100	12
葉片材質	紙質	毛紙質	肉質	革質		
	92	100	64	70		

- 3. 若樹非典型的形態,則要看特徵做調整,例如:台灣欒樹總葉柄有上揚、水平及下垂的,則將三種的滯塵力平均;構樹的葉片並非典型的掌形,而是橢圓形有碎裂,故將有碎裂的橢圓形化成一定比例,再換算成百分等級。
- 4. 觀察樹的特徵

選取台灣常見的五種行道樹進行觀察,紀錄樹種特徵並換算成百分等級

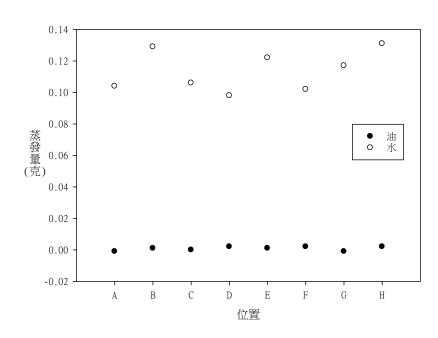
伍、 研究結果

一、研發裝置測定滯塵力

(一) 選擇合適的粉末模擬灰塵

因地瓜粉、滑石粉、痱子粉、低筋麵粉都無法在篩網上快速地掉落,速度都比中筋麵粉慢,故用中筋麵粉當作灰塵,才能有效率的輸入灰塵。

(二) 測試吹出的灰塵穩定度

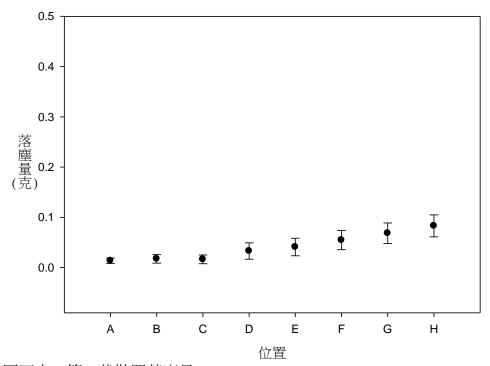

1. 各點風速

表九、風洞內各點風速

編號	1	2	3
А	4.9	4.9	4.9
В	4.9	4.9	4.9
С	4.9	4.9	4.9
D	4.9	4.9	4.9
Е	4.9	4.9	4.9
F	4.9	4.9	4.9
G	4.9	4.9	4.9
Н	4.9	4.9	4.9

各點風速一致,表示風洞中的流場是穩定的。

2.收集落塵的方法

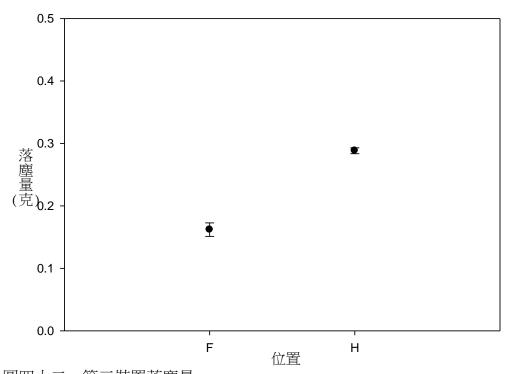


圖三十九、油和水的蒸發量

水蒸發不穩,油蒸發量都在小數點三位估計值內,視同無蒸發量,故實驗 前後重量差可確定是麵粉重。

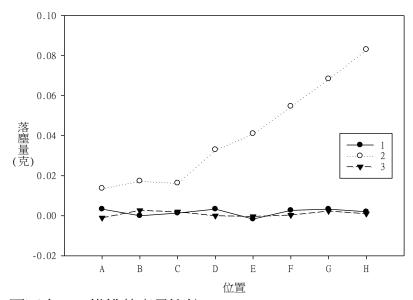

2. 測試製作灰塵裝置的穩定度

(1) 第一代裝置:

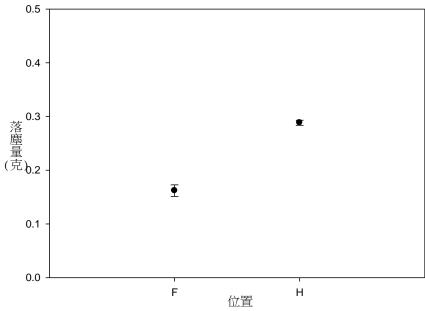

圖四十、第一代裝置落塵量 落塵量太少,難比較各點差異,須改善裝置。

(2) 第二代裝置:

圖四十一、第二代裝置落塵量 落塵量標準差大,表示落塵量不穩定,且速度慢。

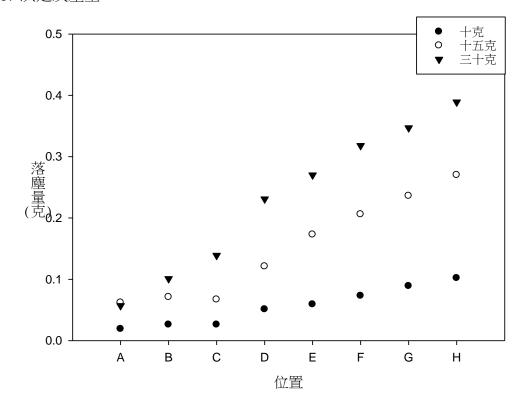

(3) 第三代裝置:

圖四十二、第三裝置落塵量 由第二代裝置得知後面落塵較多,故只測後面兩點,得知此裝置穩定。


(三) 以風洞輸入灰塵

1. 決定待測物橫向擺放位置

圖四十三、橫排落塵量比較 左右兩排(1、3)落塵量很低,而中間那排(2)落塵量較高,故決定放在中間那排。

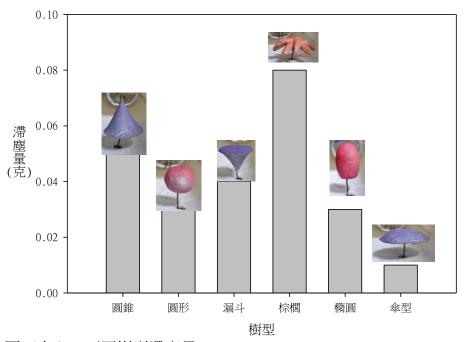

2. 决定待測物縱向擺放位置

圖四十四、縱排落塵量比較

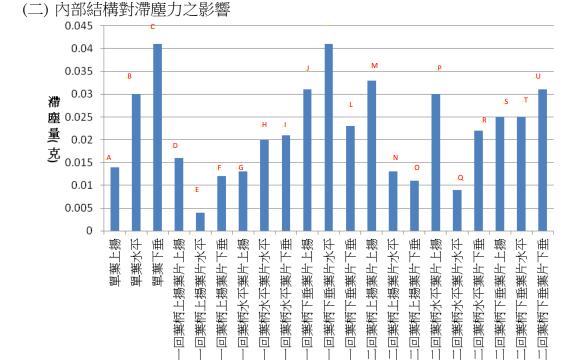
越後面的滯塵量越高H雖是最高,但操作不便,故選用G點。

3. 決定灰塵量

圖四十五、灰塵量比較


麵粉量越多,落塵量越高,越容易作比較,三十克的麵粉量很適合,太多的麵粉會造成浪費,故皆用三十克麵粉做實驗。

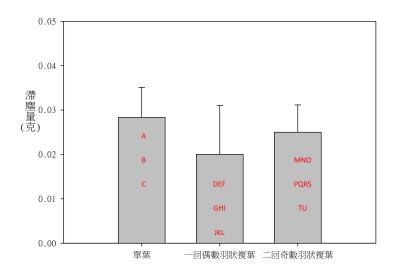
二、了解樹的滯塵力


(一) 樹型對滯塵力之影響

表十、樹型麵粉分布及流場軌跡分析

化	迎風面	迎風面的左方	背風面	迎風面的右方	軌跡圖
橢圓型					
	迎風面中間多	右邊有一點麵粉	無麵粉滯留	左邊有一點麵粉	邊圓滑,直接切過
圓型					
	麵粉集中在中間 部分	靠右邊有一點點 麵粉	無麵粉滯留	靠左邊有一點點 麵粉	邊圓滑,直接切過
棕櫚型					
	各枝條上面都有 麵粉	靠右邊有一點點 麵粉	無麵粉滯留	無麵粉滯留	有許多分支可以擾 亂氣流
圓錐型					
	下面部分麵粉較 多	靠右邊有一點點 麵粉	無麵粉滯留	靠左邊有一點點 麵粉	擾流情形不好
酒杯型					V
	麵粉分布多	靠右邊有一點點 麵粉	無麵粉滯留	靠左邊有一點點 麵粉	擾流情形不好
傘型					
	滯留麵粉量不多	無麵粉滯留	無麵粉滯留	無麵粉滯留	風直接通過

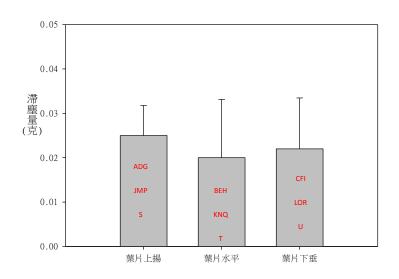
圖四十六、不同樹型滯塵量 棕櫚型分支可擾流,滯塵力最佳;傘型呈流線型,風直接通過,滯塵力最差。



圖四十七、內部結構滯塵量之比較

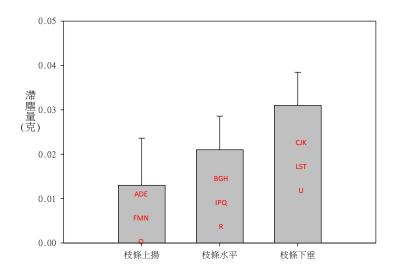
分布差異大,故以下從葉片種類、小葉柄著生角度、總葉柄著生角度,三類來進行分析。

葉柄和葉子的著生角度


(三) 葉片種類對滯塵力的影響

圖四十八、葉片種類滯塵量之比較

葉片種類有單葉、一回偶數羽狀複葉、二回奇數羽狀複葉。這三大類別裡又有總葉柄著生角度、小葉柄著生角度兩種變因,故單葉有三種結構,一回、二回羽狀複葉各有九種結構。滯塵量最高的是單葉,其次是二回奇數羽狀複葉,最後是一回偶數羽狀複葉。單葉和二回奇數羽狀複葉標準差較小,表示其較穩定,不易受其他變因影響;一回偶數羽狀複葉標準差大,表示其易隨其他變因變化,非控制滯塵量的主要因子。

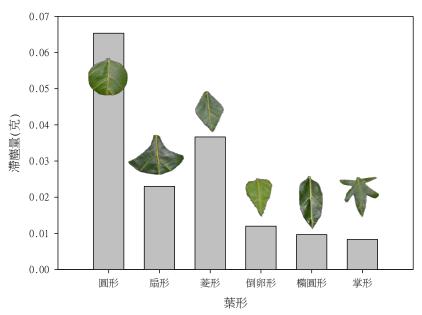

(四) 小葉柄著生角度對滯塵力的影響

圖四十九、小葉柄著生角度滯塵量比較

小葉柄著生角度有小葉柄上揚、小葉柄水平、小葉柄下垂。這三大類別裡又有葉片種類、總葉柄著生角度兩種變因,故各類別有七種結構。這三大類別滯塵量都差不多。而葉片水平的標準差很大,表示葉片水平不是控制滯塵量的主要因子。

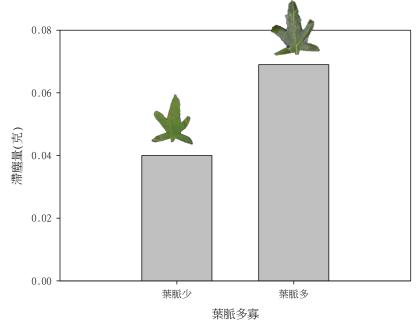
(五) 總葉柄著生角度對滯塵力的影響

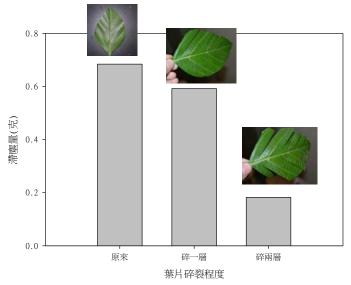
圖五十、總葉柄著生角度滯塵量比較


總葉柄著生角度有總葉柄上揚、總葉柄水平、總葉柄下垂。這三大類別又有葉 片種類、小葉柄著生角度兩種變因,故各類別有七種結構。不同總葉柄角度差距較 大,滯塵量最高的是總葉柄下垂,因下垂能乘載的空間較大。

(六) 葉片形狀對滯塵力之影響

1. 比較灰塵的分布

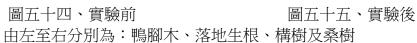

表十一、麵粉在葉片上分布的情形。


圖五十一、葉形滯塵量比較 圓形、菱形滯塵量較大

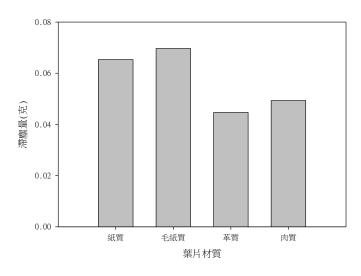
(七) 葉脈多寡對滯塵力影響

圖五十二、葉脈多寡滯塵量比較 葉脈多滯塵力較佳

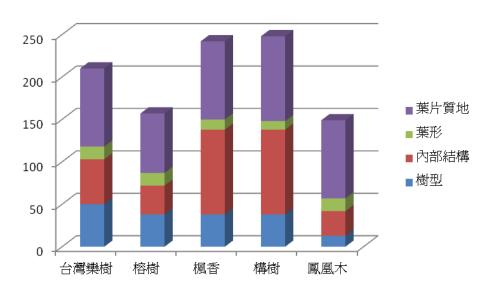
(八) 碎裂程度對滯塵力影響


圖五十三、碎裂程度對滯塵力的影響 碎裂程度越高,滯塵量越低。

(九) 葉子質地對滯塵力之影響


表十二、顯微鏡觀察不同葉片質地表面

レく「「ハッヘックロログロント	1 1 3/11/1 / 1 / 1 / 1		
桑樹(紙質)	構樹(紙質表面有硬 毛)	落地生根(肉質)	鴨腳木(革質)


圖五十六、葉片材質對滯塵力的影響

(十) 評估樹的滯塵力

表十三、五種常見樹種之特徵

	樹型	內部結構	葉形	葉片質地
台灣欒樹	酒杯型	二回羽狀複葉,次葉柄下垂,總	橢圓形	紙質
		葉柄上揚、水平、下垂都有		
榕樹	圓形	單葉上揚	橢圓形	革質
楓香	橢圓形	單葉下垂	掌型	紙質
構樹	圓形	單葉下垂	橢圓形碎裂	毛紙質
鳳凰木	傘型	二回羽狀複葉,次葉柄下垂,總	橢圓形	紙質
		葉柄上揚		

1. 將各樹量化成分數

圖五十七、五種樹種量化評估數值

構樹的分數最高,接著是楓香、台灣欒樹、榕樹及鳳凰木;構樹的葉片質地及內部 結構較好,故整體分數較其他佳。

一、研究的緣起

参考網路上的文獻,<u>新聞中的科學</u>提及「---不過行道樹的用途,不能只是開花、好看,能否改善噪音、吸塵、防風等更是主要考量。---」得知行道樹可吸塵,但未說明行道樹吸塵的原理。研究之初,先進行大量學術文獻蒐集,如以下幾篇研究:

- (一)蔡志明等(2003)提到測量植物滯塵力的方法,先將葉片及總葉柄固定揚塵箱中, 與氣流方向成九十度,再洗下葉片上灰塵,烘乾後秤重計算單位面積滯塵量。 但觀察植株的自然生長方式,發現其枝葉的著生角度都不一致,該研究設計只能評 估葉片及枝幹質地對滯塵力的影響,無法了解整體結構如何影響滯塵力。
- (二)劉萌萌等(2012)直接採校園的葉片測灰塵量,然校園各環境不同,局部氣流也不同,會影響落塵情形。而葉片上滯塵量是整體結構造成的結果,此研究可以比較各樹種的滯塵情形,但無法了解結構如何影響滯塵。

本研究想要了解結構如何影響滯塵,結構中的整體樹型、總葉柄排列、葉柄著生角 度及葉片形狀和質地等,皆影響滯塵力,若以實際植物實驗,無法了解各因子如何影響 滯塵力,故本研究擬用模型來探討,模型以控制其他變因,探討各因子的影響。

最後本研究希望能將各結構的影響量化,發展出可評估未知樹種滯塵力的模式,因 為自然界中樹種太多,已研究測量的樹太少了,若有簡易評估方法,能較快速運用。

二、研究設備器材

(一) 風洞

測量滯塵力的裝置必須「穩定輸入灰塵」,試了多種東西後,發現風洞有此功能, 學校實驗室有一座風洞,是學長研究蝴蝶時製作的,我們將它整修改良,最後測試 風洞中風速,確定其穩定性。

(二) 輸入麵粉的裝置

此裝置除了放置麵粉,還必須能「均勻」使麵粉落下且使每次落下的麵粉量一致,為此選用篩網讓灰塵平均掉落,選用中筋麵粉因其能輕易從篩網上掉落且不易結塊。以下是裝置的改良過程:

1. 第一代裝置

此裝置篩網呈現水平,故倒完麵粉後,麵粉會形成類似小丘的形狀,但形狀 都不同,造成嚴重誤差。

2. 第二代裝置

先前裝置不穩定的主因是每次將麵粉倒入篩網形狀不同,假設第一次左邊的 麵粉較少,第二次右邊較少,各次麵粉就不同,造成誤差;第二代裝置將濾網的 面積縮小,且在實驗前先用不會沾黏麵粉的紙將麵粉壓平,確定每次形狀相同。

之前的裝置是用風扇篩網,而此種裝置無法使用相同的原理,因為篩網已縮小且完全被麵粉掩埋,改成敲擊的方式,震動而落下固定量麵粉,但是敲打漏斗會使裝置有磨損,一旦磨損,每次情形就會不同,故一開始速度很快,但經過幾次實驗之後,裝置產生磨損,每次裝置灑落麵粉的速度不一致,造成實驗結果受到影響。

3. 第三代裝置

利用馬達旋轉,重心因不平均,造成震動將灰塵抖落,不會造成磨損,每次都可 以很平均撒完麵粉,速度也很快。

(三) 風洞內落塵量的評估

測量風洞內各點的落塵量,除了可以知道麵粉輸入情形是否一致,也可以用來 決定待測物擺放位置。

測量方法是將風洞劃分成 24 格,測量每一格的灰塵量,最先使用空培養皿收集,發現麵粉會彈出來,故不能了解每一格的落塵量,改良在培養皿內裝水吸收麵粉,但風會加速水的蒸發,影響收集,最後改裝油,解決蒸發的問題。

(四) 待測物擺放位置

雖然風洞風速是穩定的,但麵粉是由中間輸入,再加上麵粉的重量,在風場後端會落下,待測物要放在落塵量較多的地方,比較才方便,中間那排是三排中滯塵量最多的,而 H2 是最高的點,但擺在最高落塵量的 H,沒有足夠的空間擺放電子秤,故選擇第二多的 G 點。

(五) 滯塵量測法

灰塵的重量很輕,不宜搬移待測物量,故在風洞底部鑿一小洞,伸出待測物站台,測量灑麵粉前後重量差。

三、探討樹型對滯塵的影響

(一) 樹模型的製作

實驗須具備可重複性,透過改良來增加實驗的穩定度。以下說明模型研發過程:表十四、樹型的沿革

	樹形	做污	E A	缺點
第		1.	用投影機縮小投影真實樹	風洞小,樹模型遠小於實際樹,但
_	1		型在投影幕上。	葉子並未等比例縮小。
代		2.	以樹枝依照投影插枝使其	
			成立體樹型。	
第	Men	1.	將錫蘭葉下株剪成各種不	每次插的情形都不太一樣,錫蘭葉
	Children of the second		同長短的枝條。	下株的枝條長度也不會每次都相
代		2.	將這些枝條插在花泥上面	同,故數據很不穩定。
	A PARTIE OF THE		排成需要的樹型。	
第		1.	以等量 將 黏土 200 克,做	每次插的武竹分布可能都不相同,
11			成各種樹型	會影響實驗的穩定性。
代		2.	在上面插個插上 5.86 克的	
	Mary Figure 2 Mary 100		單節武竹枝條。	
第		將黍	占土直接塑造成各種樹型	以黏土比較外型對滯塵力的影響;
四				內部結構對滯塵力的影響另外再作
代				模型探討。

(二) 影響滯塵的主因

觀察線香及麵粉在風洞內軌跡,以及麵粉在模型上分布情形,了解影響滯塵的 因素有:

1. 擾流情形:

風吹到模型的時候,若可擾亂氣流,讓風速減弱或讓風向改變,就可以增加 麵粉停留在模型上的機會,增加滯塵力。

2. 迎風面積:

迎風面積愈大,增加擋下麵粉的機會,所能攔截到的灰塵就愈多。

3. 堆積能力:

當麵粉打到待測物時,就會被擋下,並且順著表面滑落下來,減慢滑落速度 最後停留在模型上。

上述這三項因素都會影響樹的滯塵,在其他的模型上也可以看到相同效果。

(三) 樹型對滯塵力之影響

- 1. 棕櫚型:有許多分支,可以擾流,使風速降低,灰塵落下,故滯塵力最好。
- 2. 圓錐型:無擾流情況,但迎風面積大,加上有堆積能力,故滯塵力好。
- 3. 酒杯型:與圓錐型相同,迎風面積大,但不能擾流,且因為沒有堆積能力,故滯 塵力次於圓錐型。
- 4. 球型:雖然迎風面積大,但因球型上下左右都有弧度,當風吹向黏土時會直接順著這些弧度通過,故只有中間部分有麵粉滯留,滯塵量較低。
- 5. 橢圓型:與圓型相同,雖迎風面積大,但上下左右都有弧度,滯塵量較低。
- 6. 傘型:因迎風面積太小,且是流線型無法擾流,故滯塵量最差。

(四) 內部結構對滯塵力之影響

除了行道樹外型會影響滯塵,當灰塵吹到行道樹內部也可能對行道樹滯塵力造成影響。觀察樹結構發現樹枝條(莖)生長方向不一致,而且葉子在空間上的分佈最主要是由葉柄控制,故模型的設計主要根據真實植物各級葉柄位置會有的變化,再加上葉片種類的因子而設計。故歸納「內部結構」的變因,有葉片種類、總葉柄著生角度、小葉柄著生角度。

内部結構的模型最先設計是以花泥當中間的樹枝,然後將一根真實枝條插在花泥上,並控制該枝條角度以作為變因。這樣的缺點是枝條插進花泥時會造成空隙,並在開啟風洞時會鬆動不穩,造成實驗誤差。故後來改用黏土代替花泥,但黏土佔的空間太大,枝條與葉片比例不固定,麵粉都打在黏土上,造成黏土變成該模型吸塵的主因。故後來改成以鐵絲當作總葉柄以控制角度,並將鐵絲做成不同葉片種類的形狀,再黏上以紙做成的葉片作為模型。這樣不但可以將模型穩定住不亂晃動,還可以模擬真實枝條、葉片比例,增加實驗數據可信度。

圖五十八、黏土插枝

1. 葉片種類

葉片種類分很多種,依照章錦瑜(2007),分成單葉與複葉,複葉又可分成奇數 與偶數羽狀複葉,羽狀複葉依照其複雜程度分一、二、三回…羽狀複葉。故本實 驗探討葉片種類不同時對滯塵力的影響。

觀察圖表後,發現葉片種類三個分類單葉、一回羽狀偶數複葉、二回羽狀奇數複葉之間差距不大,代表葉片種類受其他兩變因小葉柄著生角度、總葉柄著生角度之影響較大,且不是影響內部結構滯塵量之主因。

- (1) 單葉: 滯塵量較高,單葉只有一片葉子,不像複葉有空隙,故可攔灰塵較多, 滯塵力較高且穩定。
- (2) 一回偶數羽狀複葉:滯塵量較低,因其為偶數複葉,枝條頂端無葉片,且葉片 集中枝條兩側,當灰塵吹過,僅中間枝條攔截灰塵,故滯塵量低。
- (3) 二回奇數羽狀複葉:滯塵量介兩者間,因其為奇數複葉,枝條頂端有葉片,當 灰塵吹過,可攔截部分灰塵,故滯塵量中等。

2. 小葉柄著牛角度

行道樹種類繁多,葉片與總葉柄著生角度不盡相同,故本實驗決定增加葉片 上揚、水平及下垂三種角度為變因使實驗完善,並探討其滯塵力。

結果發現不同小葉柄著生角度造成的滯塵量差距小,表示小葉柄著生角度受 其他兩變因葉片種類、總葉柄著生角度影響大,並非影響內部結構滯塵量之主因。

3. 總葉柄著生角度

各行道樹總葉柄與枝幹著生角度不盡相同,故本實驗將總葉柄角度分成上 揚、水平及下垂三種角度,並探討其滯塵力。

觀察圖表後,發現總葉柄著生角度中三因子有明顯差距,代表其是影響內部結構滯塵力的主因。

推測可能是因總葉柄控制大部分葉片,總葉柄角度,即葉片著生角度,故總 葉柄著牛角度影響較大。

- (1) 總葉柄上揚:滯塵量較低,當總葉柄上揚,灰塵吹迎風面,灰塵會順著迎風面滑落,故滯塵量低。
- (2) 總葉柄水平: 滯塵量中等,總葉柄水平,不會滑落,也不能承載灰塵,故滯塵量中等。
- (3) 總葉柄下垂: 滯塵量較高, 總葉柄下垂, 灰塵吹到迎風面, 葉片會把灰塵接住, 故滯塵量高。

(五) 葉片形狀對滯塵力之影響

1. 外形

除內部結構,各行道樹葉片形狀皆不同,此變因也可能使行道樹滯塵力改變,故本實驗探討葉片形狀對滯塵力之影響。

觀察各葉形線香軌跡,發現各葉形軌跡差異不大,再來看麵粉在葉片上分布的情形,得知面積集中的葉片滯塵力佳,推測影響葉形滯塵力的主因是面積集中與否。

- (1) 披針形:分散成細長狀,麵粉不易停留,故滯塵力差。
- (2) 扇形:下半部面積大,能有較好的停留灰塵之能力,故滯塵力佳。
- (3) 倒卵形:面積較分散,但上半部仍有停留灰塵之能力,故滯塵力中等。
- (4) 菱形:面積集中,可停留麵粉,故滯塵力較好。
- (5) 圓形:面積十分集中,故滯塵力最高。
- (6) 掌形:面積十分分散,較無法停留麵粉,故滯塵力最差。

2. 葉脈數量

各葉片葉脈數量皆不同,葉脈多寡可影響滯塵力,故本實驗以葉脈多寡之變 因探討滯塵力。

麵粉滑落時,途中若經過葉脈,因葉脈突起,將麵粉卡在葉脈的隙縫中,便 可增加滯塵量。

3. 葉片碎裂程度

有些葉片上會有碎裂,碎裂可能影響滯塵力,故本實驗以葉片碎裂程度之變 因探討滯塵力。

當麵粉從葉面上滑落時,中間遇到有碎裂的部分就會穿過且直接掉落到地上,且因被剪成一片一片的小塊,當風吹向葉片的時候,這些小塊會因風吹而向後仰,而減少葉子迎風面積。

(六) 葉片質地對滯塵力之影響

本研究是以真實葉片模型比較,因為是比較質地的影響,故控制相同的形狀相同大小,使葉形不會影響滯塵力。質地除了用手感覺,還用顯微鏡觀察不同質地的差別,選用紙質、肉質、革質及表面有細毛的紙質做比較。

由研究結果得知紙質滯塵力佳,肉質和革質則差不多,推測是因為紙質的表面較粗糙,較不會讓麵粉滑落,而肉質和革質的表面光滑,麵粉較易滑落。

由顯微鏡觀察構樹和桑樹的細部結構,構樹表面較桑樹的細毛多,故構樹更能卡住灰塵,滯塵力較好。

(七) 評估樹的滯塵力

想研發出一套評估樹滯塵力的模式,不須一一測試,只須觀察樹即可快速量化樹的滯塵力,比較滯塵力大小。

測試各結構不同類型的滯塵量後,換算成百分等級,給各種類型分數,如樹型部分,將最好的棕櫚型乘1250當100分,其他也乘上1250,都換算成分數,方便作比較。

某些樹結構的類型不只包含一種,結構若非典型,須觀察樹特徵以做調整,如:台灣欒樹總葉柄有上揚、水平及下垂的,將此三種的滯塵力平均;構樹的葉片並非典型的掌形,而是橢圓形有碎裂,故將有碎裂的橢圓形化成一定比例,再換算成百分等級。

柒、 結論

- 一、研發以風洞輸入灰塵的機械裝置測量滯塵力。
- 二、樹結構及型態因擾流情況、迎風面積、堆積能力、面積集中程度不同,而影響滯塵力。
- 三、樹型、葉片形狀、枝條著生位置、葉片材質都會影響滯塵能力。樹型分支越多造成的擾 流效果越佳,滯塵力高。內部結構方面,分支越少,葉子碎裂程度越小,可提供堆積灰 塵的空間,皆可提升滯塵力。葉表面質地粗糙,或有附屬物,也有助於滯塵
- 四、量化評估可以簡易算出不同樹種的滯塵能力,並可以了解影響樹滯塵力的主要因素。 五、

捌、参考資料及其他

- 一、王義仲。2010。篩選淨化空氣污染物及固碳樹種建立本土性 GIS 碳匯。環保署/國科會空 污防制科研合作計畫研究成果。
- 二、邱少婷、鄭暐。一葉知秋,破解葉的密碼。國立自然科學博物館館訊第274期。
- 三、胡嘉容。2010。行道樹單一與不同樹型混搭之景觀偏好。東海大學景觀學系碩士論文。 pp 15-

16 °

- 四、埴沙萌。1993。植物記。福音館書店。pp 62-63。
- 五、章錦瑜。2008。景觀樹木觀賞圖鑑。晨星出版。pp 15。
- 六、湯雅雯。2012。行道樹解析/選樹條件:防噪、吸塵、耐風。聯合新聞網新聞中的科學。
- 七、劉萌萌,楊立新,張健,楊永峰。2012。大學校園主要綠化植物滯塵效應調查與分析。 瀋陽農業大學學報(社會科學報)。pp115-118。
- 八、蔡志明,孫岩章,王亞男。2003。常見台北地區植物乾濕葉片與枝條滯塵效率的比較。 中華民國環境保護學會學刊第二十八卷第一期。

【評語】030813

設計巨觀及介觀試驗,針對不同種類樹木及其外形進行模型試 作及粉塵噴吹,評估滯塵力。

未來在樹葉表面微結構及親疏水特性的理解上有很大發揮空間。