中華民國第51屆中小學科學展覽會作品說明書

高中組 生活與應用科學科

佳作

040817

黑暗中的光芒-林下植物葉綠體囊膜電池

學校名稱:國立羅東高級中學

作者: 指導老師:

高二 徐士庭 李建勳

高二 許浩倫 林兆駿

關鍵詞:林下植物、葉綠體囊膜、光敏化染料電池

壹、 摘要

林下(陰地)植物長期生活在較少陽光的地方,卻依然欣欣向榮。因此, 我們針對林下植物的葉綠體囊膜電池做討論,希望可以找出發電效率更高的葉綠體囊膜電池。

貳、 研究動機

在生物課時,老師解釋了能量循環,而我們對於製造能量的來源——葉綠體——倍感興趣。光合作用是地球能量的源頭,相較於化石燃料,更能進一步有效利用能量,而且有著零污染的特點。因此,葉綠體囊膜電池是一個理想的方法。

至於最重要的葉綠體,我們觀察到在大樹下鮮少有陽光,但是卻有些植物 能欣欣向榮。我們推測這些林下植物應該有較高的光合作用效率,才能在 鮮少的陽光下生存。因此,我們針對林下植物開發葉綠體囊膜電池,在能 源短缺的時代提供一個可以替代能源的可行方向。

參、 研究目的

- 一、探討不同林下植物其葉綠體囊膜發電的可行性
- 二、找出葉綠體囊膜與二氧化鈦嵌合的最佳浸泡時間
- 三、找出葉綠體囊膜與甲基藍結合的最佳方式
- 四、建立照光後葉綠體及葉綠體囊膜發出螢光的衰減速率,並估算其活化的 情形
- 五、不同電解質對葉綠體囊膜電池效率探討
- 六、探討在不同照度下,不同植物其葉綠體囊膜發光的情形,並紀錄之。
- 七、加入其他物質改善葉綠體囊膜電池之探討

肆、 研究器材與藥品

器材:

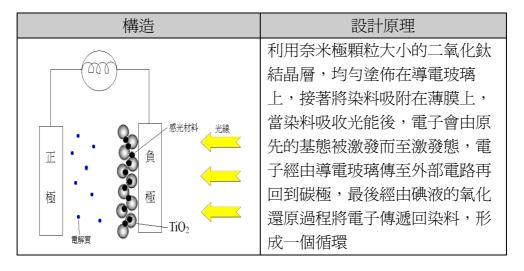
滴管、燒杯、電子秤、研砵、ITO玻璃、膠帶、玻棒、平板加熱器、打火機、蠟燭、燕尾夾、光度計、單鎗投影機、GLXportRun、果汁機、紗布、離心機、培養皿、(500 Interface; Data Logging-50KB 儲存緩衝空間;1台)

藥品:

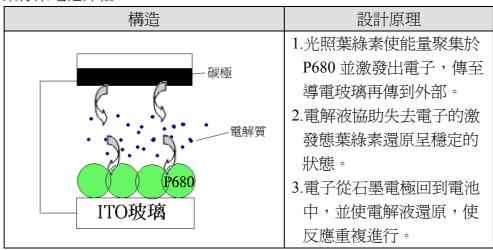
二氧化鈦粉、乙酸、界面活性劑、奈米銀、水楊酸、甲基藍、碘化鉀、氯化鉀、

伍、 文獻探討

根據國內已發表的染料敏化型太陽電池研究有以下幾項成果:


- 一、染料敏化型太陽電池元件的效率一般約為9%。
- 二、常見藥品染色以甲基藍敏化效率最佳,其輸出電壓由大到小分別為 甲基藍>紅汞液>花青素>葉綠素
- 三、光敏化電池電壓與光電極面積呈倍數關係,每平方公分電壓輸出都在80~88mV。

 ##2
- 四、光敏化電池電壓隨照度增加而上升,照度超過 12000Lux,電壓明顯降低。#2
- 五、不同電解液對葉綠素電池的影響,輸出電壓比較如下: $I_2+KI(aq) > FeSO_4(aq) > x > I_2(aq)$


陸、 研究原理

染料敏化太陽能電池具有類似三明治的結構,將納米二氧化鈦燒結在導電玻璃上,再將光敏染料鑲嵌在多孔納米二氧化鈦表面形成工作電極,在工作電極和對電極(通常爲擔載了催化量鉑或者碳的導電玻璃)之間是含有氧化還原物質對(常用L和I-)的液體電解質,它浸入納米二氧化鈦的孔穴與光敏染料接觸。在入射光的照射下,鑲嵌在納米二氧化鈦表面的光敏染料吸收光子,躍遷到激發態,然後向二氧化鈦的導帶注入電子,染料成爲氧化態的正離子,電子通過外電路形成電流到對電極,染料正離子接受電解質溶液中還原劑的電子,還原爲最初染料,而電解質中的氧化劑擴散到對電極得到電子而使還原劑得到再生,形成一個完整的循環,在整個過程中,表觀上化學物質沒有發生變化,而光能轉化成了電能。

一、 染料敏化太陽能電池介紹

二、葉綠素電池介紹

註 1:戴明鳳、邱立翰。奈米 TiO_2 晶粒和藍莓或覆盆子汁液作為染料 DIY 製作染料敏化奈米晶化太陽能電池。國立清華大學、吳鳳技術學院

註 2: 汪士惟等 2 人。鈦白粉也發電—染料敏太陽能電池之相關研究。新竹市立光華國民中學

註3:林鵬等3人。新型葉綠素電池的研究與開發。台北市立麗山高級中學

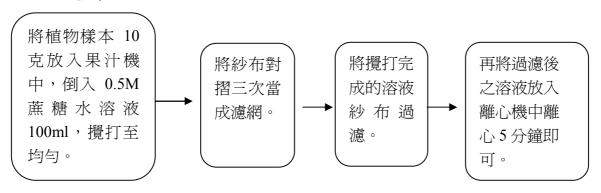
三、葉綠體囊膜的介紹

葉綠體是具有雙層膜的胞器,其內最明顯的構造是爲類囊膜,堆疊在一起的類囊體稱爲葉綠餅 (grana),散布在葉綠體基質中的膜體構造則叫做 stroma lamellae,這些膜體構造是光合作用中光反應進行的主要部位。

許多參與光合作用的蛋白質都鑲嵌在類囊膜上。這些蛋白質大都屬於疏水性的,包括反應中心、色素-蛋白質複合物與大部份和電子傳遞有關的酵素,且排列位置一定。膜體上葉綠素與其他輔助吸光色素(包括反應中心與吸光天線)會和特定的蛋白質合成葉綠素蛋白

(chlorophyll proteins)

四、 光合作用之光反應原理


光合作用中的光反應,包含了反應中心主要色素(葉綠素 a)及輔助色素(葉綠素 b、胡蘿蔔素、葉黃素)。植物體中,葉綠素 a 吸收光能後激發出電子,並轉移給暗反應使用。本實驗預測葉綠素 a 激發出的電子會流入二氧化鈦膜中,經由外電路回到碳極,再經電解液的氧化還原作用平衡電荷,形成一個迴路。

柒、 研究步驟與流程

前置實驗

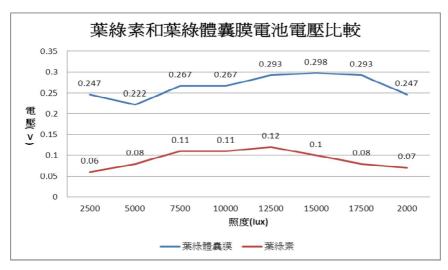
●前置實驗一:葉綠體囊膜備製

1.材料:欲實驗之林下植物、蒸餾水、刀、果汁機、0.5M 蔗糖水溶液、 紗布

●前置實驗二:二氧化鈦染料敏化太陽能電池製備

※研究目的(一):探討葉綠體囊膜與葉綠素對 DSSC 電池發電的影響

(一)實驗設計


葉綠體囊膜中除了葉綠素還有其他酵素及色素,當葉綠素受到激發時,酵素可以裂解水分子協助葉綠素還原,其他色素則有助於反應的進行,應能提升電池的發電功效。因此利用前置實驗一取得葉綠囊膜及葉綠素作爲染料,觀察電池效能。

(二)實驗步驟:

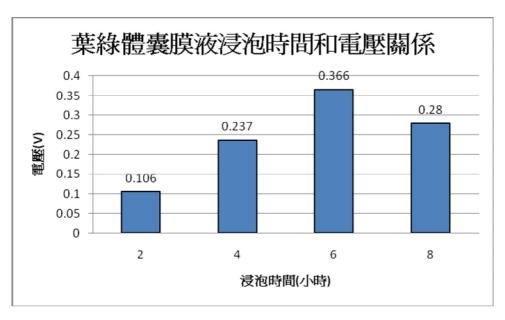
- 1.利用前置實驗一的方法得到葉綠素和葉綠囊膜
- 2.利用前置實驗二完成電池
- 3.在 10000lux 的光照下測出倆者的電壓
- 4.將兩者的數據紀錄下來並比較發電電壓

(三)實驗結果:

照度:10000 lux 植物樣本:水黃皮

從圖中可得:

浸泡葉綠體囊膜液的電池電壓優於浸泡葉綠素的,相差約3倍


研究目的(二):找出葉綠體囊膜與二氧化鈦嵌合的最佳浸泡時間

(一) 實驗設計

文獻中利用浸泡的方式,使染料與二氧化鈦嵌合,其浸泡時間均針對一般合成色素或葉綠素,最佳時間也不同(約2~8小時),爲了找出葉綠體囊膜液浸泡最佳時間,我們設計以下的實驗。

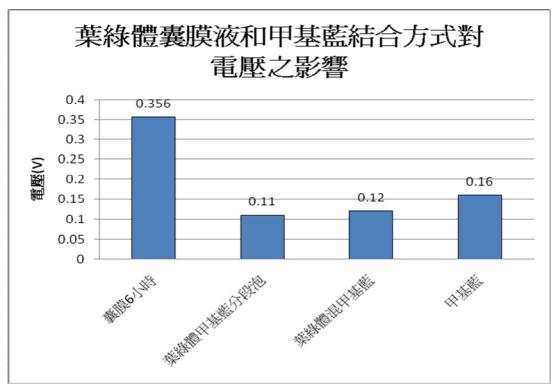
(二)實驗步驟:

- 1.利用前置實驗一得到葉綠體囊膜液
- 2.利用前置實驗二製作電池並分別浸在葉綠體囊膜液 2、4、6、8 小時, 然後再完成電池
- 3.先把先完成的電池利用前置實驗三控制照度 10000Lux 並用測量電壓
- 4. 將四組數據紀錄下來並做比較

從圖中可得:浸泡囊膜液6小時較佳。

研究目的(三):找出葉綠體囊膜液與甲基藍混合的最佳方式

(一) 實驗設計


從文獻知道實驗室常以甲基藍作爲二氧化鈦敏化電池的染料,如果將 葉綠囊膜與甲基藍混合做成染料,是否能增加電池發電的效能。因此 我們以分段浸泡與直接浸泡兩種方式,來與只浸泡甲基藍、葉綠體囊 膜液的對照組進行比較。

(二) 實驗步驟:

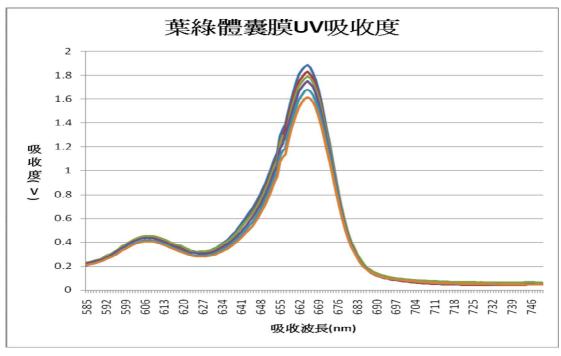
- 1.利用前置實驗二製作電池並分別浸泡葉綠體囊膜液一組、甲基藍一組、葉綠體囊膜液及甲基藍分段泡三小時和葉綠囊膜混甲基藍一組六 小時
- 2.利用前置實驗二把上述已泡好的玻璃做成電池
- 3.利用前置實驗三控制照度為 10000Lux 並測量電壓
- 4. 將四組數據紀錄下來並做比較

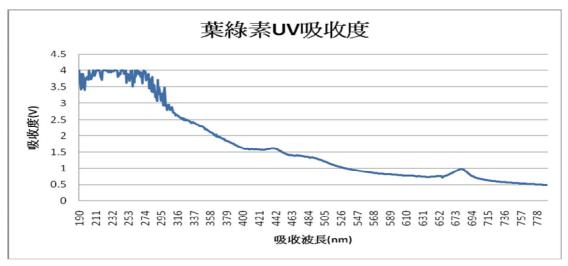
(三)實驗結果:

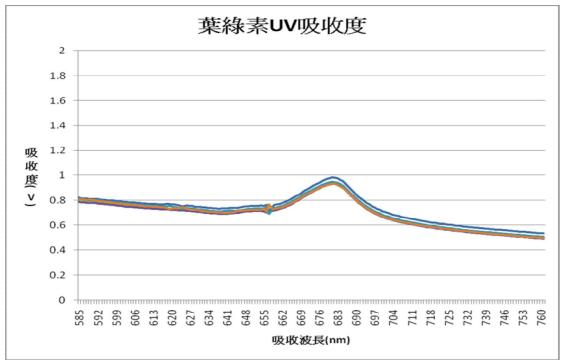
植物樣本:水黃皮 甲基藍濃度 0.05M

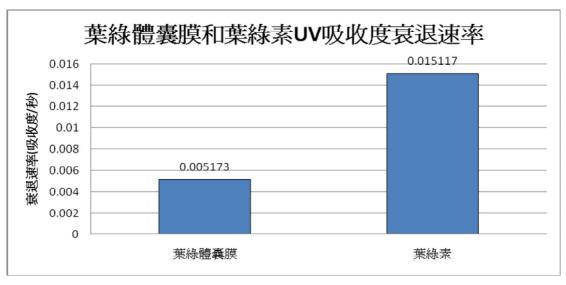
從圖中可得:


- 1.電壓以只浸泡葉綠體囊膜液 6 小時最佳。
- 2.浸泡甲基藍混合囊膜液電壓不佳。
- 3.葉綠體混甲基藍所偵測値不佳。

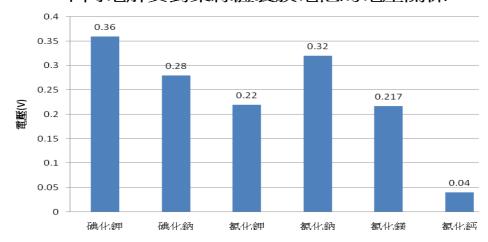

研究目的(四):建立以葉綠素及葉綠體囊膜發出螢光的衰減速率,並估算其活 化的情形


(一)實驗步驟:


- (1)以酒精、丙酮萃取綠茶粉中的葉綠體,以 250un 光照射 10 分鐘後, 偵測其對 uv 的吸收度衰減情形。
- (2) 葉綠體囊膜以不同照度的光照射後,偵測其螢光的衰減情形。
- (3)以三個不同濃度換算其衰減率


(二)實驗結果

- 說明:(1) 葉綠體囊膜與葉綠素的濃度大小很難定量,於是建立一套可行的方法 來計算其衰減率,由偵測値下降快,表示葉綠體囊膜或葉綠素的活性 愈來愈小,製作出來的電池發電時間亦會減少。
 - (2)以 uv 測其吸收峰,葉綠體囊膜的吸收峰在 475nm;葉綠素的吸收峰 在 492nm
 - (3) 利用其特定吸收波長的差值除以 10 分鐘,及可得衰減率。
 - (4)以衰減率來看,葉綠素的衰減較快。


研究目的(五):不同電解質對葉綠體囊膜電池效率探討

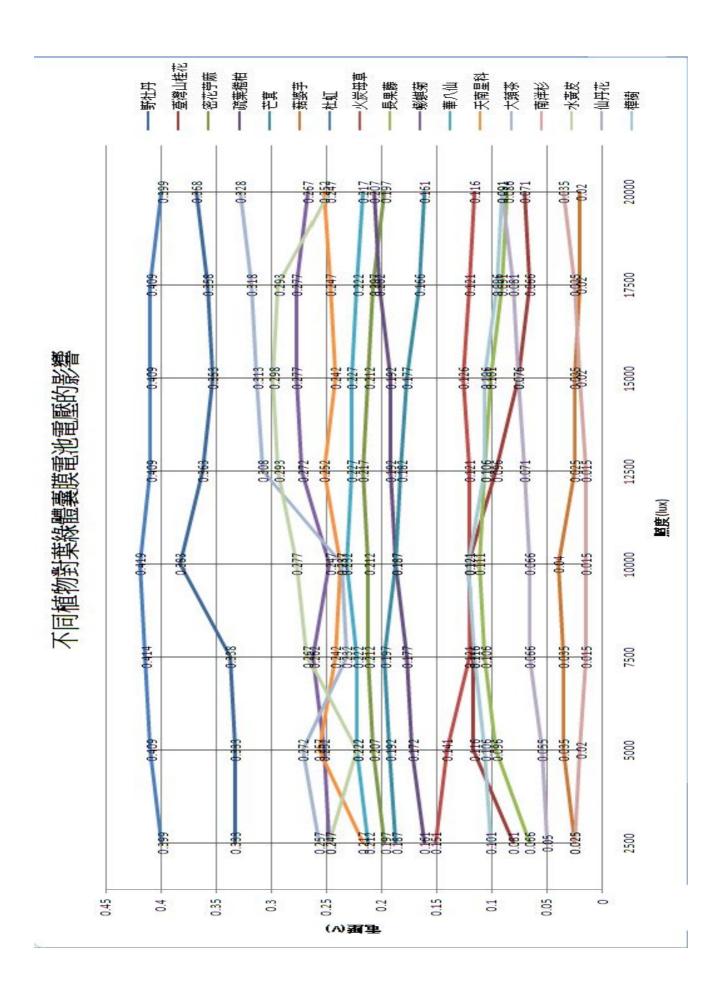
- (一) 實驗步驟:
 - (1) 改變電解質,利用前置實驗二完成電池,測其電壓。
- (二)實驗結果

單位:伏特 照度:10000lux 植物樣本:水黃皮 濃度:0.5M

碘化鉀	碘化鈉	氯化鉀	氯化鈉	氯化鎂	氯化鈣
0.36	0.28	0.22	0.35	0.45	0.04

不同電解質對葉綠體囊膜電池的電壓關係

說明:


(1)不同電解質中,以碘化鉀效果最爲顯著,電壓可達 0.36V,與文獻資料的結果一致。氯化鈉次之,電壓抑可達 0.32V。

研究目的(六):探討不同林下植物對葉綠體囊膜電池發電的影響

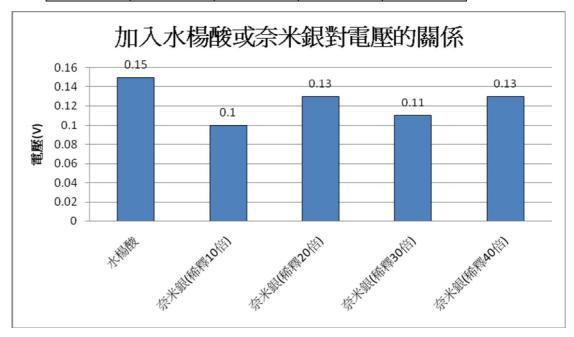
- (一)實驗步驟:
 - 1.利用前置實驗一的方法得到葉綠囊膜
 - 2.利用前置實驗二完成電池
 - 3.在不同的照度下測量電壓
 - 4.將數據紀錄下來並比較發電電壓
- (二)實驗結果

單位:伏特

	照度	2500lux	5000lux	7500lux	10000lux	12500lux	15000lux	17500lux	20000lux
植物									
實	野牡丹	0.333	0.333	0.338	0.383	0.363	0.353	0.358	0.368
驗	臺灣山桂花	0.081	0.116	0.116	0.121	0.096	0.076	0.066	0.071
組	密花苧麻	0.197	0.207	0.212	0.212	0.217	0.212	0.207	0.197
	疏葉捲柏	0.161	0.172	0.177	0.187	0.192	0.192	0.202	0.207
	芒萁	0.187	0.192	0.197	0.187	0.182	0.177	0.166	0.161
	菇婆芋	0.025	0.035	0.035	0.040	0.025	0.025	0.020	0.020
	杜虹	0.399	0.409	0.414	0.419	0.409	0.409	0.409	0.399
	火炭母草	0.151	0.141	0.121	0.121	0.121	0.126	0.121	0.166
	長果藤	0.066	0.096	0.106	0.111	0.106	0.101	0.091	0.068
	蟛蜞菊	0.247	0.252	0.262	0.247	0.272	0.277	0.277	0.267
	華八仙	0.212	0.222	0.222	0.232	0.227	0.227	0.222	0.217
	天南星科	0.217	0.257	0.242	0.237	0.252	0.242	0.247	0.252
對	大頭茶	0.257	0.272	0.232	0.237	0.308	0.313	0.318	0.328
照	南洋杉	0.025	0.020	0.015	0.015	0.015	0.020	0.025	0.035
組	水黃皮	0.247	0.222	0.267	0.267	0.293	0.298	0.293	0.247
	仙丹花	0.050	0.055	0.066	0.066	0.071	0.293	0.081	0.091
	樟樹	0.101	0.106	0.116	0.116	0.106	0.247	0.096	0.091

從圖中可得知:

- 1. 林下植物以杜虹和野牡丹的效果爲最好,最高電壓可達 0.404V 和 0.383V。
- 2. 向陽植物則以大頭茶爲最佳,最高電壓可達 0.328V。
- 3. 林下植物的電壓普遍比向陽植物來的高,足見以林下植物之葉綠體 囊膜作爲電池更能提高其發電效率。


研究目的(七):加入其他物質改善葉綠體囊膜電池之探討

- (一) 實驗步驟:
 - (1)於葉綠體囊膜液中加入水楊酸,利用前置實驗二完成電池,測其電壓。
 - (2)於碘化鉀(電解質)中加入奈米銀,利用前置實驗二完成電池,測其電壓。

(二)實驗結果

單位:伏特 照度:10000lux 植物樣本:水黃皮

水楊酸	奈米銀	奈米銀	奈米銀	奈米銀
	(稀釋 10 倍)	(稀釋 20 倍)	(稀釋 30 倍)	(稀釋 40 倍)
0.15	0.1	0.13	0.11	0.13

- 說明:(1)加入水楊酸是生物上常用的方法,由實驗得知其電壓偵測值優於加入奈米銀。
 - (2)由數據中顯示,加入水楊酸或奈米銀並沒有優於對葉綠體囊膜電池之電壓(0.36V)。

捌、討論

- 1.本次實驗中所偵測的電壓值,利用數據擷取軟體Data Studio,以電壓大小紀錄各葉綠體囊膜之電壓值,再逐一討論林下植物與向陽植物之間的差異性。
- 2.二氧化鈦浸泡葉綠體囊膜液效果比葉綠素佳,可能是囊膜液中除了葉綠素還有其他蛋白質複合體,協助電子的傳遞及葉綠素還原,所以偵測的電壓均較高, 所以綠體囊膜電池便是本實驗發展的目標。
- 3.二氧化鈦浸泡葉綠體中的囊膜液 6 小時可得到較高的電壓,浸泡越久電壓越低,可能與囊膜液的新鮮度有關,當囊膜液出現腐敗會影響電壓大小,可重新操作實驗,確認電壓的衰退曲線。
- 4.就本實驗所偵測的電壓值:以單純浸泡囊膜液最佳,浸泡甲基藍第二,甲基藍 會降低囊膜的發電效果,可能的原因可能是甲基藍與葉綠體囊膜表面的蛋白質 結合,而降低了活性。
- 5.不同電解質中,以碘化鉀效果最爲顯著,電壓可達 0.36V,與文獻資料的結果 一致。氯化鈉次之,電壓抑可達 0.32V。
- 6.將囊膜液直接塗在 ITO 玻璃上製作的電池,電壓電流很小,可能是葉綠體囊膜激發後產生的電子無法有效被導出至外部電流,而本實驗中以加入奈米銀做比對,發現加入前後差異不大。
- 7.本研究最大輸出電壓為 404mV,每平方公分輸出電壓為 101mV,為文獻中每平方公分 80~88m 高,顯示林下植物葉綠體囊膜電池發展的可行性。
- 8.經由本研究發現,杜虹囊膜液電池電壓可達 0.404 伏特,
- 9. 葉綠體中的囊膜中已具有能讓激發態葉綠素還原的酵素,如製作過程不加入電 解液是否也能運作,可再延伸討論。

玖、 結論

- 1 葉綠體囊膜電池電壓優於葉綠素電池,相差約3倍。
- 2 浸泡囊膜液以6小時爲最佳,時間越久電壓反而下降,我們推測是其囊膜衰退的緣故。
- 3 浸泡葉綠體囊膜液6小時比浸泡甲基藍佳,而同時或分別浸泡葉綠體囊膜液和甲基藍效果並不顯著。
- 4 林下植物其葉綠體囊膜的發光效率是相當好的,野牡丹及杜虹都有不錯的發電情形,最高電壓可達0.404V和0.383V。向陽植物的部分以大頭茶較好,最高電壓可達0.328V。
- 5 在不同照度時,大部分葉綠體囊膜的發光效率:林下植物>向陽植物
- 6 加入水楊酸是生物上常用的方法,由實驗得知其電壓偵測值優於加入奈米 銀。
- 7 由數據中顯示,加入水楊酸或奈米銀並沒有優於對葉綠體囊膜電池之電壓 (0.36V)。

壹拾、 參考資料

- 一. 戴明鳳、邱立翰。奈米 TiO₂ 晶粒和藍莓或覆盆子汁液作為染料 DIY 製作染料敏化奈米晶化太陽能電池。國立清華大學、吳鳳技術學院(21 頁)
- 二. 錦囊妙計--葉綠體中的囊膜在太陽能電池上的應用(12頁)

【評語】040817

考量林下植物吸光、存活之特性,探討葉綠體囊膜電池 之持久性差異的想法非常好,但實驗的完整度還不足,也未 能探討其差異性很可惜,應持續再深入探討。