中華民國第53屆中小學科學展覽會作品說明書

國中組 生物科

最佳團隊合作獎

030313

好「蚌」!石蚌之研究

學校名稱:桃園縣立楊光國民中(小)學

作者:

國二王 筠

國二 洪立穎

國一 盧昱安

指導老師:

張聰陽

彭淑媛

關鍵詞:石蚌、淨化水質、避敵行為

好「蚌」! 一石蚌之研究

摘要:

石蚌適於生存 pH6 到 7, 泥或細砂質底床的環境, 而我們探究牠的生存限制,實驗顯示最適合石蚌生長的溫度為 15 到 30 度,能將水質從酸性調節成中性。石蚌有特殊的光影避敵行為,於光影實驗得知石蚌會對光突然產生的陰影有所反應,研判是為避敵行為之反應。在石蚌的棲息環境中,附著性藻類的數量較少,而實驗中石蚌可有效地把透光率低的水體淨化,提升水中的透光率,使水變得清澈。

壹、研究動機

有一次在阿婆家抓魚的時候,在溝渠裡看到許多石蚌,於是在好奇心驅使下我決定 抓幾隻回家飼養。在飼養時,我發現石蚌有許多特殊的行為,這又加深我的好奇心。所 以決定針對石蚌,了解牠的生態、行為與對環境的影響。

貳、研究目的

- 一、了解石蚌的身體構造、型態特徵、生活史。
- 二、觀察石蚌的棲息環境。
- 三、探討石蚌對光的趨避研究石蚌對溫度、酸鹼的生存限制及相應習性。
- 四、分析石蚌的淨水能力。
- 五、探討石蚌對生態的應用。

參、研究設備與器材

魚缸、pH 測定儀、溫度計、燒杯、酒精燈、三腳架、尺、解剖器具組、燈泡、照度計、玻璃缸、陶瓷纖維網

肆、研究過程與方法

一、田調與生活環境之觀察

【方法】實際觀察石蚌的棲息環境與石蚌棲息地相通之水流區域,定期、定點(GPS 定位)進行紀錄石蚌棲息地(溝渠)之 pH 值、水溫、深度和流速,並觀察其底床型態。

圖 1-1 田調定點位置圖

圖 1-2 石蚌的棲息地

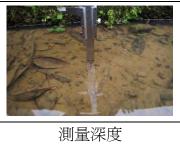


圖 1-3 定期測量與記錄各石蚌棲息地與石蚌棲息地相通之水流區域(A~Q)

表 1-1 棲息地(A~Q)2012 年 8 月至 2013 年 2 月之 pH 値、水溫、深度和流速表

	平均 pH 値	平均水溫℃	平均深度cm	平均流速(cm/sec)	
A	5.6	18.5	12	8	
В	5.6	17.6	22	10	
С	5.4	18.9	14	18	
D	6.0	18.3	20	16	
Е	5.2	18.9	16	19	
F	5.8	18.7	18	19	
G	5.7	17.8	24	22	
Н	5.6	17.5	26	26	
Ι	6.5	17.7	39	38	
J	5.9	18.1	40	20	
K	6.5	17.9	28	29	
L	6.4	18.3	30	32	
M	6.6	18.4	32	35	
N	6.6	17.4	38	42	
О	6.9	17.4	35	42	
P	6.9	17.3	40	45	
Q	6.8	17.1	42	48	
範圍	рН5.2~рН6.9	17.1°C~18.9°C	12 cm~42 cm	8 cm/sec ~48 cm/sec	
A~Q 平均	рН6.12	17.99℃	28.00 cm	27.59 cm/sec	

二、石蚌的生活史其相應之研究

(一)、石蚌的學名與分類階段

學名: 石蚌(Unio douglasiae taiwanicus)

分類階段:

動物界 Animalia 軟體動物門 Mollusca 雙殼綱 Bivalvia 蚌目 Unionoida 蚌科 Unionidae 蚌屬 Unio

(二)、石蚌的外型特徵觀察:

外殼橢圓形,殼面以黑棕褐色居多,有些則偏向黃綠色。前端圓,後端長尖形,外殼十分堅硬。GPS 定位的各定位點採集到的石蚌以游標尺測量大多為6~8 公分左右,成蚌平均約12.35 公克(g)重,空殼平均5.76 公克(g)重。

圖 2-1 石蚌外型特徵

(三)、石蚌的身體構造

【方法】參照石蚌解剖圖進行石蚌解剖,分爲不同階段(殼、外套膜、內臟囊) 進行解剖觀察並記錄

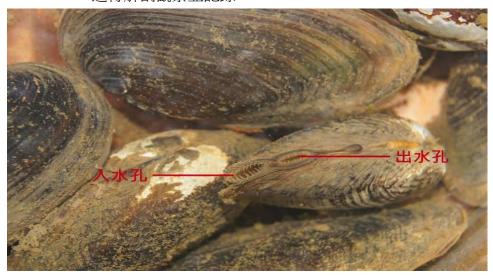
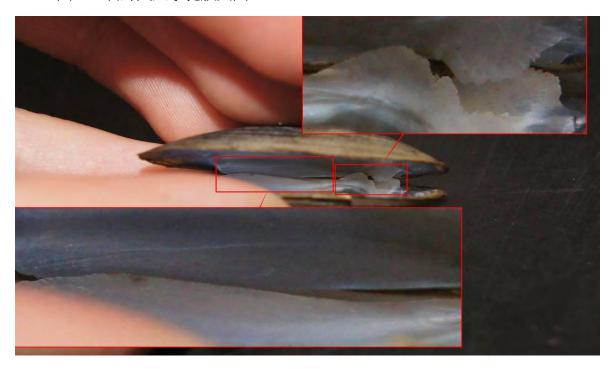
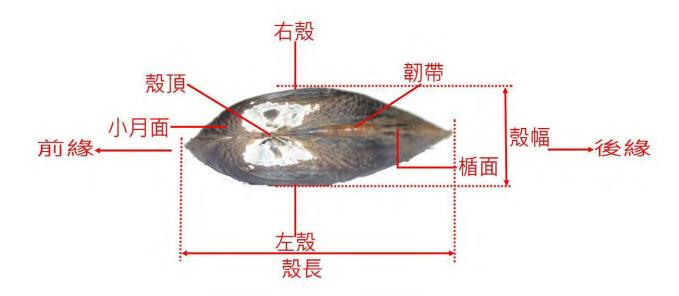
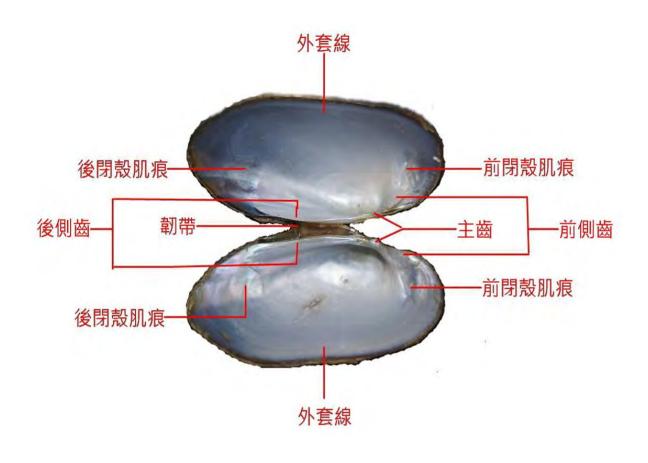
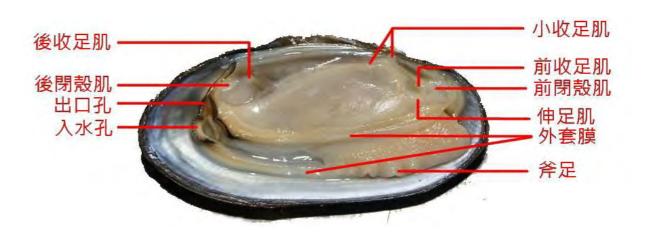


圖 2-2 石蚌出入水孔放大圖


圖 2-3 石蚌的鉸齒放大圖

以殼、外套膜、內臟囊爲解剖區分,由於內臟膜較薄,解剖刀無法細部分割,所以實物各部位直接分割標示。

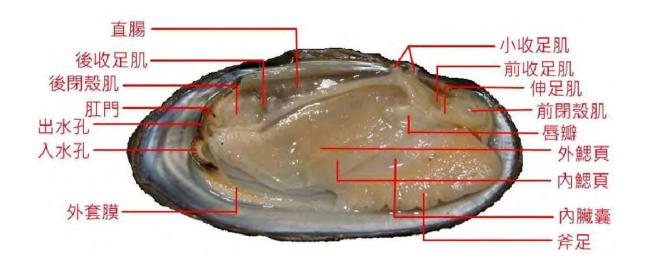


圖 2-4 石蚌解剖各器官實體圖

(四)、生命週期別概述及飼養觀察

1. 石蚌的生命週期:

雄蚌在繁殖期將精子排於水中,而精子會由入水孔進入雌蚌體內,並在鰓瓣間和卵完成 授精,並聚集於鰓瓣間慢慢孵化。發育完成後,雌蚌會將幼體排出,排出的幼體稱爲「鉤介 幼蟲」。而排出之鉤介幼蟲,會附著於魚體上吸收養分,慢慢長大。長到一定的程度時,便會 經變態脫離魚體,成爲幼蚌,而幼蚌會隨著生長,身體、殼慢慢變大,並長成成蚌。

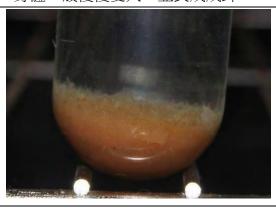



圖 2-5 未受精的卵

圖 2-6 受精卵

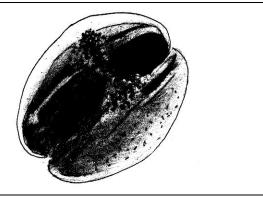


圖 2-7 鉤介幼蟲側面(顯微鏡觀察手繪) 圖 2-8 鉤介幼蟲側正面(顯微鏡觀察手繪)

2. 採集石蚌,模仿當地的環境飼養石蚌:

【方法】依田調當地環境,我們採取最多河蚌出現的 C、E、F、G、H 地點的 pH 平均值,作爲模擬牠的外在水體環境;由於稻田溝渠的排水牽涉 到插秧、收割的時間點,排水的條件差異頗大,所以深度條件、底床 型態我們以最多發現河蚌地點(E) 為模擬點;水溫設定在全年的平 均溫度下飼養石蚌。

圖 2-9 模仿當地環境進行飼養

三、石蚌的生存限制實驗:

(一)、溫度限制

爲了了解石蚌在不同溫度範圍內發生的變化,所以將石蚌放入常溫(20℃)的水中,增減溫度觀察並紀錄石蚌的相應行爲。

【方法】將石蚌隔水加熱或放入定溫冰箱,並放置溫度計,觀察因溫度的變化 所產生的相應行爲。

表 3-1 石蚌對溫度相應行爲表

溫度(℃)	相應行爲
0	斧足反應遲鈍
10	斧足反應遲鈍
20	正常活動
30	正常活動
35	櫛鰓及口唇瓣分泌的透明黏液,因溫度上升使黏液中的蛋白質變性,排出 白色物體
37	养足全伸出
40	斧足不停動
42	閉殼肌等肌肉已無法完全控制,導致殼被韌帶撐開

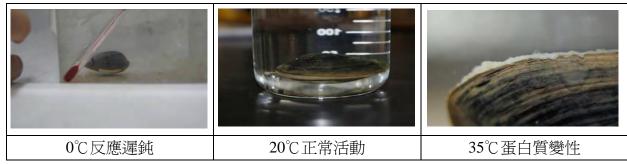
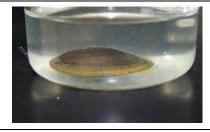


圖 3-1 石蚌對溫度相應行爲

(二)、酸鹼限制


考慮外在環境中可能受到許多外來物質(如酸雨、肥料等)影響,使水質的酸鹼變化;但是田調發現較多石蚌的地區水質並不會太酸,而且石蚌都維持一定的數量。因此藉由以下實驗,探討不同酸鹼的溶液對石蚌的影響。

【方法】酸性以檸檬萃取液(pH2.18)、鹼性以小蘇打水(pH9.00)加水稀釋,調成酸鹼度不同的水溶液,將石蚌放置於調好後的酸鹼溶液經一天後觀察其變化。

表 3-2 石蚌放入酸鹼溶液前後酸鹼度變化與石蚌放入後之反應表

放入石蚌前水溶液之酸鹼度	石蚌放入溶液中的反應	石蚌取出後水溶液之酸鹼度
4.50	正常活動	5.31
5.19	正常活動	6.71
6.50	正常活動	6.94
7.00	正常活動	7.03
8.00	存活、雙殼緊閉	8.00
9.00	存活、雙殼緊閉	9.00

pH8.00 的小蘇打水

石蚌過一段時間後雙殼緊閉

石蚌取出後小蘇打水 pH 値

圖 3-2 石蚌酸鹼限制實驗圖示

實驗發現: pH4.5 到 pH7.0 之間是石蚌正常活動的範圍。而我們取出石蚌後發現,石蚌的殼重平均減少 0.18 公克。

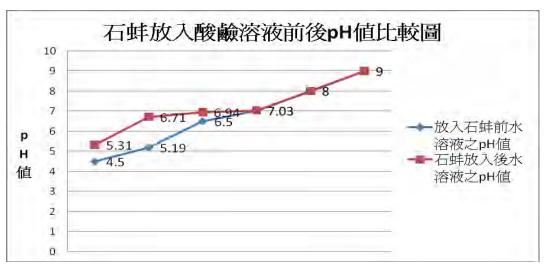


圖 3-3 石蚌放入酸鹼溶液前後 pH 值比較圖

(三)、石蚌外殼調節水中酸鹼值實驗

在酸鹼限制的實驗中,發現放入酸性溶液中的石蚌,取出後比放入前平均少 0.18 克,又因蚌殼中大部份的成分爲碳酸鈣,能與酸性水質結合,將水質調整接近 於中性,所以我們以 0.18 作爲基準量,來作水質淨化酸鹼實驗。

【方法】我們以「酸鹼限制」實驗中所得到一隻石蚌平均殼重減少 0.18 公克爲單位分裝成瓶,再放入酸性溶液中均勻攪拌後測量 pH 値。

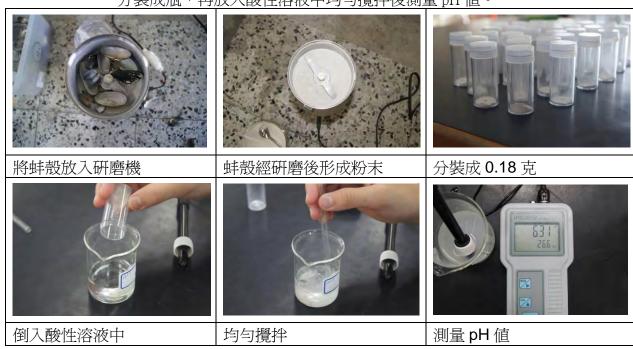
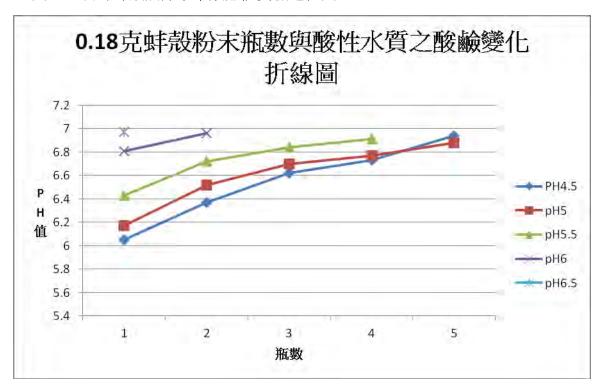
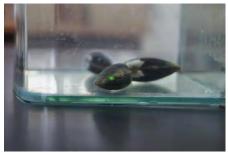


圖 3-4 石蚌外殼調節水中酸鹼值實驗過程圖




圖 3-50.18 克蚌殼粉末瓶數與酸性水質之酸鹼變化折線圖

實驗發現: pH 値最低(pH4.5)所需的粉末最多($1.8\times5=9$ 克),才能將水溶液調整至接近中性。而 pH 値最高(pH6.5)所需的粉末最少($1.8\times1=1.8$ 克)。

四、石蚌的感光實驗:

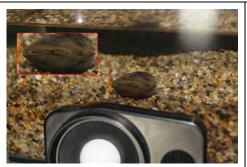
我們在飼養石蚌的過程中觀察發現,石蚌會對光線的明暗變化產生反應,但是 翻閱的文獻上並無清楚記載石蚌的感光細胞及其相關深入研究,於是展開以下實 驗,探究石蚌在不同照度的光線下,所產生的反應。

照射前(張開)

照射中(張開)

照射後(閉合)

圖 4-1 石蚌對燈光開關之反應


實驗發現:當出入水孔張開時,我們以光線照射石蚌之出入水孔石蚌並無反應(維持出入水孔張開),但如果將照射的光線移開時石蚌出入水孔便有反應(出入水孔閉合)。

(一)、石蚌對燈開關的反應

【方法】每次實驗等待石蚌出入水孔張開後,以照度不同的燈泡照射石蚌,經五秒 後關燈,觀察石蚌對光源開關的反應。

實驗前等待出入水孔張開

入水孔沒有反應出水孔有反應

50Lux 關燈時出入水孔接反應

圖 4-2 石蚌對燈開關反應實驗過程

表 4-1 石蚌出入水孔對燈開關的反應表

照度 (Lux)	照燈反應(入水孔)	照燈反應(出水孔)	關燈反應(入水孔)	關燈反應(出水孔)
10	沒有反應	沒有反應	有反應不明顯	有反應不明顯
20	沒有反應	沒有反應	有反應不明顯	有反應不明顯
30	沒有反應	沒有反應	有反應不明顯	有反應不明顯
40	沒有反應	沒有反應	有反應不明顯	有反應不明顯
50	沒有反應	沒有反應	有反應且明顯	有反應且明顯
60	沒有反應	沒有反應	有反應且明顯	有反應且明顯
70	沒有反應	沒有反應	有反應且明顯	有反應且明顯

80	沒有反應	沒有反應	有反應且明顯	有反應且明顯
90	沒有反應	沒有反應	有反應且明顯	有反應且明顯
100	沒有反應	沒有反應	有反應且明顯	有反應且明顯
200	沒有反應	沒有反應	有反應且明顯	有反應且明顯
300	沒有反應	沒有反應	有反應且明顯	有反應且明顯
400	沒有反應	沒有反應	有反應且明顯	有反應且明顯
500	沒有反應	沒有反應	有反應且明顯	有反應且明顯
600	沒有反應	沒有反應	有反應且明顯	有反應且明顯
700	沒有反應	沒有反應	有反應且明顯	有反應且明顯
800	沒有反應	沒有反應	有反應且明顯	有反應且明顯
900	沒有反應	沒有反應	有反應且明顯	有反應且明顯
1000	沒有反應	沒有反應	有反應且明顯	有反應且明顯
1100	沒有反應	沒有反應	有反應且明顯	有反應且明顯
1200	沒有反應	沒有反應	有反應且明顯	有反應且明顯
1300	沒有反應	沒有反應	有反應且明顯	有反應且明顯
1400	沒有反應	沒有反應	有反應且明顯	有反應且明顯
1500	沒有反應	沒有反應	有反應且明顯	有反應且明顯

實驗發現:經反覆實驗不管照度變化多大,石蚌出入水孔對照燈皆不會產生反應。石蚌對關 燈的反應在照度低於 50Lux 時變化甚小,依序增加至 50Lux 發現石蚌對關燈的反 應逐漸明顯。

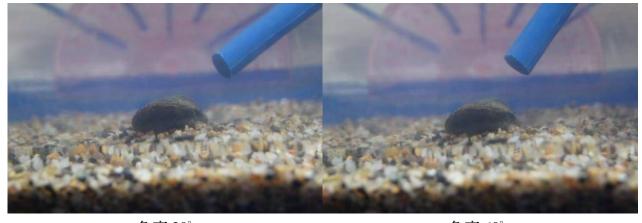
(二)、照度由低到高之石蚌反應

以上石蚌對燈開關的反應實驗得知,石蚌從照度 50lux 向下遞減的關燈反應,開始無太大的反應,因此深入探討照度差對石蚌的反應。

【方法】固定實驗室內照度為 50(lux),並以照度不同的燈泡,遞增照度照射石蚌,經過固定時間後關燈,記錄照度差距,觀察石蚌對光源的反應。

表 4-2 石蚌出入水孔對不同照度的反應表

照度	照燈反應	照燈反應	照度差距	關燈反應(入水孔)	關燈反應(出水孔)
(Lux)	(入水孔)	(出水孔)	邓汉土此		网络沙人派(四八八八)
50	沒有反應	沒有反應	0	沒有反應	沒有反應
60	沒有反應	沒有反應	10	沒有反應	沒有反應
70	沒有反應	沒有反應	20	沒有反應	沒有反應
80	沒有反應	沒有反應	30	沒有反應	沒有反應
90	沒有反應	沒有反應	40	沒有反應	沒有反應
100	沒有反應	沒有反應	50	沒有反應	有反應但微小
200	沒有反應	沒有反應	150	沒有反應	有反應但微小
300	沒有反應	沒有反應	250	沒有反應	有反應但微小


400	沒有反應	沒有反應	350	有反應但微小	有反應但微小
500	沒有反應	沒有反應	450	有反應但微小	有反應但微小
600	沒有反應	沒有反應	550	有反應但微小	有反應但微小
700	沒有反應	沒有反應	650	有反應但微小	有反應但微小
800	沒有反應	沒有反應	750	有反應且明顯	有反應且明顯
900	沒有反應	沒有反應	850	有反應且明顯	有反應且明顯
1000	沒有反應	沒有反應	950	有反應且明顯	有反應且明顯
1100	沒有反應	沒有反應	1050	有反應且明顯	有反應且明顯
1200	沒有反應	沒有反應	1150	有反應且明顯	有反應且明顯
1300	沒有反應	沒有反應	1250	有反應且明顯	有反應且明顯
1400	沒有反應	沒有反應	1350	有反應且明顯	有反應且明顯
1500	沒有反應	沒有反應	1450	有反應且明顯	有反應且明顯

實驗發現:照度差 10Lux 時,石蚌的出水孔便會產生反應但只是輕微的變化,用肉眼不容 易觀察,照度差到達 750Lux 時,石蚌反應較明顯;入水孔則以照度差在 350Lux 以後才產生微小變化。

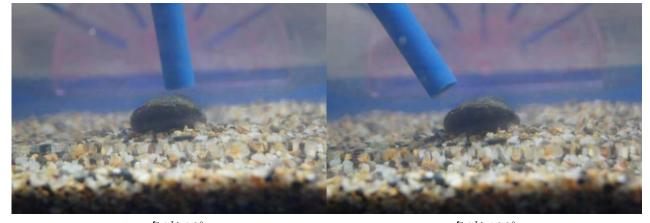

- 1. 再深入研究:石蚌對光影的反應行為,依據文獻中資料顯示,石蚌會受到烏鰡等魚類的攻擊,我們假設石蚌對陰影的反應是對外物靠近時的避敵行為,研究不同角度的陰影對石蚌的行為影響。
 - 【方法】利用上述實驗(二)照度對石蚌的影響,採取 Lux400~1500 對關燈時的 出入、水孔有反應再加入模擬魚類靠近時造成的陰影,分別用棒子以 30、 60、90、120、150 度的角度接近石蚌,觀察記錄石蚌對棒子造成的陰影 產生的行為反應。

表 4-3 石蚌出入水孔對不同照度陰影反應表

LA	30度	60度	90度	120度	150度
400	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
500	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
600	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
700	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
800	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
900	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
1000	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
1100	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
1200	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
1300	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
1400	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應
1500	有明顯反應	有明顯反應	有明顯反應(最激烈)	有明顯反應	有明顯反應

角度 30° 角度 60°

角度 90° 角度 120°

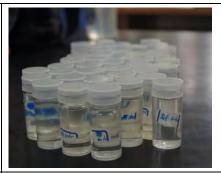
角度 150°

圖 4-3 模擬不同角度形成陰影之石蚌反應圖

實驗發現:角度為 30、60、120、150 度時皆會產生明顯反應,相較之下角度為 90 度時,反應最為明顯(最激烈)。

五、石蚌的淨化水質研究:

因石蚌的食性屬於濾食性,藉由石蚌的習性,研究石蚌淨化水質的效果。


(一)、分析石蚌對藻類的淨化能力

田調過程中,發現石蚌較多的地方,附著性的藻類相對的少,我們想藉 由石蚌來達到抑制藻類生長的效果。

【方法】利用兩個水族箱培養藻類經培養一個月後,在其中一個水族箱內放 入 30 隻成蚌。72 小時內,每 2 小時採集一次有放置石蚌及無放置石 蚌水體各25毫升水體並加入一滴碘液,以雙眼複式顯微鏡利用樣區 採樣法計算任意十格(1mmx1mm)各格子內藻類的細胞數。

無放入石蚌(左)、有放入石蚌(右) | 放入石蚌之水族箱

採集水體樣品

圖 5-1 藻類淨化能力實驗過程

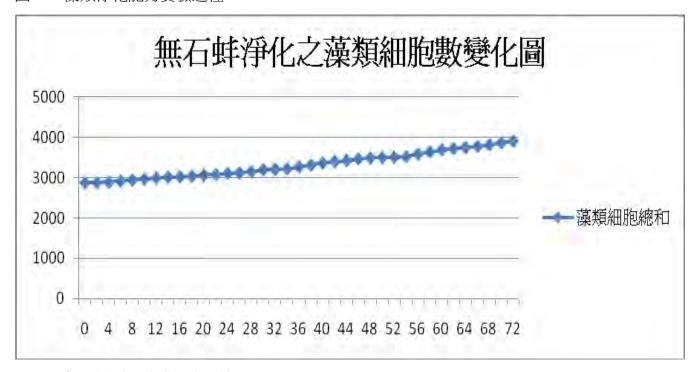


圖 5-2 無石蚌淨化之藻類細胞數變化圖

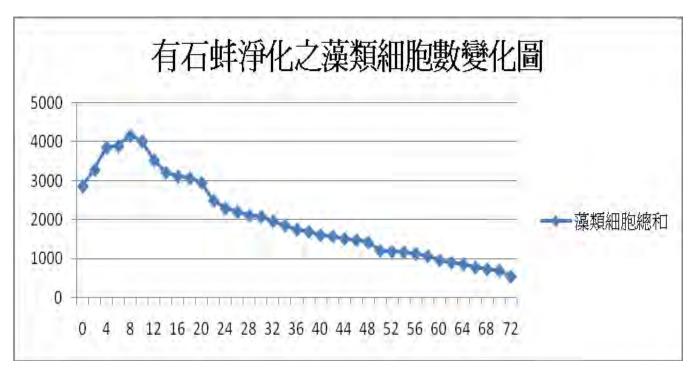


圖 5-3 有石蚌淨化之藻類細胞數變化圖

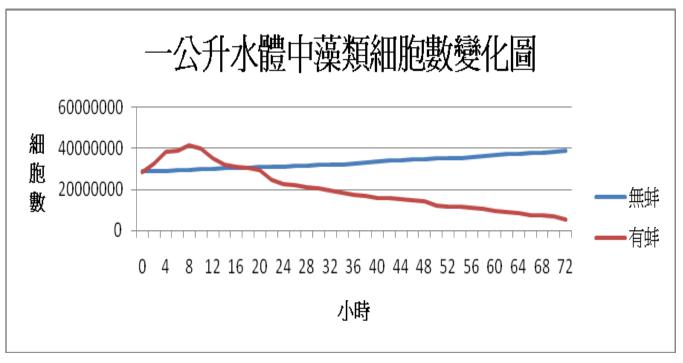


圖 5-4 一公升水體中藻類細胞數變化圖

實驗結果:藻類淨化實驗中,無放置石蚌淨化的水族箱內藻類持續生長,有放置石蚌淨化的水族箱內藻類細胞數量隨著時間逐漸下降。

(二)、石蚌對濁度的淨化能力

由此實驗探究食性屬濾食的石蚌,是否能對水中濁度產生淨化的功能, 因此用不同地點的自然水體,來實驗石蚌的淨水功效。

1. 石蚌數量多寡對濁度淨化的功效

【方法】採集不同地點之水體,蚌的數量以 20 隻爲單位向上遞增,固定時間爲兩小時,以照度測量石蚌數量對不同地點之水體淨化影響。

表 5-1 測量 A~F 水體實驗前照度(Lux)

A 水體	B 水體	C水體	D 水體	E 水體	F水體	G水體
218	159	156	151	147	140	136



圖 5-5 石蚌數量多寡對濁度淨化功效實驗過程

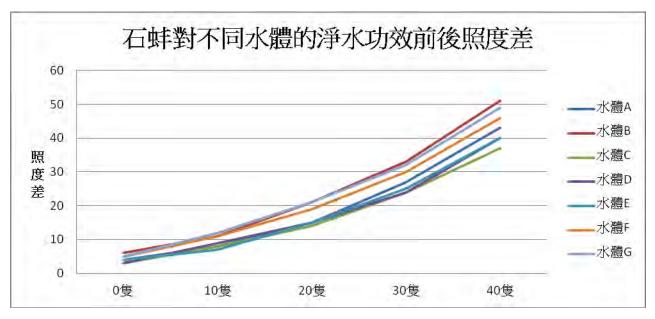
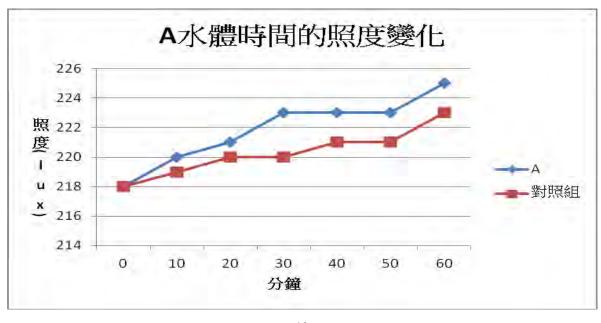
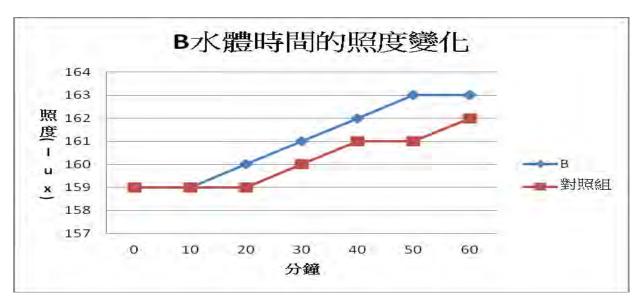
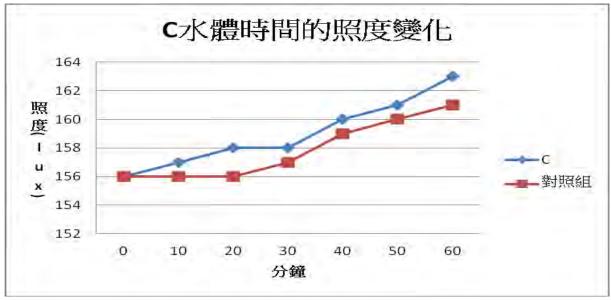


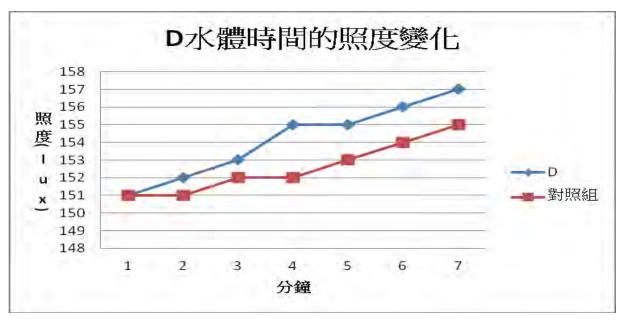
圖 5-6 石蚌對不同水體的淨水功效前後照度差

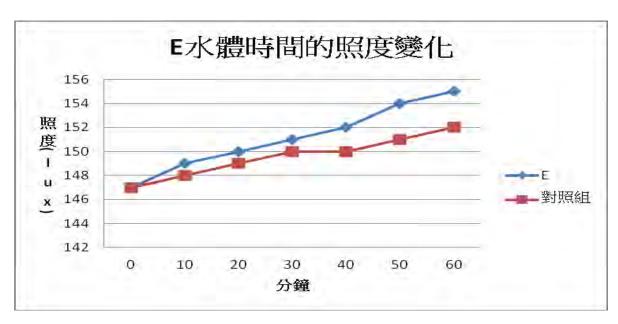
實驗發現:石蚌爲0隻時照度差最小,當石蚌數量向上遞增時,照度差也會隨之提高。


2. 時間對石蚌淨化水質的影響


【方法】採集不同地點之水體,利用實驗 1 得到結果 40 隻爲最佳淨水效果,以 10 分鐘爲單位向上遞增,測量時間對石蚌淨化水質能力之影響。


表 5-2 時間對石蚌淨化水質的影響表


	A水體		Вл	k體	C力	大體	D力	く體
	實驗組	對照組	實驗組	對照組	實驗組	對照組	實驗組	對照組
0分鐘	218	218	159	159	156	156	151	151
10 分鐘	220	219	159	159	157	156	152	151
20 分鐘	221	220	160	159	158	156	153	152
30 分鐘	223	220	161	160	158	157	155	152
40 分鐘	223	221	162	161	160	159	155	153
50 分鐘	224	223	163	161	161	160	156	154
60 分鐘	225	223	163	162	163	161	157	155


	E水體		F 才	F水體		k體
	實驗組	對照組	實驗組	對照組	實驗組	對照組
0 分鐘	147	147	140	140	136	136
10 分鐘	149	148	140	140	136	136
20 分鐘	150	149	141	140	137	136
30 分鐘	151	150	141	140	137	136
40 分鐘	152	150	142	141	138	137
50 分鐘	154	151	144	142	139	138
60 分鐘	155	152	145	143	141	139

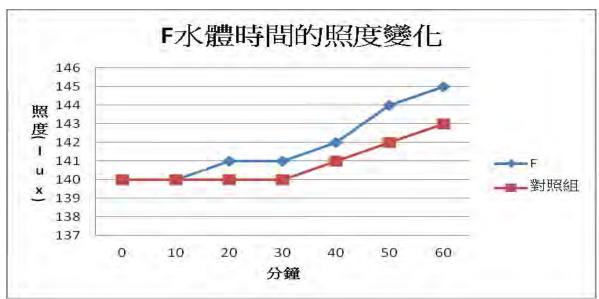


圖 5-7A~Q 水體對照度變化圖

伍、研究結果與討論

- 一、經過持續的田調發現,石蚌棲息地水質偏弱酸性 (pH 值 5.8 至 6.8)、水溫攝氏 17 度到 19 度之間、流速 10 到 50 (單位 cm/sec)、深度 10 公分至 40 公分的溝渠中。
- 二、石蚌分類於雙殼綱,但有些文獻把石蚌歸類於斧足綱,而有些則爲鳃瓣綱。
- 三、我們解剖了數隻石蚌,翻開外套膜先看到兩片鰓,之後觀察到被內臟囊包覆的器官, 發現器官是以纏繞的方式存在於石蚌的內臟囊裡,無顯微解剖工具無法再深入細部解 剖,只能以標記的方式說明。
- 四、採集到石蚌的未受精卵,把含有精子的水與卵混合,發現未受精卵的顏色是淡褐色,已受精的卵則偏橘色。在飼養實驗中,發現石蚌的精子與卵也可以在水裡直接完成受精。也發現,石蚌會因打氣器材沒開而在幾天後死亡,我們認為石蚌無法存活在低氧水域內。
- 五、石蚌在溫度爲攝氏 0 到 10 度時反應遲鈍,20 度至 30 度時正常活動,35 度過後櫛鰓附近開始有白色物體,參考文獻後研判是體內的黏液因爲溫度過高而產生蛋白質變性。 37 度後斧足全伸出,40 度斧足不停動,42 度時看到內部器官。
- 六、在酸鹼實驗的限制中,石蚌在pH值4.5到7的檸檬水溶液中放置一天後仍然正常活動,雖然在鹼性的小蘇打水溶液pH值8和9放一天後沒有死亡,但是雙殼一直呈現緊閉狀態,所以研判石蚌適合生存之水質的酸鹼度是在pH4.5到7之間。再利用圖3-3石蚌放入酸鹼溶液前後pH值比較圖,發現石蚌可以將水質調和較靠近中性。
- 七、石蚌外殼調節水中酸鹼值實驗中,pH 值 4.5 的溶液需要 0.18 公克的粉末 5 瓶,可以將溶液調整到 6.9 到 7 之間;而 pH 值 6.5 的溶液需要 0.18 公克的粉末一瓶即可達到相同效果。
- 八、利用光線照射時,發現石蚌不會因光照產生反應,但會在光關閉時產生反應。
- 九、實驗中,照度在10到50(lux)之間時,石蚌會有反應但不明顯,而照度在60到1500(lux)之間,石蚌有反應且明顯。而實驗室的照度固定為50(lux),照度差在50到1450(lux)之間時,出入水孔的反應皆明顯。用不同角度遮光,發現角度在30、60、120、150時石蚌皆有明顯反應;但是當角度為90時最為明顯。
- 十二、石蚌淨化水質實驗中,石蚌淨化時間越長,藻類數量也會隨之減少。
- 十三、濁度實驗裡,結果發現食性屬於濾食的石蚌有淨化水質的效果,而且經過同樣時間, 再用照度固定的燈泡照射水體,然後利用照度計測量,發現有石蚌水體實驗模組照度 有向上趨勢,說明了相同體積的水,石蚌越多,淨水效果越強。

陸、結論

- 一、依照田調紀錄,石蚌適合生活在泥、砂質底床水域,pH5.80~ pH6.80,水溫攝氏 17 度到 19 度之間、流速 10 到 50(單位 cm/sec)、深度 10 公分至 40 公分的溝渠中。
- 二、軟體動物的分類系統以前是將牡蠣海扇蚌類蛤類等歸之在斧足綱中,那是因爲這些 貝類的足以斧形居多稱爲斧足綱,更早則稱爲瓣鰓綱,然而最新的分類則有不同的 證據及結果,如下雙殼貝類斧形足大約只有50-60%還有的是錨形足(竹蟶)、足絲足(貽 貝)、匍匐足(豌豆蜆)甚至於沒有足(牡蠣)但是95%以上具有雙殼因此改稱爲雙殼綱因 此稱爲雙殼綱是較新也較正確的名稱。
- 三、最適合石蚌生長的溫度約為 15℃~30℃。而溫度愈低石蚌反應愈遲鈍,溫度高於 30 ℃ 反應也愈遲鈍。
- 四、石蚌的耐酸鹼度約為 pH4.5~ pH7.00。
- 五、石蚌的殼組成成分爲碳酸鈣,能調節酸性水質使水質趨近於中性,150毫升酸性水溶液加入0.18克粉末及可調節質趨近於中性,可以依據此結果換算酸性水體體積,加入適當石蚌來調節水中 pH 値。
- 六、石蚌對光照並不會產生反應,但是石蚌對光突然產生的陰影有所反應。
- 七、光的照度差越大,石蚌的出入水孔反應越明顯。
- 八、從光線角度變化產生的陰影得知光線與石蚌呈 90 度入射角時,光的點亮、熄滅反差時最大,牠的反應最激烈,出入水孔演化成對光陰影感應的避敵行為,光影反差越大其避敵行為越明顯。從文獻得知水中生物如烏鰡等生物會對石蚌有攻擊性,因此光線角度所造成的陰影能幫助石蚌避敵。
- 九、藉由石蚌的濾食性,可以達到抑制藻類生長的效果,能有效降低藻類生長的水質問題。 題。
- 十、石蚌能將水中的濁度降低,達到淨化水質的效果。石蚌數量愈多、淨化時間愈長, 淨水功效會越好,水的濁度也會跟著下降。

柒、參考資料

台灣貝類資料庫 http://shell.sinica.edu.tw/

了解貝類 http://teweb.slps.tp.edu.tw/00198/profile13.html

台灣貝類圖鑑 http://www.shell.25u.com/~bill/shell/index.htm

賴景陽《台灣貝類圖鑑》

巫文隆、陳忠勇《台灣貝類文獻導讀 I 、貝類學報》

巫文隆、簡士傑《台灣貝類探索紀錄-桃竹苗地區貝類研究圖誌》

巫文隆《台灣貝類目錄V、雙殼綱》

【評語】030313

優點:

石蚌研究有思考水質淨化之應用。

缺點:

- 石蚌淨化的指標要包含離子、微生物及藻類,只用藻類無 法解釋水質淨化。
- 2. 實驗設計及數據呈現方式要思考後,才能針對問題回答。