中華民國第53屆中小學科學展覽會

作品說明書

國中組 地球科學科

030507

"城市殺手"直下型地震

學校名稱:雲林縣私立永年高級中學(附設國中)

作者:	指導老師:
國一 施泓丞	陳尚民
國一 邱連春	黄鈺涵
國一 周家仔	

關鍵詞:直下型地震、共振現象、制震器

城市殺手"直下型地震"

-利用自製振動台研究建築物的抗震方法

摘 要

本研究主要是研究城市直下型地震抗震的方法,並利用自製振動台來測試建築 制震器的抗震能力,結果顯示**黏滯阻尼器、斜撐式制震器**效能較佳,**類彈簧式、制 震壁式**則成效較差,同時亦發現軟弱地層厚度越高,到達共振情形越明顯,對P波、 S波震波實驗結果得知,S波對建築物傷害更甚,岩層實驗結果可知火成岩(安山岩) 抗震能力較佳,大理岩則略差,軟弱地層則對震波有放大效果,得知只要建築物在 岩盤上,安全性較佳。

壹、研究動機

台灣地處環太平洋地震帶上,島上人口稠密,倘若發生直下型地震,其震源在 城市的正下方,會對大城市造成直接影響,其所造成的人員傷亡與損失,將遠遠超 過其他類型的地震。鄰近的日本與中國,分別在1995年的日本阪神地震和1976年的 中國唐山大地震,發生最典型的城市直下型地震,台灣的首府為盆地地形,岩性軟 弱若發生直下型地震更容易產生共振,而加劇地震所造成的傷害,因此本研究針對 建築的抗震方法,做深入研究與分析。

貳、研究目的

本研究主要是探討建築物不同形式的制震器,在直下型地震發生時產生的作 用,藉此找出較適宜的制震器。本研究方向有以下幾點:

一、自製振動台,模擬P波與S波,並試圖找出共振的頻率。

- 二、選擇數種不同形式制震器原理,加以模擬並測試。
- 三、探討底部不同岩性對制震器的影響,並模擬軟弱岩性最佳的抗震方法。

1

參、研究設備及器材

表一、研究設備及其用途

編號	物品	數量	用途
	筆記本、筆	1本2支	實驗日記,紀錄觀察結果
<u> </u>	數位相機	2 台	拍攝實驗過程
<u> </u>	木條	100枝	模擬建築
四	直流馬達	2 顆	模擬地震
Ŧī.	木板	6 片	振動台外殼
六	彈簧	4 個	模擬地震
t	直流電源供應器	1顆	震動台電源
八	保麗龍	8 片	模擬軟弱地層
九	各式石板	5 片	模擬堅硬岩盤
+	砝碼(50g)	20 個	荷重用
+-	大彈簧	4 組	抗震台支柱
+ <u> </u>	碼表	1個	測量時間
十三	麥芽糖	1 罐	阻尼器材
十四	小彈簧	12 個	制震器材
十五	鐵球	1顆	制震器材
十六	釣魚線	1 捆	制震器材
十七	熱熔槍	1支	實驗器材
十八	熱熔膠	30 條	實驗器材
十九	束帶	20 捆	實驗器材
<u> </u>	電鑽	1支	鑽孔
<u> </u>	美工刀	1支	切割
<u> </u>	螺絲起子	1支	實驗器材
二十三	螺絲與螺帽	12 組	實驗器材

肆、 研究過程與方法

本研究過程方法的流程圖如下所示:

圖一、研究流程

伍、研究過程或方法

一、地震波種類分析

(一)P波

P波擁有最快的傳體內波,因此地震發生時,P波是最早被記錄的地震波, P波代表壓力(pressure),來自於其震動傳遞方式與聲波相似,屬縱波,傳遞時 介質的震動方向與震波能量的傳播方向平行。

(二)S波

S波(S-wave, secondary wave)是第二種體內波,中之一。S波(secondary wave) 是由於它的速度僅次於P波(最快的地震波)。S波的S也可以代表剪切波(shear wave),因為S波是一種橫波,地球內部粒子的震動方向與震波能量傳遞方向是 垂直的。S波與P波不同的是,S波無法穿越液體。所以S波的陰影區正對著地震 的震源。S波移動時是剪切波或橫波,因此其運動方向與波的傳播方向是垂直 的,若要形象地描述S波,可以認為S波是揮動繩子時,繩子上傳播的波。

圖三、 S波示意圖(資量來源: Applied Technology Council (ATC))

(三)表面波

表面波是淺源地震所引起為主。具低頻率、高震幅和頻散(Dispersion)的特性,

只在近地表傳遞,是破壞力最大的地震波。又分成:

(1)樂夫波:粒子振動方向和波前進方向垂直,但振動只發生在水平方向上,沒有垂直分量,類似於S波,差別是側向震動振幅會隨深度增加而減少。

圖四、 Love波示意圖(資量來源: Applied Technology Council (ATC)) (2) 雷利波:又稱為地滾波,粒子運動方式類似海浪,在垂直面上,粒子呈逆時針橢 圓形振動,震動振幅一樣會隨深度增加而減少。

圖五、 Rayleigh波示意圖(資量來源: Applied Technology Council (ATC))

本研究綜合各波性質可得:

表二、地震波性質比較(本研究製)

地震波種類								
體	为波	表面	面波					
P 波(縱波)	S 波(橫波)	L 波(勒夫)	R 波(雷利)					
傳遞形式:壓縮	傳遞形式:剪力	傳遞形式:表層	傳遞形式:表層					
^ω Pg								
速度 $\nu_{\rm p} = \left[\frac{K + \frac{4}{3}\mu}{\rho}\right]^{1/2}$	速度 $\nu_{s} = \left[\frac{\mu}{\rho}\right]^{1/2}$	速度 約 0.9 VS	速度 V=f.λ					

二、台灣地層分析

台灣除大南澳片岩屬於中生代地層外,其餘皆為新生代地層,可分為: (一)西部海岸平原:由河流沖積形成,岩性為泥岩、頁岩、粉砂岩、粒岩、石灰

岩等屬沉積岩類。

(二)西部麓山帶:由輕度變質的硬頁岩所組成。

(三)大屯火山群:板塊碰撞隱沒局部熔融,岩漿噴出地表形成的安山岩。

(四)雪山山脈:由變質砂岩與石英岩形成,屬中度變質。

(五)中央山脈西翼:由板岩、千枚岩形成,屬中高度變質。

(六)中央山脈東翼:由片岩形成(含成雙變質帶),屬高度變質。

(七)大南澳片岩:為古陸變質基盤,是台灣最老的地層。

(八)海岸山脈:為呂宋島弧碰撞事件形成,由變質火山雜岩、片麻岩、大理岩等 組成,是台灣變質度最高的區域。

圖六、台灣地質圖(資料來源:行政院國家科學委員會)

三、振動台設計與測試

(一)設計理念

本研究以地震波性質做模擬,利用兩顆直流馬達模擬P波與S波,利用6306D 雙組直流電源供應器,調整伏特量與安培數,再將直流馬達裝上螺帽模擬橢輪 方式作動,將一顆直流馬達裝在右側模擬剪力產生的S波,另一顆直流馬達裝在 振動台的正下方,模擬正向力產生的P波如下所示:

圖七、抗震台設計(本研究設計繪製)

(二)製作流程

(1)振動台製作

本研究底部用木板區隔,放置兩顆直流馬達,再用4組大彈簧當支撐柱, 裝上振動台面板,直流馬達分別用橢輪方式,其中一顆讓其垂直運動模擬P波, 另一顆讓其左右搖擺模擬S波,之後再利用6306D 雙組直流電源供應器,驅動 直流馬達,並可調整電流大小,產生不同轉速的頻率,以下就是振動台製作過 程:

1.木製底座	2.在底板架設彈簧
3.架設直流馬達(1)於第座內,組裝底板 和底座	4.放置直流馬達(2)於底板上
5.組裝震動面板	6.振動台完成

圖八、振動台製作流程圖(本研究設計)

(2)建築物製作

本研究設計三個樓面的建築物,每個樓面間隔 10 公分,總樓高為 30 公分, 頂部預放水杯,一樓面則放五顆砝碼,樓的截面積 15*15 公分,材料用一般木條 製作,以下為建築物完成圖。

圖九、建築物設計(本研究設計)

四、地層與制震器模擬

(一)地層模擬

本研究以台灣常見的岩層做測試,沉積岩選用頁岩和砂岩、火成岩用安山 岩、變質岩用大理岩和板岩,對照組則使用保麗龍,以下為實驗過程:

岩板種類	台灣分布地區	岩板種類	台灣分布地區
Car 11	頁岩:	111	大理岩:
	西部海岸平原	A A	東部海岸山脈
	砂岩:		板岩:
	西部海岸平原	\$ Kips	中央山脈西翼
	安山岩:		保麗龍:
	大屯火山群		書局購買

圖十、實驗用地層(本研究)

(二)制震器模擬

本研究整理制震器常見形式,大致可分為以下各種:

(1)制震系統:

1.位移型阻尼器:

1-1.降伏型:鋼板阻尼器.

1-2.挫屈型: 韌性斜撐器. 台北縣府大樓, 板橋新站.

1-3.摩擦型:摩擦阻尼器 .

2.速度型阻尼器:

2-1.流體黏滯阻尼器(FVD).內湖台新大樓有裝設.

2-2.黏彈性阻尼器(VE Damper).劍潭車站,帝寶有裝設.

2-3.制震壁(VEM).中悅-捷寶,新世紀有裝設.

(2)隔震系統:

1.類彈簧式隔震.(慈濟新店分院,潤泰藍海)

2. 滑動式隔震.

降伏型	挫屈型	摩擦型	流體黏滯阻尼器
黏彈性阻尼器	制震壁	類彈簧式隔震	滑動式隔震

圖十一、常見制震器形式(資料來源:網站)

五、軟弱地層模擬並測試

(一)制震器實驗步驟

本研究選擇五種制震器原理做實驗組,分別為流體黏滯阻尼器(麥芽糖模擬)、 類彈簧式隔震、制震壁(VEM)(海綿模擬)、阻尼球式(模擬 101 大樓制震系統)、挫屈 型(韌性斜撐),如下所示:

制震器種類與完成照片	說明
麥芽糖 制震器	 流體黏滯阻尼器 本研究參考黏滯係數以麥芽糖 做模擬,將麥芽糖灌入支撐柱的 鑽孔槽內,待其均匀分布即可。
理 簽 制震器	 2. 類彈簧式隔震 在支撐柱與鑽孔槽間,以彈簧做 連結介質。
制震壁 制震器	 制震壁(VEM) 本研究以海綿當做制震壁,區隔 支撐柱地區。作法為先將地層簍 空,置入海棉,再回填支撐柱地 區。
阻尼球	4. 阻尼球式
nº R 6à	本研究以鐵球當吸震源,透過能 量釋放傳遞到鐵球,降低支撐柱 的負擔。
斜撐式 制震器	5. 挫屈型(韌性斜撐)
	使用大型伸縮彈簧當作側壁的支 撐,將地震能量透過斜撐吸收。

圖十二、本研究自製的制震器

本研究選擇保麗龍模擬軟弱地層,分別加厚保麗龍高度,實驗步驟如下: (1)以美工刀挖出保麗龍四個支撐柱孔。

(2)將測試的制震器依序裝置於建築物與保麗龍上,保麗龍接促面皆以魔鬼 氈固定。

(3)逐次增加保麗龍厚度,一層20公分,最多加到三層,並模擬共振狀態。

以下以阻尼球作範例:

圖十三、本研究自製的制震器

(三)震動台實驗步驟

(1)震波模擬

本研究以兩顆直流馬達模擬地震波,以下為地震波模擬示意圖:

圖十四、P波、S波模擬圖

(四)電壓量

本研究以6306D 雙組直流電源供應器當電源,分別以直流電10、20、30V當 測試電壓量,評估電流高低產生不同頻率所受的影響。

圖十五、電壓量調整

(五)建築物位移量

(1)水平位移量測量方式

本研究以動態攝影方式,以靜止時支撐柱為起始角度,計算震動時最大水 平位移角度,然後再換算成水平距離。

換算公式: 位移量=支撐柱長度*tanθ,θ=位移角度

(2)垂直位移量測量方式

本研究以旗桿固定座改良成觀測標竿,再以動態攝影方式,以靜止起始線 為基準,計算震動時最大垂直位移量。

圖十六、建築物水平位移(左)垂直位移(右)量示意圖

(六)建築物內部搖晃度

本研究模擬建築物共有三個樓面,採用國家地震中心抗震盃國際邀請賽方式,在一樓面放置50克砝碼5個當質量塊,並在放置點標記起始位置,晃動結束後將五個砝碼位移量,累加成一個值。頂部的樓面放置一盛滿50cc的水杯(底部 與樓面相連),再算震動後的溢水量。

圖十七、建築物內部搖晃度示意圖

陸、研究結果

一、震波與地層模擬結果(無制震器)

本研究模擬震波與地層的用意,主要是想了解軟弱地層與各新鮮岩盤的震度是 否有差異,更進一步想得知各不同新鮮岩盤,震度所呈現的差異為多少,若無明顯 差異,則可直接用軟弱地層作分析。

(1)P波模擬結果如下:

表三:P波模擬結果(保麗龍)對照組

電	壓量(伏特)		10.0			20.0			30.0	
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN 0)	0	1	0	0	0	0	0	0	1
外部	水平位移量(cm)	0	0.21	0	0	0	0.21	0	0	0.21
	垂直位移量(cm)	1.02	0.99	1.05	1.04	1.09	1.03	1.09	1.07	1.09
建築物	溢水量(cc)	3.0	2.0	2.0	5.0	3.0	5.0	7.0	8.0	7.0
內部	砝碼位移(cm)	2.08	1.97	1.99	2.34	2.11	2.38	2.56	2.64	2.61
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表四:P波模擬結果(頁岩)實驗組

電	電壓量(伏特)		10.0		20.0			30.0		
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN0)	0	0	0	0	0	0	0	0	0
外部	水平位移量(cm)	0	0	0	0	0	0	0	0	0
	垂直位移量(cm)	1.03	1.05	1.03	1.06	1.04	1.04	1.04	1.05	1.05
建築物	溢水量(cc)	2.0	2.0	2.0	3.0	3.0	4.0	5.0	6.0	5.0
內部	砝碼位移(cm)	1.13	1.42	1.22	1.89	1.94	1.91	2.04	2.08	2.26
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表五:P波模擬結果(砂岩)實驗組

電	電壓量(伏特)		10.0		20.0			30.0		
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN 0)	1	0	0	0	0	0	0	1	0
外部	水平位移量(cm)	0.21	0	0	0	0	0	0	0.21	0
	垂直位移量(cm)	1.04	1.04	1.02	1.06	1.06	1.05	1.05	1.05	1.05
建築物	溢水量(cc)	3.0	2.0	2.0	4.0	3.0	4.0	6.0	6.0	6.0
內部	砝碼位移(cm)	1.30	1.28	1.16	1.98	1.91	1.89	2.15	2.04	2.18
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表六:P波模擬結果(安山岩)實驗組

電	電壓量(伏特)		10.0		20.0			30.0		
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN0)	0	0	0	1	0	0	0	0	0
外部	水平位移量(cm)	0	0	0	0.21	0	0	0	0	0
	垂直位移量(cm)	1.03	1.02	1.03	0.99	1.00	1.02	1.02	1.01	1.02
建築物	溢水量(cc)	2.0	2.0	2.0	3.0	4.0	3.0	5.0	6.0	5.0
內部	砝碼位移(cm)	1.14	1.25	1.17	1.88	1.84	1.82	2.12	2.19	2.13
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表七:P波模擬結果(板岩)實驗組

電	電壓量(伏特)		10.0		20.0			30.0		
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN ₀)	0	0	0	0	0	0	0	0	0
外部	水平位移量(cm)	0	0	0	0	0	0	0	0	0
	垂直位移量(cm)	1.03	1.04	0.99	1.03	1.05	1.05	1.07	1.04	1.06
建築物	溢水量(cc)	3.0	3.0	2.0	4.0	4.0	4.0	5.0	6.0	6.0
內部	砝碼位移(cm)	1.01	1.19	1.07	1.97	1.95	2.01	2.17	2.25	2.32
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表八:P波模擬結果(大理岩)實驗組

電	壓量(伏特)		10.0			20.0			30.0	
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN 0)	0	1	0	0	0	0	0	0	0
外部	水平位移量(cm)	0	0.21	0	0	0	0	0	0	0
	垂直位移量(cm)	1.00	1.01	1.04	1.03	1.05	1.05	1.06	1.06	1.07
建築物	溢水量(cc)	2.0	2.0	2.0	3.0	3.0	4.0	5.0	5.0	7.0
內部	砝碼位移(cm)	1.40	1.32	1.29	2.01	2.05	2.08	2.38	2.42	2.51
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表九:S波模擬結果(保麗龍)對照組

電	壓量(伏特)		10.0			20.0			30.0	
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN 0)	6.0	6.0	5.0	7.0	6.0	7.0	9.0	9.0	10.0
外部	水平位移量(cm)	1.26	1.26	1.05	1.47	1.26	1.47	1.90	1.90	2.12
	垂直位移量(cm)	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0
建築物	溢水量(cc)	8.0	9.0	8.0	12.0	11.0	13.0	17.0	18.0	22.0
內部	砝碼位移(cm)	5.24	4.66	5.02	5.08	4.62	5.16	5.52	5.68	5.62
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表十:S波模擬結果(頁岩)實驗組

電	壓量(伏特)		10.0			20.0			30.0	
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN0)	4.0	3.0	3.0	4.0	5.0	4.0	6.0	6.0	7.0
外部	水平位移量(cm)	0.84	0.63	0.63	0.84	1.05	0.84	1.26	1.26	1.47
	垂直位移量(cm)	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
建築物	溢水量(cc)	6.0	5.0	5.0	6.0	8.0	6.0	9.0	10.0	12.0
內部	砝碼位移(cm)	2.42	2.13	2.31	2.84	2.91	2.77	3.15	3.82	4.01
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表十一:S波模擬結果(砂岩)實驗組

電	壓量(伏特)		10.0			20.0			30.0	
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN ₀)	3.0	3.0	4.0	5.0	4.0	5.0	7.0	6.0	7.0
外部	水平位移量(cm)	0.63	0.63	0.84	1.05	0.84	1.05	1.47	1.26	1.47
	垂直位移量(cm)	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0
建築物	溢水量(cc)	3.0	3.0	3.0	6.0	5.0	6.0	8.0	7.0	9.0
內部	砝碼位移(cm)	2.28	2.02	2.18	2.66	2.72	2.59	2.94	3.54	3.71
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表十二:S波模擬結果(安山岩)實驗組

電	壓量(伏特)		10.0			20.0			30.0	
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN 0)	5	5	4	5	5	6	6	7	6
外部	水平位移量(cm)	1.05	1.05	0.84	1.05	1.05	1.26	1.26	1.47	1.26
	垂直位移量(cm)	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0
建築物	溢水量(cc)	4.0	4.0	3.0	7.0	6.0	7.0	10.0	10.0	11.0
內部	砝碼位移(cm)	2.93	2.59	2.80	2.84	2.56	2.89	3.10	3.20	3.16
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表十三:S波模擬結果(板岩)實驗組

電	壓量(伏特)		10.0			20.0			30.0	
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN0)	5.0	6.0	5.0	6.0	6.0	7.0	8.0	9.0	8.0
外部	水平位移量(cm)	1.05	1.26	1.05	1.26	1.26	1.47	1.69	1.90	1.69
	垂直位移量(cm)	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
建築物	溢水量(cc)	4.0	3.0	4.0	7.0	5.0	6.0	11.0	11.0	10.0
內部	砝碼位移(cm)	3.64	3.21	3.48	3.52	3.18	3.58	3.85	3.97	3.93
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表十四:S波模擬結果(大理岩)實驗組

電	壓量(伏特)		10.0			20.0			30.0	
項目	實驗次數	1	2	3	1	2	3	1	2	3
建築物	位移角(TAN0)	4.0	5.0	5.0	6.0	5.0	7.0	8.0	9.0	9.0
外部	水平位移量(cm)	0.84	1.05	1.05	1.26	1.05	1.47	1.69	1.90	1.90
	垂直位移量(cm)	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0
建築物	溢水量(cc)	3.0	3.0	4.0	6.0	7.0	6.0	9.0	10.0	10.0
內部	砝碼位移(cm)	2.47	2.19	2.36	2.88	2.95	2.81	3.19	3.84	4.03
	作用時間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

二、軟弱地層與制震器模擬結果

由震波與地層模擬結果,得知各岩層模擬結果差距不不明顯,唯非岩性的保麗 龍有較大位移量,因此本研究針對保麗龍加裝制震器做研究。

(一)P 波對保麗龍的影響

(1)單層保麗龍(20cm)實驗結果:

種類	黏滯	翔尼	器	類	彈簧	式	<u>4</u>	訓震量	辛	<u> </u>	且尼玛	Ŕ	余	∦撐⊒	t
	電壓	量(伏特	寺)	電	壓量(伏	特)	電風	医量(伊	(特)	電風	₹量(伊	(特)	電壓	医量(伊	(特)
方法	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30
位移角 (TAN 0)	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0
水平位 移量(cm)	0.00	0.00	0.00	0.00	0.21	0.21	0.21	0.00	0.21	0.21	0.0	0.0	0.00	0.00	0.00
垂直位 移量(cm)	1.01	1.00	1.02	1.04	1.02	1.02	1.03	1.02	1.00	1.00	1.03	1.04	1.02	1.03	1.02
溢水量 (cc)	2.0	3.0	4.0	4.0	4.0	5.0	4.0	4.0	6.0	2.0	2.0	3.0	1.0	2.0	2.0
砝碼位 移(cm)	0.89	0.97	1.02	1.27	1.33	1.48	1.01	1.29	1.31	0.94	0.98	1.03	0.56	1.21	1.28
作用時 間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表十五:單層保麗龍實驗數據(20cm)

(2)雙層保麗龍(40cm)實驗結果:

表十六:雙層保麗龍實驗數據(40cm)

種類	黏滯	翔尼	器	類	彈簧	式	徣	訓震量	辛	ß	且尼亞	求	余	∦撐∃	t
	電壓	量(伏特	寺)	電	壓量(伏	特)	電風	医量(伊	(特)	電風	医量(伊	(特)	電風	医量(伊	(特)
方法	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30
位移角 (TAN0)	1.0	1.0	1.0	0.0	1.0	1.0	1.0	0.0	1.0	1.0	10	1.0	0.0	1.0	10
水平位 移量(cm)	0.21	0.21	0.21	0.00	0.21	0.21	0.21	0.00	0.21	0.21	0.21	0.21	0.00	0.21	0.21
垂直位 移量(cm)	0.99	1.01	1.00	1.02	1.05	1.07	1.04	0.99	1.05	1.01	1.03	1.02	1.01	1.05	1.05
溢水量 (cc)	4.0	5.0	6.0	4.0	4.0	7.0	4.0	6.0	8.0	3.0	4.0	6.0	3.0	4.0	5.0
砝碼位 移(cm)	1.28	1.43	1.62	1.49	1.73	1.95	1.94	2.08	2.25	1.14	1.57	1.73	1.02	1.38	1.49
作用時 間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

(3)雙層保麗龍(60cm)實驗結果:

種類	黏滯	翔尼	器	類	彈簧	式	背	訓震量	辛	ß	且尼玫	求	余	糾撐⊒	ť
	電壓	量(伏特	寺)	電	壓量(伏	(特)	電周	医量(伊	(特)	電周	医量(伊	(特)	電風	医量(伊	(特)
方法	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30
位移角 (TANθ)	2.0	2.0	1.0	2.0	2.0	2.0	2.0	1.0	2.0	2.0	1.0	2.0	2.0	2.0	2.0
水平位 移量(cm)	0.42	0.42	0.21	0.42	0.42	0.42	0.42	0.21	0.42	0.42	0.21	0.42	0.42	0.42	0.42
垂直位 移量(cm)	1.01	1.00	1.02	1.04	1.04	1.05	1.02	1.02	1.06	1.04	1.03	1.04	0.99	1.02	1.03
溢水量 (cc)	8.0	11.0	15.0	8.0	8.0	13.0	7.0	11.0	15.0	6.0	8.0	11.0	6.0	9.0	12.0
砝碼位 移(cm)	2.59	2.91	3.27	2.99	3.52	4.01	3.89	4.17	4.62	2.29	3.25	3.58	2.14	2.88	3.27
作用時 間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表十七:三層保麗龍實驗數據(60cm)

(二)S 波對保麗龍的影響

砝碼位

移(cm) 作用時

間(min)

4.66

2.0

5.24

2.0

5.89

2.0

5.38

2.0

6.34

2.0

(1)單層保麗龍(20cm)實驗結果:

			1	178		PLAND V		~~~*	at (= = =)					
種類	黏滯	翔 尼	器	類	彈簧	式	<u>4</u>	訓震量	音	ß	目尼玛	Ŕ	余	¥撐⊒	t
	電壓	量(伏特	寺)	電	塈量(伏	特)	電風	医量(伊	(特)	電風	医量(伊	(特)	電壓	₹量(伏	(特)
方法	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30
位移角 (TANθ)	9.0	11.0	13.0	12.0	13.0	15.0	13.0	14.0	16.0	10.0	11.0	13.0	8.0	9.0	11.0
水平位 移量(cm)	1.90	2.33	2.77	2.55	2.77	3.22	2.77	2.99	3.44	2.12	2.33	2.77	1.69	1.90	2.33
垂直位 移量(cm)	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
溢水量 (cc)	12.0	18.0	21.0	13.0	19.0	23.0	15.0	19.0	24.0	14.0	17.0	20.0	11.0	14.0	18.0

30

11.0

2.33

0.00

18.0

5.89

2.0

5.85

2.0

6.44

2.0

3.85

2.0

5.18

2.0

表十八: 單層保麗龍實驗數據(20cm)

7.22

2.0

7.00

2.0

7.51

2.0

8.32

2.0

4.12

2.0

(2)雙層保麗龍(40cm)實驗結果:

種類	黏滯	翔尼	器	類	彈簧	式	#	訓震量	辛	ß	且尼玛	求	余	蚪撐⊒	ť
	電壓	量(伏特	寺)	電	壓量(伏	(特)	電周	医量(伊	(特)	電周	医量(伊	(特)	電	医量(伊	(特)
方法	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30
位移角 (TANθ)	11	15	17	13	16	19	14	17	20	13	15	18	11	13	19
水平位 移量(cm)	2.33	3.22	3.67	2.77	3.44	4.13	2.99	3.67	4.37	2.77	3.22	3.90	2.33	2.77	4.13
垂直位 移量(cm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
溢水量 (cc)	15.0	20.0	24.0	16.0	22.0	26.0	18.0	23.0	27.0	15.0	19.0	24.0	16.0	19.0	23.0
砝碼位 移(cm)	7.60	8.54	9.60	8.77	10.33	11.77	11.4	12.2	13.5	6.72	9.54	10.5	6.28	8.44	9.60
作用時 間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表十九:雙層保麗龍實驗數據(40cm)

(3)雙層保麗龍(60cm)實驗結果:

表二十:三層保麗龍實驗數據(60cm)

種類	黏滯阻尼器			類彈簧式			制震壁			阻尼球			斜撐式		
	電壓量(伏特)			電壓量(伏特)			電壓量(伏特)			電壓量(伏特)			電壓量(伏特)		
方法	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30
位移角 (TAN0)	13	17	19	19	22	斷	18	20	25	14	19	21	12	15	20
水平位 移量(cm)	2.77	3.67	4.13	4.13	4.85	斷	3.90	4.37	5.60	2.99	4.13	4.61	2.55	3.22	4.37
垂直位 移量(cm)	0.00	0.00	0.00	0.00	0.00	斷	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
溢水量 (cc)	18.0	24.0	28.0	21.0	27.0	斷	20.0	26.0	31.0	17.0	23.0	28.0	18.0	22.0	24.0
砝碼位 移(cm)	8.40	9.51	10.6	9.38	11.26	斷	12.3	14.7	15.5	8.72	10.5	11.7	7.21	9.42	10.0
作用時 間(min)	2.0	2.0	2.0	2.0	2.0	1.6	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

(三)P波、S波同時作用對保麗龍的影響

(1)單層保麗龍(20cm)實驗結果:

種類	黏滯阻尼器			類彈簧式			制震壁			阻尼球			斜撐式		
	電壓量(伏特)		電壓量(伏特)			電壓量(伏特)			電壓量(伏特)			電壓量(伏特)			
方法	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30
位移角 (TAN0)	8.0	10.0	11.0	13.0	14.0	13.0	12.0	15.0	15.0	9.0	10.0	11.0	8.0	9.0	9.0
水平位 移量(cm)	1.90	2.33	2.77	2.55	2.77	3.22	2.77	2.99	3.44	2.12	2.33	2.77	1.69	1.90	2.33
垂直位 移量(cm)	1.05	1.08	1.04	1.03	1.02	0.99	1.06	1.07	1.05	1.00	1.02	1.04	0.98	1.03	1.02
溢水量 (cc)	11.0	16.0	22.0	14.0	17.0	25.0	16.0	21.0	25.0	16.0	18.0	21.0	12.0	13.0	17.0
砝碼位 移(cm)	5.83	6.53	7.31	6.70	7.85	8.90	8.64	9.25	10.2	5.18	7.26	7.97	4.86	6.46	7.31
作用時 間(min)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

表二十一:單層保麗龍實驗數據(20cm)

(2)雙層保麗龍(40cm)實驗結果:

種類	黏滯阻尼器			類	彈簧	式	背	訓震量	辛	ß	且尼玛	求	斜撐式			
	電壓量(伏特)			電	電壓量(伏特)			電壓量(伏特)			電壓量(伏特)			電壓量(伏特)		
方法	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30	
位移角 (TAN0)	16.0	22.0	25.0	19.0	23.0	斷	20.0	25.0	29.0	19.0	22.0	26.0	16.0	19.0	28.0	
水平位 移量(cm)	3.43	4.79	5.51	4.10	5.14	斷	4.44	5.51	6.65	4.10	4.79	5.88	3.43	4.10	6.26	
垂直位 移量(cm)	1.20	1.24	1.25	1.24	1.22	斷	1.27	1.28	1.26	1.20	1.22	1.25	1.18	1.24	1.25	
溢水量 (cc)	15.0	20.0	24.0	16.0	22.0	斷	18.0	23.0	27.0	15.0	19.0	24.0	16.0	19.0	23.0	
砝碼位 移(cm)	9.27	10.4	11.7	10.70	12.60	斷	13.9	14.8	16.4	8.20	11.6	12.8	7.66	10.3	11.7	
作用時 間(min)	2.0	2.0	2.0	2.0	2.0	1.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	

表二十二:雙層保麗龍實驗數據(40cm)

(3)雙層保麗龍(60cm)實驗結果:

種類	黏滞	黏滯阻尼器			彈簧	簧式 制震壁 阻尼球			求	斜撐式						
	電壓量(伏特)			電	電壓量(伏特)			電壓量(伏特)			電壓量(伏特)			電壓量(伏特)		
方法	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30	
位移角 (TAN0)	19	25	28	28	斷	斷	26	30	37	20	28	31	17	22	30	
水平位 移量(cm)	4.10	5.59	6.38	6.38	斷	斷	5.98	6.79	9.08	4.46	6.38	7.22	3.75	4.83	6.79	
垂直位 移量(cm)	1.28	1.31	1.29	1.21	斷	斷	1.23	1.29	1.29	1.19	1.23	1.21	1.15	1.21	1.23	
溢水量 (cc)	19.0	26.0	30.0	23.0	斷	斷	22.0	27.0	33.0	19.0	24.0	27.0	19.0	22.0	25.0	
砝碼位 移(cm)	10.7	12.1	13.5	12.01	斷	斷	15.7	18.8	19.8	11.1	13.4	14.9	9.23	12.0	12.8	
作用時 間(min)	2.0	2.0	2.0	2.0	1.7	0.9	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	

表二十三:三層保麗龍實驗數據(60cm)

柒、討論

- -、P 波產生的形式與人工炸測相似,雖然速度較快,地震發生時產生的錯動較像
 S 波,P 波較適合地球物理探勘,對建築破壞性似乎以S 波為主。
- 二、建築若蓋在新鮮岩盤,其岩性影響因子甚小,地震的災害與底部岩層膠結度有 關,軟弱地層的厚度與建築搖晃度有直接關係。
- 三、低頻的地震波對較高建築破壞性較強,高頻的地震波則對低矮建築較具殺傷力, 本研究實驗規模較小,數據似乎呈現頻率漸高破壞力漸強現象。
- 四、類彈簧式制震器於S波測試與P波S波混合測試時,支撐柱折斷,是否為達到 共振頻率產生的共振現象所致。(皆在第三層高度時)

- 五、直下型地震的 P 波從建築物正下方上來,建築物的水平位移量與傾角理論上應該為零,垂直位移變化較大,這與實驗數據吻合。
- 六、S 波在本研究結果顯示,其水平位移量大,垂直位移量大部分為零,且水平位 移量數值較 P 波垂直位移量數值大。
- 七、地震台與模擬建築放置是否水平,建築物的支撐柱是否等長,會影響實驗數據 造成誤差。
- 八、軟弱地層的厚度增加,其建築物內外側位移量與搖晃程度遽增,顯示共振現象 越明顯,若盆地中心軟弱的沉積物多,發生直下型地震,則後果不堪設想。
- 九、本研究無法顯示表面波造成的破壞,事實上表面波是存在振動台近表層間,因 實驗規模小無法分析表面波所造成的影響。
- +、P波的質在垂直位移量上介於 0.99~1.29cm 間,與橢輪推進伸長量相似,若要加大P波數值,需增加橢輪伸長量。

捌、結論

- 一、本研究以位移量結果得知,P波影響垂直位移量,會使建築物上下震動;S波 影響水平位移量,會使建築物左右搖擺,因P波的速度最快,S波速度次之, 表面波則最慢,地震發生時,房子會先上下震動,而後再左右搖擺,最後才會 受到表面波的影響。
- 二、由 P 波、S 波、R 波與 L 波(表面波)的波速差繪製成震波走時曲線,直下型地震, 幾乎是震波的出發點,P 波、S 波、表面波交會再一起,能量立即釋放,建築 幾乎同時出現上下、左右的震動,嚴重度可想而知。

圖十八、震波走時線示意圖(修改自 Applied Technology Council)

- 三、震波與地層模擬結果顯示,只要是建築物蓋在岩盤上,可以有效減低震度,由 砝碼位移量結果顯示**安山岩位移量較小,似乎火成岩盤抗震效果會較好。**
- 四、以保麗龍模擬軟弱地層,添加到第二層時,P波、S波造成的位移量顯著增加, 似乎達到共振現象,且類彈簧式在 20V 時發生支柱斷裂,在 30V 亦發生斷裂, 類彈簧式制震器,似乎在混合地震模組抗震程度較弱,混合地震模組表現最佳 者為黏滯阻尼器。
- 五、P 波測試軟弱地層,結果於 30V,三層保麗龍厚度中,呈現彈簧式制震器最弱, 黏滯阻尼器最佳。
- 六、S波測試軟弱地層,結果於30V,三層保麗龍厚度中,亦呈現彈簧式制震器最弱,且發生支撐柱斷裂,表現最佳者依然是黏滯阻尼器。

七、綜合以上各實驗結果,類彈簧式制震器用在直下型地震實驗,結果最差,制震 壁次差,而黏滯阻尼器(麥芽糖模擬),抗震效果最優,斜撐式次優,因此黏滯阻 尼器為對抗直下型地震最佳制震器。

震派	皮測試	種類	P 波	S 波	混合波(P、S 波)				
	岩層測試		安山岩	安山岩	-				
 岩層:			大理岩	大理岩	-				
軟	_	最佳	黏滯阻尼器	斜撐式	斜撐式				
弱	層	最差	類彈簧式	制震壁	制震壁				
地	<u> </u>	最佳	黏滯阻尼器	黏滯阻尼器	黏滯阻尼器				
層	層	最差	類彈簧式	制震壁	類彈簧式				
測	11	最佳	黏滯阻尼器	黏滯阻尼器	黏滯阻尼器				
試	層	最差	類彈簧式	類彈簧式	類彈簧式				

表二十四:綜合實驗數據比較

玖、參考文獻

- 一、中華民國第五十一屆中小學科學展覽會國中組地球科學科說明書(民 101)。天不 搖,地不動一非牛頓流體在建築結構抗震之應用。
- 二、王聖利(1995),台北盆地對地震波影響之相關性研究,國立台灣大學土木工程 研究所碩士論文。
- 四、王振平(1997)應用諧調質量阻尼器及諧調液體阻尼器於台北 101 大樓減振之探 討,國立臺灣大學土木工程學研究所碩士論文。
- 五、財團法人中華顧問工程司專案研究計劃(2002),直下型地震對都市維生線之脆 弱性分析與震後機能之維持研究,國立台北科技大學土木工程學系。

- 六、黃慶東,「近斷層地動特性與震譜特性之探討」,中華民國結構工程協會,結構 工程,第十五卷,2006年,第91-133頁。
- 七、隔震元件(2013/01/08)。台北市:國家地震工程研究中心。取自: http://ws1.ncree.org/Ideers2008Edu/earthquakeeng/isolation.htm
- 八、Applied Technology Council (ATC), Seismic Evaluation and Retrofit of Concrete Buildings,Vol.1, ATC-40,Redwood City,CA,1996.

拾、附錄

圖十九、實驗過程照片

【評語】030507

- 1. 能設計儀器模擬不同的地震波,幫助實驗進行。
- 2. 能設計實驗,探討不同因素對震度的影響。
- 3. 對實驗中可能產生誤差的討論稍嫌不足。