中華民國第51屆中小學科學展覽會作品說明書

國小組 生活與應用科學科

佳作

080815

踏步機 好神!

學校名稱:苗栗縣苗栗市建功國民小學

作者:

小五 李哲昀

小五 廖暐杰

小五 徐安玟

小五 謝瑩霓

小五 廖宗筠

指導老師:

李宜佳

陳昱宏

關鍵詞:踏步機、發電機、法拉第定律

踏步機 好神!

摘要

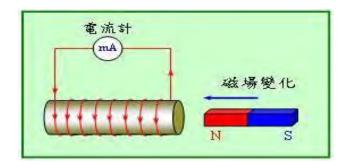
節能減碳一直是全球持續發燒的話題,<u>臺灣</u>研發的「軟實力」更把環保節能的精神發揮得淋漓盡致。我們發揮創意提出結合運動器材與發電模組的構想,透過完整的探究過程,理解基本電學、發電機的結構與追求高發電效能的關鍵。最後付諸實現,巧妙結合好神拖(踩踏式脫水拖把)與踏步機,製作出「好神踏步發電機」。最大功率可達到15瓦特。運動同時不但能支援照明、風扇,也能提供手機、音樂等的電力來源,真的太神了!

壹、 研究動機

電與生活密不可分,四年級下學期「奇妙的電路」單元,我們理解電在各方面的應用,也讓我們升起研究環保發電機的念頭。Youtube 一段「腳踏車避震發電機」的影片,立刻吸引我們的目光,原來日常生活看似平凡的事物,經過巧思也能發揮意想不到的超能力。在與教授討論後,我們決定以健身器材發電的概念來發展研究。同學家裡一台塵封已久的踏步機,加上電視購物最夯的好神拖,搖身一變成為我們研究的主角。多運動不但能維持健康,現在又多了產生能源的 Super Power!

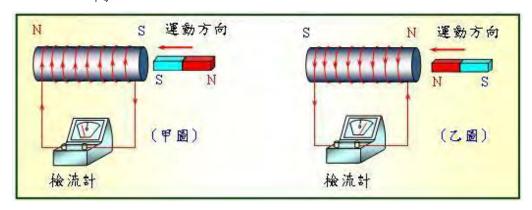
貳、 研究目的

- 一、 磁鐵與線圈的距離對發電量的影響
- 二、 磁場對發電量的影響
- 三、 線圈對發電量的影響
- 四、 DIY 好神踏步發電機


參、 研究設備及器材

- 一、實驗配置器材:氧化磁鐵、釹鐵錋磁鐵、漆包線、自製繞線器、好神拖脫水桶、 踏步機、各式小電器
- 二、量測及記錄工具:三用電表、電子游標尺、塑膠游標尺、照相機、碼表、自製量測工具

肆、 研究過程與方法

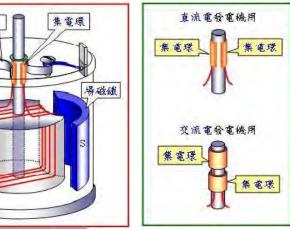

- 一、 文獻探討
 - (一) 基本電學(資料來源:教育部國民中學學習資源網)
 - 1. 電磁感應
 - (1) 電磁感應原理:<u>法拉第</u>發現,如果線圈內的磁場發生變化時,原本無電流的線圈會因而產生感應電流,此種因磁場變化而產生電流的現象稱為電磁感應。

(2) 法拉第定律

- A. 感應電流的大小與磁場變化的速率成正比(線圈的匝數固定時)。
- B. 感應電流的大小與線圈匝數成正比(磁場變化的速率固定時)。
- C. 增加線圈匝數、加快磁場變化的速率皆可增加線圈感應產生電流的大小。

(3) 冷次定律:當線圈上生成感應電流時會生成新的磁場,此時新的磁場恆與原磁場變化的方向相抗衡。我們可以藉此判斷感應電流的方向。

2. 發電機原理


- (1) 根據電磁感應,運用磁場在線圈中快速變化而產生感應電流。產生的感應 電流與磁場變化速率成正比(法拉第定律)。感應電流的方向則依據冷次定律 判斷。
- (2) 有電流必定能產生磁場,但有磁場時未必會產生電流。(磁場強弱須有變化 才能產生感應電流)。

3. 發電機構造

- (1) 發電機依電流方向是否固定,可分為「交流電發電機」與「直流電發電機」, 但其差別僅在於集電環的不同,其餘部分皆相同。
- (2) 發電機的構造與電動機相同,只是兩者在能量轉換的過程是相反的。
 - A. 電樞: 又稱為線圈, 是由多匝漆包線纏繞於軟鐵芯構成。

電樞

- B. 場磁鐵:用以提供線圈所需的磁場變化,在線圈與磁場快速交互運動時 產生感應電流。
- C. 集電環:集電環固定於線圈轉軸的輸出裝置,配合電刷在電樞轉動產生 感應電流時將電流輸出至外電路,又能使外電路不會隨著線圈 轉動。

(二) 臺灣發電概要(資料來源:臺灣電力公司 2009 年年報)

1. 臺灣發電與電力運用使用概況

項目	98年(2009)	97年(2008)	增減%	
裝置容量(千瓩)	40,247	38,634	4.2	
MW(百萬瓦)	10,217	30,031	1.2	
發購電量(百萬度)	193,605	200,241	-3.3	
Million KWh	173,003	200,241	-5.5	
售電量(百萬度)	179,239	186.931	-4.1	
(Million KWh)	179,239	100.931	- 4.1	
尖峰負載(千瓩)	31,011	31,320	-1.0	
MW(百萬瓦)	31,011	31,320	-1.0	
用戶數(千戶)	12,415	12,226	1.5	

- (1) 由 2009 年與 2008 年的資料比對,發現<u>臺灣</u>的總發電能力提高 4.2%,因應工商業發展,國家必須要不斷評估用電量,並預先規劃設計,避免無電可用的窘境。
- (2) 由上表可知總用電戶數增加 1.5%,但在發購電量、售電量以及尖峰負載三項 比較,則都有下降的趨勢。我們相信從不斷推廣節能減碳,提高用電效率避 免浪費,降低電器產品的耗電量,發展綠色能源等等方法著手,一定可以減 低能源的消耗,還給地球喘息的空間。

2. 臺灣主要發電方式與發電量概況

	類別	發購電量(十億度) (billion KWh)	構成比%	年成長率%
	抽蓄水力	3.3	1.7	-4.9
	火力	145.8	75.3	-4.5
	核能	40.0	20.7	1.8
再生	慣常水力	3.7	2.4	6.2
能源	風力及太陽能	0.9	Z . 4	-6.3
	全系統合計	193.6	100.0	-3.3

- (1) 目前臺灣的主要發電方式仍為火力及核能,因為這兩項的發電成本是最便宜的。而火力的比重有稍微降低,核能則稍微提高。
- (2) 再生能源的構成比例仍舊相當低,年成長率也是倒退。在推廣綠色能源的口號下,我們很訝異再生能源竟然這麼不受重視。雖然礙於成本考量,但如果不持續推動,讓能源能夠自給自足,等到石化能源消耗殆盡的那天,我們要如何能夠維持現在的生活品質呢?

(三) 常見健身器材與發電模組結合實例(圖片均由網路擷取)

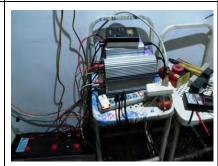
二、 專家訪談

(一) 訪問專家: 佟老闆

(二) 地點: <u>佟</u>老闆的公司, <u>http://www.winder.tw/</u>(三) 地址: 台中縣神岡鄉中山路 551 巷 13 號

(四) 時間:2011/1/15 AM07:30~PM15:00

(五) 過程集錦



8. 扇葉角度也經過不斷測試

9.轉速太快避免危險,停工

10.測試中的商品化風機

11.風機與太陽能板雙效合

12 市電併聯系統

(二) 實驗流程

1. 磁鐵與線圈的距離對發電量的影響

(1) 磁鐵與線圈的距離

	1.圓形釹鐵錋磁鐵(直		磁鏡	越與線圈的距離		三用電表所測得的感
	徑 30mm,厚 2mm)		1.	3mm		應電壓與電流
	共 12 顆,N 極朝上,		2.	5mm		
	內切圓盤,間隔圓心		3.	7mm		
控制	角 30 度	操作	4.	9mm	應變	
變因	2.漆包線(0.6mm)100	變因	5.	11mm	變因	
	匝,內徑 25mm,外	交凸	6.	13mm		
	徑 40mm,厚度 7mm		7.	15mm		
	3.可調式變壓器,輸出		8.	17mm		
	電壓 6V		9.	19mm		
			10.	21mm		
實驗	1.手繞線圈 2.DIY 自製測量工具 3.塑膠游標尺 4.三用電表				huntunlandanh	
器材						MULTIMETER 19
實驗	調整吊架高度,並用塑	膠游標	尺測:	量磁鐵與線圈的距离	誰,最後	
方法	圈位置在磁鐵正上方(內	り切圓盤	1)。仮	<u></u> 世用三用電表測量,	紀錄 30) 秒內最高電壓與電流

2. 磁場對發電量的影響

(1) 磁場變換速度

	1.圓形釹鐵錋磁鐵(直		可調式變壓器,輸出		三用電表所測得的感
	徑 30mm,厚 2mm)		電壓不同(電壓愈高,		應電壓與電流
	共 12 顆,N 極朝上,		步進馬達轉速愈快)		
控制	內切圓盤,間隔圓心	操作	1. 3V	應變	
變因	角 30 度	變因	2. 4.5V	變因	
	2.漆包線(0.6mm)100		3. 6V		
	匝,內徑 25mm,外		4. 7.5V		
	徑 40mm,厚度 7mm		5. 9V		

	3.磁鐵與線圈距離 5mm				
實驗	1.手繞線圈 2.DIY 自製測量工具 3.塑膠游標尺 4.三用電表				
器材					
實驗	調整吊架高度與位置,	使線圈	在磁鐵正上方(內切圓盤)	。再將	變壓器調整至指定輸出
方法	電壓,使用三用電表測	量,紀	錄 30 秒內最高電壓與電	流	

(2) 磁力強弱 A. 測量磁力強弱

控制	1.同一包 A4 紙 2.同一個小鐵片 (20*15*0.7mm³, 2g)	操作變因	1.圓型氧化磁鐵 2.圓型致鐵錋磁鐵 3. <u>佟</u> 老闆提供之條狀 致鐵錋磁鐵	應變變因	不同磁鐵可隔著不同 紙張數量(厚度不同) 吸住小鐵片
實驗器材	1.A4 紙,每張厚度 0.1mm 2.DIY 自製測量器		100	Paper & Paper	Paper
企 的					
實驗	磁鐵隔著紙張可吸住小	鐵片,	在可吸住小鐵片的前提一	下,不斷	所增加紙張數,並記錄
方法	間隔最多的紙張數				

B. 磁力強弱

	1.漆包線(0.3mm)300		圓形銣鐵	錋磁鐵,直		三用電表所測得的感
	匝,內徑 30mm,外		徑相同(81	mm),厚度不		應電壓與電流
	徑 35mm,厚度 11mm		同。N極	朝上,内切圓		
	2.磁鐵與線圈距離		盤,間隔	圓心角30度		
控制	5mm	操作			應變	
變因	3.可調式變壓器,輸出	變因	厚度 mm	間隔紙張量	變因	
	電壓 12V		1. 2	41		
			2. 3	60		
			3. 5	67		
			4. 6	72		
	1.手繞線圈		_			X 31 9
	2.DIY 自製測量工具					
實驗	3.塑膠游標尺				-	
器材	4.三用電表					
		- 1				
實驗	用熱熔膠固定磁鐵,完	成後,	啟動步進馬	馬達旋轉圓盤。	使用三	三用電表測量,紀錄30
方法	秒內最高的電壓與電流	-				

(3) 磁鐵同極與異極排列

控制	1.漆包線(0.3mm)300 匝,內徑 30mm,外 徑 35mm,厚度 11mm 2.磁鐵與線圈距離 10mm	操作變因	圓形銣鐵錋磁鐵(直徑 30mm,厚2mm)共12 顆,內切圓盤,間隔 圓心角30度	應變	三用電表所測得的感應電壓與電流
	3.可調式變壓器,輸出 電壓(3V、4.5V、6V、		1.N 極朝上 2.NS 極交互排列		
	7.5 · 9V · 12V)				
	1.手繞線圈 2.DIY 自製測量工具				
實驗器材	3.塑膠游標尺	- 1		3	
石合小	4.三用電表			2	
實驗	用熱熔膠固定磁鐵,完	成後,	啟動步進馬達旋轉圓盤。	・使用三	三用電表測量,紀錄 30
方法	秒內最高的電壓與電流	-			

(4) 磁鐵數量

控制	1.漆包線(0.3mm)300 匝,內徑 30mm,外 徑 35mm,厚度 11mm 2.磁鐵與線圈距離 10mm 3.可調式變壓器,輸出 電壓 12V	操作變因	圓形銣鐵錋磁鐵(直徑 30mm,厚 2mm)共 12 顆,NS 極交互排列,內切圓盤,平均分散排列,間隔不同圓心角 1.2 顆,180 度 2.4 顆,90 度 3.6 顆,60 度 4.12 顆,30 度 5.24 顆,15 度	應變	三用電表所測得的感 應電壓與電流
實驗器材	1.手繞線圈 2.DIY 自製測量工具 3.塑膠游標尺 4.三用電表			6	
實驗方法			熱熔膠把磁鐵固定在上, 三用電表測量,紀錄 30		·
1114		. 区用	一川电仪/则里,心邺 30	インドは耳又「	可可电影兴电师

3. 線圈對發電量的影響

(1) 線圈匝數

	1.圓形銣鐵錋磁鐵(直		漆包線(0.5mm)內徑		三用電表所測得的感
	徑 30mm,厚 2mm)		12mm,厚度 9mm,匝		應電壓與電流
	共 12 顆,N 極朝上,		數不同		
控制	內切圓盤,間隔圓心	操作	1. 50 匝	應變	
變因	角 30 度	變因	2. 100 匝		
愛凶	2.磁鐵與線圈距 5mm	変凶	3. 150 匝	変凶	
	3.可調式變壓器,輸出		4. 200 匝		
	電壓(3V、4.5V、6V、		5. 250 匝		
	7.5V · 9V)		6. 300 匝		
	1.手繞線圈			1///	V 1 X W
	2.DIY 自製測量工具				
實驗	3.塑膠游標尺				pagag
器材	4.三用電表		A CONTRACTOR OF THE PARTY OF TH	O	
					The second second
實驗	用熱熔膠固定線圈在挂	架上,	完成後將掛架接回,並爲	放動步進	生馬達旋轉圓盤。 使用
方法	三用電表測量,紀錄3	0 秒內最	最高的電壓與電流		

(2) 線圈厚薄

	1.條狀銣鐵錋磁鐵(長 40mm,寬 9mm,高		漆包線(0.6mm)100 匝, 匝數相同、內徑相同,		三用電表所測得的
控制變因	4mm) N 極朝外 2.磁鐵與線圈距離 5mm 3.110V 排風扇持續運 轉	操作變因	1 1 5mm	應變變因	
實驗器材	1.手繞線圈 2.DIY 自製測量工具 3.塑膠游標尺 4.三用電表			A	
實驗方法			材上,並調整磁鐵與線圈的 則量,紀錄 30 秒內最高的電		

4. DIY 好神踏步發電機

(3) 單一線圈完成後我們將線圈固定在木板上,再置放在好神拖脫水桶上。全力踩踏得到 的數據大約 4V、0.4A,我們覺得這個結果很令人滿意。於是用同一條漆包線纏繞 12 個線圈(350 匝/個)固定在木板上開始測試。

成

最大輸出電壓:30V 最大輸出電流:0.1A 結 最大輸出電功率:3W

我們很訝異,發電效能比預期差很多,於

變

變

因

是進一步探究結構問題

將磁鐵改為 NS 交互排列, 結果發電效能更差! 電壓 3V, 電流 0.15A

推測是否漆包線太長造成電阻過大,設計實驗探討「導線長度對發電量的影響」

1.條狀銣鐵錋磁鐵 12 顆 控 制 度圓心角,N 極朝內 因 2.磁鐵與線圈距離 4mm

漆包線(0.5mm)100 匝(內徑: (40*9*4mm³), 平均分散 操 長 18mm、寬 4mm;外徑:長 固定於脫水桶內,夾30 作 24mm、寬13mm;厚度10mm) 因 2.纏繞 200 匝後,截斷

3.纏繞 100 匝後,截斷

三用電表所測得的感 應 應電壓與電流

1.手繞線圈

2.好神拖脫水桶

3.碼表

4.三用電表

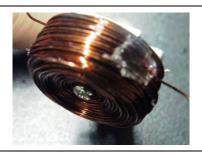
實 改 驗 淮 器

材

實驗 方法 將三種線圈固定在木板上,連接橋式整流器後(可將交流電轉換成直流電),以串聯 的方式連接。4位同學分別以每秒1下的速率按壓踏板,使用三用電表紀錄10秒內 最大的電壓與電流

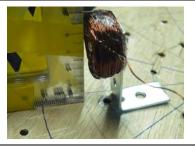
結果

發現同一條線纏繞400匝的發電效能最佳,推翻我們推測導線太長造成電阻過大, 使發電效能降低的推測


(3) 詢問專家佟老闆,他給我們建議:

A. 線圈雜亂會影響發電,重繞效果應該會比較好

- B. 如果不能重繞,可以將線圈各別剪斷,將線圈分成三組,間隔 90 度的線圈為同一組,並將其連接起來 (三相 Y 接)
- C. 線圈固定時方向有可能相反,會造成感應電流互相抵消
- D. 可以嘗試磁鐵 NS 極間隔排列
- E. 可以嘗試增加線圈匝數
- (4) 有鑑於線圈雜亂,且成品並不牢固,我們決定參考專家的建議,再重新製作電樞本體



圓形線圈(0.5mm)400 匝, 內徑 3mm,外徑 30mm, 厚度 10mm

用螺絲將線圈固定於L鐵上

使用三角板確定線圈位置, 準確無誤後再行固定

探討磁鐵 NS 極交互排列與同極排列的效果

1.圓形線圈(0.5mm)400 匝, 內徑 3mm,外徑 30mm, 厚度 10mm。4個一組,夾 角 90 度,三相 Y 接 2.磁鐵與線圈距離 4mm 3.4 位同學分別以每秒 1 下

的速度按壓踏板

操作變因

條狀強力磁鐵 2 顆 (40*9*4mm³),間隔 180 度 圓心角,固定於好神拖脫 水桶 1.N 極朝內 2.NS 極交互排列

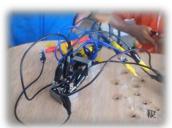
應變變

因

過程

1.碼表

2.發電機主體二代


3.三用電表

實驗器材

實驗 連接橋式整流器採用串聯的方式,4位同學分別以每秒1下的速率按壓踏板,使 方法 用三用電表紀錄10秒內最大的電壓與電流

探討增加匝數可否提高發電效率

結

果

1.圓形線圈(0.3mm)900 匝,內徑 3mm,外徑 30mm,厚度 10mm。4個一組,夾角90度,三相 Y 接

睍

2.磁鐵與線圈距離 4mm

3.條狀鈉鐵錋磁鐵 12 顆(40*9*4mm³),平 均分散固定於脫水桶內,夾 30 度圓心 角,N 極朝內 1.串聯:最大電壓:70V,最大電流: 0.18A,最大電功率:12.6W

2.並聯:最大電壓:30V,最大電流:

0.43A,最大電功率:12.9W

3.發現:大幅增加匝數,可發現電壓明

顯上升,但電流並無顯著增

加。電功率並無提升

成品

發電機主體規格說明

電樞主體

大小: 內徑 3mm, 外徑 30mm, 厚度 10mm

匝數: 圓形線圈(0.5mm)400 匝

配置:4個一組,夾角90度,三相Y接

場磁鐵

本體:好神拖脫水桶

磁場:條狀銣鐵錋磁鐵 12 顆(40*9*4mm³), 平

均分散固定於脫水桶內,夾30度圓心

角,N極朝內

結合發電機主體與踏步機

將好神拖脫水桶固定在木板上

結合電樞與好神拖脫水桶

將角鐵鎖在踏步機上

木板鎖上L鐵做為固定踏步機的裝置

除去脫水桶阻礙踏步機上下運動的部分

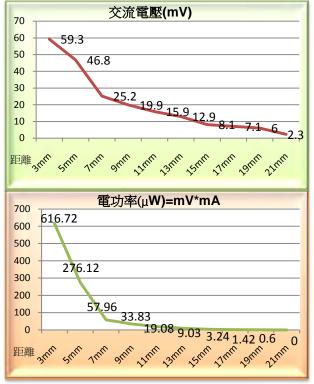
固定踏步機與好神拖脫水桶

好神踏步發電機輸出功率說明

好神踏步發電機的應用 直流 5V 穩壓器 單向電流二極體 09:22 利用穩壓器與二極體改裝手機充電器 可直接替手機充電 提供 Led 照明使用 提供小風扇使用 SHYKUANG. MAINTENANCE-FREE RECHARGEDBLE BATTERY

BP4-2 2V4AH

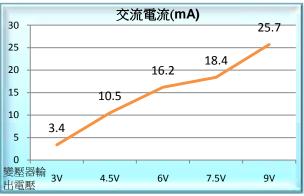
MINISTRAL


提供電池充電

提供小喇叭電力來源

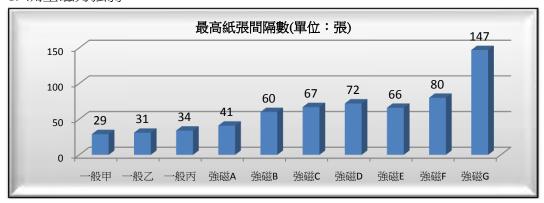
伍、 研究結果

一、 磁鐵與線圈的距離對發電量的影響(數據來源:附錄,附表,表一)



發現:磁鐵與線圈距離愈遠所產生的電壓及電流愈小,呈現高度負相關。電功率 (µW)=mV*mA,亦與距離呈現高度負相關。磁鐵與線圈距離愈近,電功率的值會顯著提升。

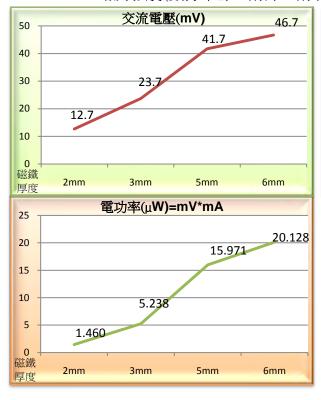
- 二、 磁場對發電量的影響(數據來源:附錄,附表,表二)
- (一) 磁場變換速度

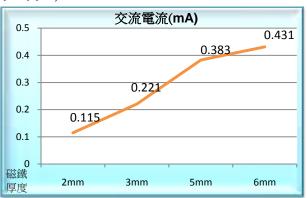


發現:變壓器輸出電壓愈高,步進馬達帶動 圓盤旋轉速度愈快。產生的電壓,在圖 上可明顯看出幾乎與速度快慢成正比。 而電流與磁場變換速度,也呈現高度正 相關。電功率(µW)=mV*mA,同樣與磁 場變換速度呈現高度正相關。

(二) 磁力強弱

1. 測量磁力強弱

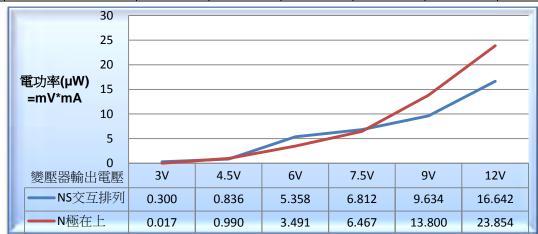



圓形氧化磁鐵					
	直徑	厚度			
	mm	mm			
一般甲	20	4			
一般乙	25	4			
一般丙	30	4			

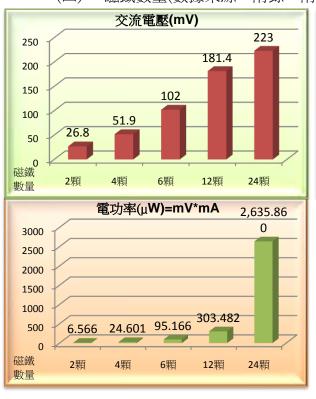
圓形銣鐵錋磁鐵								
	直徑	厚度		直徑	厚度			
	mm	mm		mm	mm			
強磁A	8	2	強磁E	12	2			
強磁 B	8	3	強磁 F	15	2			
強磁C	347¥ C 0 5		強磁 G	長	寬			
力出地と	8	5 強磁 G	40mm	9mm				
2 分7分 D 0		6		高				
強磁D	8 6		4mm					

發現: 銣鐵錋磁鐵的磁力較氧化磁鐵高出很多。同樣厚度,直徑愈長磁力愈強。 直徑相同,厚度愈大磁力愈強。

2. 磁力強弱(數據來源:附錄,附表,表三)



發現:直徑相同厚度不同的圓型銣鐵錋磁鐵, 厚度愈大磁力會愈強。磁力強弱與產生 的電壓、電流呈高度正相關。電功率 (µW)=mV*mA,亦與磁力強度呈現高度 正相關。


(三) 磁鐵同極與異極排列

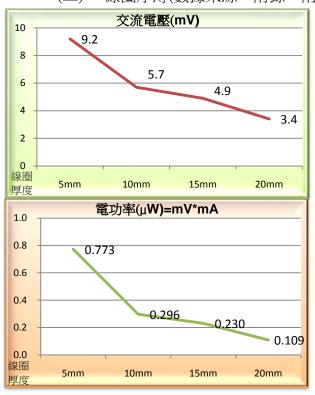
	變壓器輸出電壓	3V	4.5V	6V	7.5V	9V	12V
NS 極交	交流電壓(mV)	5	6.8	23.5	26.3	31.9	41.5
互排列	交流電流(mA)	0.06	0.123	0.228	0.259	0.302	0.401
N 極在上	交流電壓(mV)	1.3	10.1	19.5	20.4	37.5	49.8
	交流電流(mA)	0.013	0.098	0.179	0.317	0.368	0.479

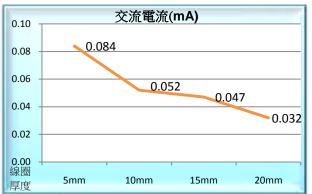
發現:變壓器輸出電壓愈高,步進馬達帶動圓盤轉速愈快。NS 極交互排列在轉速較低時電壓與電流均優於N極在上的同極排列,但當轉速提高,N極在上的同極排列反而會高於NS極交互排列。另圓盤旋轉速度亦與電功率(μW)=mV*mA呈現高度正相關。

(四) 磁鐵數量(數據來源:附錄,附表,表四)

發現:磁鐵數量與電壓高低,由圖可知,幾 乎是接近正比的關係。磁鐵數量與電流 比較也呈現高度正相關。與電功率 (µW)=mV*mA,對照亦呈現高度正相關。 另磁鐵數量達到 24 顆時,電流大幅成 長。

三、 線圈對發電量的影響


(一) 線圈匝數


線圈匝數	變壓器輸出電壓	3V	4.5V	6V	7.5V	9V
50	交流電壓(mV)	0.4	2.4	5.0	6.9	8.0
50	交流電流(mA)	0	0.1	0.3	0.7	0.9
100	交流電壓(mV)	1.5	6.7	10.6	13.6	14.3
100	交流電流(mA)	0	0.1	0.4	2.5	3.8
150	交流電壓(mV)	5.3	12.9	20.0	24.8	29.8
130	交流電流(mA)	0.2	0.9	3.8	5.7	7.0
200	交流電壓(mV)	10.2	20.2	28.7	35.3	42.7
200	交流電流(mA)	0.5	2.8	5.6	7.8	9.6
250	交流電壓(mV)	18.5	31.5	41.6	50.2	51.3
250	交流電流(mA)	0.6	3.9	7.3	9.5	9.8
200	交流電壓(mV)	27.3	44.4	60.9	74.5	77.4
300	交流電流(mA)	1.6	6.3	10.7	13.9	16.3

發現:線圈匝數在變壓器輸出電壓介於 3V 到 9V 的區間(輸出電壓愈高轉速愈快),均呈現匝數愈高,電壓及電流就愈高的高度正相關。與電功率 (μW)=mV*mA 對照亦呈現高度正相關。

(二) 線圈厚薄(數據來源:附錄,附表,表五)

發現:線圈厚度與電壓、電流呈現高度負相關,與電功率(µW)=mV*mA對照亦呈現高度負相關。

四、 DIY 好神踏步發電機

(一) 導線長度對發電量的影響

	同學操作紀錄	A 同學	B 同學	C同學	D 同學	平均
每條捲	直流電壓(mV)	164.6	150.7	197.3	132.6	161.3
100 圏	直流電流(mA)	0	0	0	0	0
每條捲	直流電壓(mV)	372	348	404	319	360.75
200 圏	直流電流(mA)	0.0014	0.0011	0.0015	0.0010	0.0013
每條捲	直流電壓(mV)	596	529	572	473	542.5
400 圏	直流電流(mA)	0.0894	0.0794	0.0801	0.0723	0.0803

發現:使用同一條漆包線纏繞 400 匝發電效果最佳,100 匝最低,證明我們的推論應該有誤。

(二) 磁鐵 NS 極交互排列與 N 極朝內對發電量的影響

, , , , , , , , , , , , , , , , , , , ,							
同學操作紀錄		A 同學	B同學	C同學	D同學	平均	
NS 極交	直流電壓(mV)	409	676	207	649	485.25	
互排列	直流電流(mA)	0.196	0.094	0.001	0.064	0.08875	
N極	直流電壓(mV)	5370	3900	3810	3900	4245	
朝內	直流電流(mA)	65.6	42.4	19	54.1	45.275	

發現:NS 極交互排列的發電量效果比 N 極朝內低非常非常多。

陸、 討論

- 一、 文獻探討對我們的幫助很大,當實驗上碰到困難,或是不知道該怎麼設計實驗 時…等,我們都可以從文獻、參考資料上找到解答。
- 二、 臺灣目前主要的電力來源仍以火力發電、核能發電為最大宗,佔96%。
- 三、 臺灣目前再生能源的發購電量僅佔全部的 2.4%, 仍有相當大進步的空間。但礙於地小人稠、技術、材料等各種困難,與其他發電方式相比,成本要高出很多。
- 四、 我們身邊有很多不為人知的無名英雄默默地為環保盡心盡力,在沒有奧援的情況下仍然能秉著初衷繼續研發,也讓我們看到成品亮麗的背後,是多少心血的累積。
- 五、 我們的實驗有幾個比較組數量太少,雖然看得出規律性,但仍嫌不足。獲選參加全國賽,我們確實提高比較組、對照組的數量讓研究更加嚴謹。
- 六、我們使用電壓器與步進馬達來控制圓盤旋轉的快慢,非人力操作,不會有力道 忽大忽小的問題。研究初期不管測量幾次,最大電壓與電流的值均非常接近, 故我們認為測量一次的數據就很有代表性。而研究尾聲必須使用人力操作,我 們則以四個人約相同速率按壓,得到的數據再平均,使其具有代表性。
- 七、 自製的圓盤旋轉時有忽高忽低的問題,後來我們使用水平儀與螺絲來調整,情 況改善非常多。另外為了避免誤差,測量線圈與磁鐵高度時,我們也會固定以 同一顆磁鐵為基準。
- 八、 實驗中獲得數據未完全符合「法拉第定律」,說明我們實驗的嚴謹性,與器材的 精密性仍有相當大進步的空間。

- 九、 市售馬達、發電機的電樞本體都由矽鋼片及線圈組成,矽鋼片旋轉時會因磁場轉換而短暫變成磁鐵,可增加磁力線的密集程度,更接近線圈,讓發電效果更好。矽鋼片用來降低線圈的數量或是減小馬達或發電機的體積。唯矽鋼片不會 殘留磁性,雖然一般鐵質物品也能有同樣的功能,但長久下來容易感應變成永 久磁鐵,反而造成磁場的錯亂,降低發電效能。
- 十、 線圈的纏繞除了熟練之外,工具也非常重要。自製的繞線器雖能提供實驗的需要,但纏繞時裡面的空隙也相當大,不但造成空間不必要的浪費,也會降低發電效能。是我們接續研究要更加精進的項目之一。
- 十一、由安培右手定則與冷次定律可知,由於我們自製的「好神踏步發電機」線圈的 擺放位置與方式,磁場必須以同極排列,若採 NS 極交互排列,感應電流會發生 互相抵銷的情形。
- 十二、文獻探討中提到導線長度愈長電阻愈大,但本實驗中並沒有發現這種變化,也 是我們往後研究可以繼續探討的項目。
- 十三、發電機中電樞與場磁鐵的搭配,並不是一昧增加匝數或磁鐵個數就能得到最高的發電效能。必須經過不斷地修改測試,譬如漆包線粗細的選擇、匝數的決定…等,都需要投注大量的心力。

柒、 結論

- 一、 線圈與磁鐵距離愈遠感應電壓與電流愈小。
- 二、 磁場變換速度愈快感應電壓與電流愈大。
- 三、 由體積公式推導,磁鐵的體積愈大,磁力就愈強。
- 四、 磁場愈強感應電壓與電流愈大。
- 五、 發電機磁鐵排列方式必須與線圈纏繞、擺設方式相配合。
- 六、 線徑相同,線圈匝數愈多鳳應電壓與電流愈大。
- 七、線圈劃過磁力線會產生感應電流,線圈的厚度必須依磁場的強度做調整,太薄 會浪費磁場強度,太厚則因離磁場強度中心太遠,而浪費漆包線。
- 八、 DIY 好神踏步發電機,最高功率約 12~15W。經由整流器的連接方式不同,可以 獲得不同的電壓與電流。串聯最大輸出:30V、0.4A。並聯最大輸出:15V、1A。 另外也可供應三組電源輸出,最大輸出:8V,0.3A。

捌、 參考資料及其他

- 一、 參考資料
- (一) <u>虎尾科技大學動力機械工程系</u>。**臺灣綠生活-從小地方做起-避震器發電**。 http://www.youtube.com/watch?v=sdfML65Xqkw
- (二) 教育部國民中學學習資源網。**線上補充教材,自然科第五冊** http://140.111.34.194/teach/index.php?n=0&m=0&cmd=&sb=4&v=5
- (三) 臺灣電力公司。臺灣電力公司98年年報。
 http://www.taipower.com.tw/TaipowerWeb//upload/files/32/TPC_2009_Annual_Report.p
 http://www.taipower.com.tw/TaipowerWeb//upload/files/32/TPC_2009_Annual_Report.p

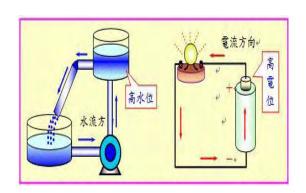
- (四) 維基百科http://zh.wikipedia.org/wiki/%E5%8D%83%E7%93%A6
- (五) <u>佟氏風電科技有限公司http://www.winder.tw/</u>
- (六) Yahoo部落格。**風力發電機DIY**。http://tw.myblog.yahoo.com/tungchanghuei/
- (七) <u>台北縣淡水鎮竹圍國民小學</u>。**閃電二號—水平感應發電機之研究與應用**。第48 屆全國中小學科展。國小組,生活與應用科學科

二、誌謝

感謝 教授、 数授、 数授、 数授、 数授 、 数授。 数授。 数授。 数授。 数授。 以及 有限公司, 数程。 本百忙之中抽空指導,並在材料、知識,與經驗上毫無保留,傾囊相授。伯伯、叔叔們在工作崗位上兢兢業業的態度,是我們最好的榜樣。

三、 附錄

(一) 續,文獻探討


- 1. 電荷
 - (1) 帶有電荷的物質稱為帶電物質。當一個帶電物質處於另一個帶電物質的附近時,彼此之間會產生作用力。
- (2) 電荷分兩種,正電荷與負電荷,同電性物質會互相排斥,異電性物質則會 互相吸引。
- (3) 電荷的量稱為電荷量,簡稱電量,單位是庫侖,符號 C。若導線中載有 1 安培的穩定電流,則在 1 秒內通過導線橫截面積的電量為 1 庫侖。另外電子帶負電荷,1 庫侖也相當於 6.24146×10¹⁸個電子所帶的電荷總量。

2. 電壓

- (1) 電壓又稱「電位差」,是驅使電流在導線中流動的原動力,而電路中提供電 壓者是「電源」。
- (2) 電壓的單位為伏特,符號 V,即每一庫侖的電量所具有的電位能。
- (3) 1V(伏特)=1000mV(毫伏特)=10⁶ V(微伏特)
- (4) 若以 I 表示電流,V 表示電壓,R 表示電阻,則三者關係為: $V=I\times R$

3. 電流

- (1) 電流指正電荷的流動,定義為單位時間內通過導線某一截面積的電量。
- (2) 電壓是電流的成因,造成電 流在電路中由高電位流向低 電位,如同水受到水壓由高 處往低處流動。

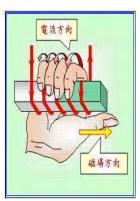
- (3) 電流的單位為安培,即每一秒鐘通過的電流。
- (4) 1A(安培)=1000mA(毫安培)=10⁶µ (微安培)
- (5) 若以 I 表示電流,Q 表示電量,t 表示時間,則三者關係為: $I=\frac{Q}{t}$
- (6) 若以 I 表示電流,V 表示電壓,R 表示電阻,則三者關係為: $I=\frac{v}{R}$

4. 電阻

- (1) 電阻大小代表電流在導體中流動的難易程度。通過導線上任意截面的電流 為1安培時,導線兩端所須施加的電壓即為該導線的電阻。
- (2) 電阻的單位為歐姆,符號為Ω。
- (3) 若以 I 表示電流,V 表示電壓,R 表示電阻,則三者關係為: $R=\frac{V}{I}$ 。
- (4) 電流通過導線時,會與導線中的原子發生碰撞,影響單位時間內通過導線 的電量大小,且伴隨而生的是電能的消耗,並使電能轉變為熱能,即電流 的熱效應。
- (5) 影響電阻大小的因素有導體的形狀、導體的種類、溫度及截面積…等。
- (6) 相同種類的金屬導體,其電阻與長度成正比,與截面積成反比。

5. 瓦特

- (1) 瓦特符號為W,定義是1焦耳/秒,即每秒鐘轉換,使用或耗散的能量速率。
- (2) 在電學單位制中,1瓦特是1伏特x安培。1W=1VxA。
- (3) 生活中常用千瓦作為單位,1千瓦=1000 瓦特,又可寫作「瓩」,符號為 kW。
- (4) 電費計價單位「1度電」指的是每小時消耗1千瓦的能量(lkW/小時)。


6. 電流的磁效應

(1) 電流的磁效應:電流磁效應最早由丹麥人<u>厄司特</u>於 1820 年發現,有直流電 導線附近的小磁針會受影響而偏轉,若將直流電的電流反 向,則小磁針亦偏向反方向。

(2) 安培定律

- A. 電流建立的磁場強度和通過導線的電流大小成正比。
- B. 電流建立的磁場強度和導線的距離成反比,而永久磁鐵建立的磁場強度 與磁鐵的距離平方成反比。
- C. 安培右手定則
 - a. 長直導線:通以直流電時, 其周圍會產生圓形磁場。 拇指代表電流方向,四指 代表磁場方向。
 - b.螺旋型線圈:通以直流電的 螺旋圈,以大拇指代表線圈 內的磁場方向,以四指旋轉 方向代表電流方向。

(二) 2011/1/15 專家訪談,訪談問題

- 1. 發電機與馬達
 - (1) 馬達與發電機有何不同?
 - (2) 發電機製作要領為何?
 - (3) 無刷馬達與碳刷馬達的區別?
 - (4) 發電機跟馬達一樣會過熱燒毀嗎?
 - (5) 手工繞線圈的技巧與應注意的事項?
- 2. 風力發電與太陽能發電
 - (1) 風力發電機的形式有幾種?其適應地點有何不同?
 - (2) 扇葉角度與旋轉速度、最低可帶動旋轉風速有什麼關係?
 - (3) 為什麼常見的風力發電機都採用三葉的形式?
 - (4) 海邊的大型風力發電機為何有時風速相同轉速卻不同?
 - (5) 愈難推動的馬達是否發電量會愈好?
 - (6) 多晶太陽能板和單晶太陽能板的差別在哪?
- 3. 其他
 - (1) 什麼機緣讓您想開設公司研發風力發電機?
 - (2) 市電併聯系統是什麼?
 - (3) 民眾自己發電,台電是否有收購?
 - (4) Led 較省電燈具還可以省下多少電力?

(三) 附表

1. 表一:磁鐵與線圈距離對發電量的影響

磁鐵與線圈距離	3mm	5mm	7mm	9mm	11mm
交流電壓(mV)	59.3	46.8	25.2	19.9	15.9
交流電流(mA)	10.4	5.9	2.3	1.7	1.2
電功率(μW)=mV*mA	616.72	276.12	57.96	33.83	19.08
	13mm	15mm	17mm	19mm	21mm
交流電壓(mV)	12.9	8.1	7.1	6	2.3
交流電流(mA)	0.7	0.4	0.2	0.1	0
電功率(µW)=mV*mA	9.03	3.24	1.42	0.6	0

2. 表二:磁場變換速度對發電量的影響

變壓器輸出電壓	3V	4.5V	6V	7.5V	9V
交流電壓(mV)	34.5	54.5	73.1	90.1	108.7
交流電流(mA)	3.4	10.5	16.2	18.4	25.7
電功率(µW)=mV*mA	117.3	572.25	1184.22	1657.84	2793.59

3. 表三:磁力強弱對發電量的影響

磁鐵厚度	2mm	3mm	5mm	6mm
交流電壓(mV)	12.7	23.7	41.7	46.7
交流電流(mA)	0.115	0.221	0.383	0.431
電功率(µW)=mV*mA	1.461	5.238	15.971	20.128

4. 表四:磁鐵數量對發電量的影響

	2 顆	4 顆	6 顆	12 顆	24 顆
交流電壓(mV)	26.8	51.9	102	181.4	223
交流電流(mA)	0.245	0.474	0.933	1.673	11.82
電功率(µW)=mV*mA	6.566	24.601	95.166	303.482	2635.860

5. 表五:線圈厚薄對發電量的影響

線圈厚度	5mm	10mm	15mm	20mm
交流電壓(mV)	9.2	5.7	4.9	3.4
交流電流(mA)	0.084	0.052	0.047	0.032
電功率(µW)=mV*mA	0.773	0.296	0.230	0.109

【評語】080815

結合運動器材與好神拖作發電機是很有創意的想法,利用自製器材繞線圈的工具亦很具特色,惟發電機的原理與概念對一般小學生仍屬艱難,在表現時可用深入淺出的方式導引學生理解避免艱澀的法拉第、冷次定律,整體而言此作品完成度仍超越一般小學生水準。