中華民國第51屆中小學科學展覽會

作品說明書

高中組 地球科學科

第一名

最佳創意獎

040509

利用福爾摩沙衛星三號觀測北半球平流層急劇 增溫現象

學校名稱:國立臺中女子高級中學

作者:	指導老師:
高二 王顥蓁	游明珠
高二 陳韻竹	

關鍵詞: 福爾摩沙衛星三號、平流層急劇增溫現象、 北極震盪

得獎感言

這次做科展能一路過關斬將,從中區特優進到全國,再從全國賽抱走第一 名,我只認為自己真的很幸運。我相信沒有經過努力一定沒有這一天,但這並不 代表努力了就一定能走到這天,在這條前途未知的科學研究大道上,有很多時候 「選對題目」和「用對方法」,可能就能讓我們走上一條通往成功的路,但我相 信大部分的研究就算再怎麼努力,也可能會到頭來一無所獲。

在這一年半的科展時光裡,我要感謝很多人。感謝指導我們的明珠老師 陪我們頭痛傷腦筋、教我們怎麼樣去寫一份「科學格式」的報告;感謝太空中心 的蕭博士熱心提供我們福衛的氣溫數據、教我們怎麼處理和繪圖;感謝學校設備 組的孫組長和江姐,不厭其煩的讓我們印數量驚人的報告書面資料,還有在苗栗 的五天陪伴我們;最後感謝我的家人,不論我想要做什麼,總是站在支持我的這 邊。

說「辛苦」倒是言過其實了,現在的我們充其量只是做了一份很生澀不成熟的報告,在長遠的研究之路上,這只是一開始。我相信現在的我們所做的, 在未來的自己眼中也只是份「輕鬆的工作」,我們必須用更宏觀的視野,去迎接 那未知的世界。

摘要

近年來,造成中低緯區溫度下降的北極震盪逐漸受到科學家的重視。一般我們說的「北極震盪」,指的是北半球高緯區的氣壓變動關係:極地渦漩減弱,造成原本聚集在極圈的冷空氣向中低緯區擴散,而使中、低緯度氣溫驟降;但就溫度層面而言,學術上認為這和平流層 急劇增溫有關。

本研究分析福衛三號自西元 2006 年始的北半球大氣溫度資料發現:震盪現象最明顯出現 在冬末春初;高度方面,低空較不易觀察震盪現象,而 30 公里以上的高空受影響的程度略為 類似;緯度方面,北緯 40 度以南的地區受 SSW 影響而降溫,其幅度較小,而北緯 40 度以北 升溫,且幅度隨緯度增加而漸大。

另外將西元 2006~2010 四年資料比較後,發現西元 2009 年為近四年來最高峰,且 SSW 有類似北極震盪部份週期的變化,故福衛三號氣溫數據資料在未來極有可能成為新興的氣候 變化觀測依據。

壹、研究動機

自古以來,劇烈的氣候變遷和自然災害總會造成生命財產損失,也對環境造成相當的破壞。尤其近年來的氣候異常現象,不只人類,生活在地球上各角落的動物亦受到波及,嚴重者甚至瀕臨絕種。

2010年2月及12月,台灣經歷了幾次寒流來襲,讓身處亞熱帶且不斷被告知溫室 效應極為嚴重的我們對於氣候變遷的影響產生很大的疑問,也對溫度方面的急劇變動感到不 解。在高中地球科學課探討氣候變遷及大氣分層時,曾經提到一種稱為「北極震盪(Arctic oscillation,以下簡稱 AO)」的氣候變化導致中低緯度嚴寒的冬天,因為好奇,我們更深入的 去查資料,得知國家地理雜誌曾對 AO 之氣候特徵做一個相關的報導,其中指出 AO 主要強 調北半球高緯區的氣壓變動關係:當低壓強時,北極極地渦漩(Polar Vortex)變強,限制了 極區的冷空氣向南吹,造成北美大陸產生暖冬之現象,而其他北半球地區也較往常溫度為高, 此時稱之為「正相位時期」亦或是「暖相位時期」;反之,當低壓減弱,其四周的環流也跟著 減弱,造成原本聚集在極圈的冷空氣向中低緯區擴散,使中、低緯度氣溫驟降,則AO呈「負 相位(冷相位)時期」。以上,我們得知 AO 主要以氣壓為討論依據。研究的一開始,我們想 以溫度為觀察依據的角度切入此議題,並試圖觀察北半球在溫度方面的變動關係,當我們做 出第一系列的北緯 60~90 度全年溫度曲線圖後,意外發現此曲線在平流層有了較劇烈的溫度 振盪,故我們更近一步針對此氣溫現象杳資料,發現這個特殊的氣溫變動在學術上稱為「平 流層急劇增溫現象(Sudden Stratosphere Warming,SSW)」。資料中顯示,近年來 SSW 的出現頻率 異常頻繁,在高緯區的異常現象尤為明顯:北緯 80~90 度極圈中心 30 公里高空的温度比北緯 60 度極圈環帶為高,因此,受熱成風影響,北緯 60 度極圈將會吹起東風,把原本著名的平 流層西風急流完全摧毀;受此現象影響,對流層呈現類似 AO 的負向位(冷相位)。雖說 SSW 和 AO 似乎在某種程度上關係密切,但至今很少有人將 SSW 與 AO 的現象合併討論。

我們希望能針對此現象做更近一步的溫度研究,了解 SSW 影響高低緯區具體的時間及季節,另外觀察 SSW 是否和北極震盪一樣,在緯度方面也有類似的氣候變動關係,並且推展至北極震盪討論中較少出現的低緯度地區,觀察低緯是否也受 SSW 的影響。

為了找尋適合探討 AO 及 SSW 的 氣候觀測資料,我們搜尋了眾多觀測 系統,最後選擇可以涵蓋全球大範圍 海陸的福爾摩沙衛星三號。福爾摩沙 衛星三號(以下簡稱福衛)於 2006 年 4月15日從美國發射,是國家太空中 心「第一期國家太空科技計畫」的第 三個衛星。此計畫一次發射了六顆微 衛星,分佈於地球表面 700~800 公里 高度之不同軌道中,分別圍繞著地球運 轉,組成涵蓋全球的低軌道微衛星星系 來接收美國 24 顆全球定位衛星 (GPS)

圖(二)福衛三號運作示意圖

所發出的訊號;由於福衛相較其他觀測系統而言,得到的數據點分布較平均,較不受人為無 法觀測等因素影響,且提供的範圍、區域極為廣大,因此這種全球大範圍平均的氣溫數據, 正適合我們用來研究北半球大範圍氣候變化及週期較長的北極震盪,於是我們選用福衛氣溫 資料作為研究的來源,來探討近年來氣候震盪情形及其週期性。

一般而言,SSW、AO主要的氣候特徵包括時間尺度和空間分布,在本次研究中,我們 主要針對時間尺度與溫度震盪幅度研究,雖然相關研究對AO的時間尺度認知上是屬於十年 週期,而我們的資料收集僅自西元 2006 年~2010 年共五年的時間幅度,只有約莫半個週期, 但是我們仍希望能經由福衛資料的分析研究,檢視此研究方法的可行性,提供未來深入發展 所需。

貳、研究目的

- 一、利用福衛三號大氣溫度分層資料探討西元 2006~2010 年期間,同緯度地區不同高度 大氣溫度受北極震盪又或是「平流層急據增溫現象 SSW」影響之變化,並從中挑 選適當高度提供下述研究。
- 二、利用福衛三號西元 2006~2010 年間的資料,將5年曲線重疊於同一圖表,畫出5年 大氣溫度隨時間的變化之曲線,討論不同年間,相同高度、不同緯度高低溫度震盪 幅度變化情形,並找出各年間的曲線是否有週期性。
- 三、討論大氣溫度的震盪幅度是否因海、陸性質差異而有變化。

參、研究設備及器材

- 一、個人電腦
- 二、使用軟體:Microsoft Excel、Microsoft Word、Matlab

肆、研究方法

- 一、大氣溫度資料來源:國家太空研究中心,福爾摩沙衛星三號
- 二、利用 Matlab 將大氣溫度資料切割,選取其中北緯 60~90 度各高度的數據,作出溫度曲線變化圖,並用 Excel 將大氣溫度震幅量化,選取適宜觀察的高度範圍。
- 三、其次,把不同年間北緯 0~90 度的數據以每 10 度一個區間(依 0~10 度、20~30 度 …
 80~90 度),與選定的高度範圍,分別整理成大氣溫度震幅表格並作圖,可同時觀察大氣溫度震幅受高度的變化和緯度變化之影響。
- 四、以 Matlab 切割北緯 30~40°、40~50°、50~60°、60~70°、70~80°、80~90°的海、陸範 圍,作出 2006~2010 年全年以每日為單位重疊而成的大氣溫度變化曲線,並作出中 位數,和第一、第三四分位數與前者相疊,藉此觀察海、陸性質差異對大氣溫度的 影響。
- 五、用上述(二)的方法, 簡略做出南緯 60~90°大氣溫度變化, 並觀察是否在相同季節也 有類似的增溫現象。

伍、研究過程與結果

由於福衛是近年來發射的新興衛星,其資料僅包含 2006~2010 共五年的數據,雖不 足以涵蓋一般氣象科學中所提到的北極震盪 10 年週期,但我們嘗試在這五年中觀察有 無類似北極震盪和平流層急劇增溫的相關現象。

一、北半球同一緯度地區,不同高度之氣溫觀察

我們試圖找出溫度變化最明顯的高度範圍,作為研究不同緯度時的固定高度。 於是我們將西元 2006~2010 年北緯 60~90°依不同高度的逐日溫度變化作圖,得到結 果如圖(三)所示:

其中桃紅線表 06 年、螢光綠線表 07 年、紅線表 08 年、藍線表 09 年、黑線表 10 年

lon = -180~180, lat = 60~90 0000~2400UT 16 km

lon = -180~180, lat = 60~90 0000~2400UT 24 km

-40 -50 -70 -50 50 100 150 200 250 300 350

lon = -180~180, lat = 60~90 0000~2400UT 32 km

根據圖(三),我們觀察低空的溫度圖發現,不論夏季或冬季,低空皆有不穩定 的溫度起伏,尤其2至12公里的高度範圍受地形、地表輻射、海陸比熱等因素干擾 而使溫度變化為不穩定,故較不易觀察增溫現象;此增溫現象以高度14公里以上漸 為明顯,這說明了發生於平流層的溫度震盪較劇烈,與我們所研究的「平流層急劇 增溫現象」有很大的相關性。

另外,我們觀察了夏季以及冬季的差異。若以春分(約第80天)和秋分(約第264 天)為界線,可明顯看出夏季溫度的變化較冬季穩定,如夏至前後(約第172天)的四 年溫度曲線幾乎重疊;相較於夏季,冬季可明顯看出受平流層急劇增溫現象(SSW) 的影響而有大幅度增溫,若再將冬季以冬至(約第355天)為分界細分為秋末冬初和冬 末春初,可經觀察得知在秋末冬初大氣溫度開始輕微的震盪,而溫度急遽上升達到 最高峰值多在冬末春初之時,也就是355天之後,到隔年80天前,若以西元2009 年(即溫度上升最為明顯的一年)為例,其溫度曲線在西元2008年年終開始振盪, 而高峰固定出現在第20至第50天之間。

另外,因為太陽輻射給地球的熱量造成的溫度變化曲線應為正弦函數(sin0曲線),故我們接著算出各高度的溫度最高點與 sin 值正常圖形的溫度位置之溫度差得 其振幅,由於在圖(三)中可看出 2 至 12km 的溫度起伏較不穩定,故我們僅取平流 層以上(約14公里至38公里)高空作數據量化;而且由於福衛是在2006年4月發 射的衛星,故我們在作圖時發現圖中並沒有西元2006年前120天的溫度曲線,因此 在以下數據整理及作圖中我們僅選取西元2007年到西元2010年為振幅觀測對象。

溫度振幅取得的方式以18km 高度為例,如下圖(四),並整理成表(一)。

6

表	(-)	西元 2007~	2010 年各	高度及其	溫度振福	比較表
1X			2010	回反次六/	(皿)又)以1日	レムギメイベ

高度年	14	16	18	20	22	24	26	28	30	32	34	36	38
2007	8.70	11.97	14.35	17.58	14.86	17.54	20.41	26.37	27.60	21.01	25.21	24.28	27.61
2008	8.39	11.18	15.50	19.85	24.40	28.99	30.05	32.14	34.50	34.75	34.62	34.69	37.88
2009	15.44	19.67	25.07	27.69	34.86	36.38	36.70	42.11	46.92	51.98	53.06	52.39	49.20
2010	6.48	8.87	11.08	14.06	19.62	22.02	25.87	27.72	28.10	32.36	34.22	32.93	35.13

圖(五)西元 2007~2010年,北緯 60~90度,高度及其溫度振幅折線圖

由表(一)及圖(五)中可看出 30km 以上高空為 SSW 造成溫度變化較明顯的範圍,因此,我們選擇 30~38km 範圍的溫度作為以下研究之依據。

二、北半球同一高度範圍、不同緯度區間氣溫震盪幅度觀察:

接著,我們分別取西元 2007~2010 年、30~38km 高空範圍的數據,探討北半球 各緯度地區受北極震盪影響之大小,依年份不同而作4張圖。 數據取得方式如上圖(四)所示,並將資料整理成表(二)~表(五)。

表(二)西元 2007 年,不同緯度、30 到 38 公里溫度振幅比較表 (溫度單位:℃)

北緯(°N)	0~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80	80~90
30km	2.94	2.77	3.15	2.12	10.31	15.64	18.39	27.56	42.04
32km	3.405	3.44	-4.18	-3.97	11.60	17.63	25.73	29.45	37.78
34km	3.12	4.21	3.43	3.00	9.86	16.24	29.19	26.37	38.59
36km	-4.43	4.30	3.13	5.90	12.00	17.48	23.14	27.73	45.55
38km	2.66	2.93	3.58	5.23	13.87	18.67	22.52	28.34	34.80

圖(六)西元 2007年,不同緯度 30~38 公里溫度變化

北緯(°N)	0~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80	80~90
30km	-3.42	-3.19	-5.49	-6.82	8.12	15.32	23.10	39.02	59.39
32km	-2.70	-3.36	-7.79	-6.98	10.98	20.25	29.44	40.18	59.78
34km	-4.56	-3.59	-6.77	7.00	10.23	18.02	31.04	40.62	60.33
36km	-3.89	-3.64	-7.60	8.56	10.72	17.31	27.05	44.31	66.78
38km	-3.58	-4.67	-5.16	7.724	13.15	19.29	28.78	43.05	59.91

表(三)西元 2008年,不同緯度、30 到 38 公里溫度振幅比較表(溫度單位:℃)

圖(七)西元 2008年,不同緯度 30~38 公里溫度變化

表(四)西元 2009年,不同緯度、30 到 38 公里溫度振幅比較表(溫度單位:℃)

北緯(°N)	0~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80	80~90
30km	-6.58	-6.54	-5.65	-4.18	12.35	23.95	39.61	57.27	61.63
32km	-6.49	-6.96	-7.46	-5.75	15.19	27.32	44.72	61.27	60.09
34km	-5.61	-5.38	-5.65	-6.2	10.23	23.10	45.82	59.51	62.58
36km	-6.26	-6.79	-8.70	-5.64	10.72	21.68	47.25	59.20	62.69
38km	-4.56	-8.40	-8.86	-7.42	12.34	22.51	42.00	57.40	67.84

圖(八)西元 2009年,不同緯度 30~38 公里溫度變化

表(五)西元 2009年,不同緯度、30 到 38 公里溫度振幅比較表(溫度單位:℃)

北緯(°N)	0~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80	80~90
30km	-3.68	-4.97	-5.47	-6.18	8.469	20.04	29.47	32.21	38.57

32km	-4.40	-4.24	-7.21	-5.89	11.95	23.69	35.54	29.45	38.22
34km	-6.16	-6.43	-5.40	-4.9	9.49	20.56	37.32	28.86	43.47
36km	-7.13	-5.76	-5.88	-5.00	12.32	20.84	36.82	35.86	47.18
38km	-5.37	-6.26	-7.32	-6.20	14.75	21.58	35.07	35.87	44.05

圖(九)西元 2010年,不同緯度 30~38 公里溫度變化

由表(二)~表(五)及圖(六)~圖(九)可知,高緯區受SSW影響,極圈 環流減弱、冷空氣外流,故有增溫現象,且緯度越高,增溫幅度越大(如圖中的升 溫區);北緯40度以南的中低緯區則受北極震盪影響而降溫,而且溫度下降的幅度 約莫在攝氏10度以內(如圖中的降溫區)。相較於高緯區的增溫現象,低緯區的溫 度起伏較平緩。

觀察以上四年的溫度變化圖可得知,不論是哪一年,北緯 80~90 度的溫度差皆為最高值。另外較特殊的是,2009 年在北緯 70~80 度的溫度振幅比其他年高許多,其中 2009 年的溫度振幅比 2007 年高出 111.3%、比 2008 年高出 42.2%、比 2010 年高出 81.6%,大約比 2007~2010 四年平均值高出 46.7%。

三、探討海、陸性質差異對上空大氣溫度造成的影響:

首先,我們試著以寬經度10度、長緯度5度切割出北半球不同緯度的海、陸區 塊,取高度2公里到38公里的大氣溫度震盪幅度,作為以下氣溫數據選取的基準: 自下頁開始,左側世界地圖為範圍選取的示意圖。

接著,我們利用 Matlab 依照不同區塊做出西元 2006~2010 年每日的溫度隨高度 的變化圖,可得五年之每日溫度變化趨勢:自下頁開始,右側曲線圖表之。氣溫圖 中,中央紅色粗線為中位數(50%)、左細紅線為第一四分位數(前 25%)、右細紅線為 第三四分位數(後 25%)。 我們再以相同緯度,海、陸的第一及第三四分位數之間距,取出五年間平均溫度變 化的範圍,依照不同緯度作圖,如圖(十六)、(二十四)、(三十二)、(三十八)、(四 十八)、(五十六);另外,同時以同緯度海、陸最高及最低溫差值,取出溫度變化極 端值,依照不同緯度作圖,如圖(十七)、(二十五)、(三十三)、(三十七)、(四十 九)、(五十七)。

作圖方法如下圖(十)、圖(十一)所示,以北緯 80~82.5 度的格陵蘭島氣溫圖,取 高度 15km 溫度振幅作範例。

圖(十)、第一及第三四分位數溫度振幅測量

圖(十一)、極端值溫度振幅測量

(一)、北緯 80~85°N 溫度圖

此緯區原先我們試著以寬經度 10 度、長緯度 5 度選取北半球 80~85 度的 海、陸區塊,但切割後發現北緯 83 度以北缺乏陸地區塊,故僅取長緯度 2.5 度 (即北緯 80~82.5 度)、寬經度 23 度的區間統計五年氣溫曲線。

圖(十六)、西元 2006~2010 年、北緯 80~85 度,第一與第三四分位數的溫度震幅差作圖

圖(十七)、西元 2006~2010 年、北緯 80~85 度,高低溫極端值的溫度震幅差作圖

由圖(十六),發現海、陸皆在高度10公里處達到溫度差的最小值,且當高度低於10公里時,海洋相對於陸地的溫度振幅差為高,其相距大約在5~10度間;而當測量的高度範圍大於10公里時,陸地的溫度震幅差漸超越海洋,代表在北緯80~85度、10公里以上的高空,就平均溫度而言,陸地是相對的不穩定。

而當我們作出圖(十七),也同樣可看出海陸在高度 10~15 公里處有較小的 溫度震幅,正說明了高度 10~15 公里實為大氣中溫度較穩定的地區;但當高度 達 20 公里以上,雖然海、陸的極端溫度震幅差皆有日益增大的趨勢,但自圖(十 七)中看不出明顯的海陸差異。

(二)、北緯 70~75°N 溫度圖

當我們把緯度範圍拉到北緯 70~75 度,可選取的陸地區塊增加,故我們在 本次作圖中加入俄羅斯區塊一同觀察,目的是為確認相同緯度、不同經度範圍, 是否會對陸地性質造成大幅度差異。

06350~10240 -10~0°E 70~75°N 0~2400UT 1240/2301047

圖(二十四)、西元 2006~2010 年、北緯 70~75 度,第一與第三四分位數的溫度差作圖

圖(二十五)、西元 2006~2010 年、北緯 70~75 度,高低溫極端值的溫度差作圖

由圖(二十四)可看出平均溫度震幅差的最小值仍在高度10公里處,但有 別於北緯80~85度所呈現的,在北緯70~75度的範圍內,海(大西洋)高度10公 里以下的大氣溫度振幅差較陸地小,其值約比陸地少了5到10度。另外,我們 自圖中亦可看出,雖然在高度20公里以下,兩個陸地區塊的溫度振幅差曲線略 有同步現象,但兩者仍然相差了5度左右;而當高度上升至25公里以上,兩條 曲線更加不穩定,因此能得知即使選取同一緯度的陸地區塊,兩者在溫度振幅 差上仍有相當大的不同。

同樣地,由圖(二十五)也可看出在高度5公里以下,海的極端溫度振幅 遠小於陸地;但高度10公里以上,海、陸差異則不明顯。

(三)、北緯 60~65°N 溫度圖

圖(三十)、加拿大觀測點選取

圖 (三十一)、加拿大氣溫圖

圖(三十二)、西元 2006~2010 年、北緯 60~65 度,第一與第三四分位數的溫度差作圖

圖(三十三)、西元 2006~2010 年、北緯 60~65 度,高低溫極端值的溫度差作圖

由圖(三十二)可看出陸地在高度5公里以下的溫度振幅明顯高於海洋, 且圖(三十三)的極端值溫度振幅也有類似現象;這說明了低空溫度在這三個 海陸區塊中,以海洋區塊的溫度相對穩定,但高度10公里以上則沒有明顯的海 陸差異。

(四)、北緯 50~55°N 溫度圖

圖(三十六)、俄羅斯觀測點選取

圖(三十七)、俄羅斯氣溫圖

圖(三十八)、西元 2006~2010 年、北緯 50~55 度,第一與第三四分位數的溫度差作圖

圖(三十九)、西元 2006~2010 年、北緯 50~55 度,高低溫極端值的溫度差作圖

由圖(三十八)、圖(三十九),看出在高度5公里以下,海洋的極端溫度 振幅仍小於陸地,和前幾項觀察得到的結果雷同;值得一提的是,我們發現越 往低緯度地區,海與陸的溫度振幅差越大,幾乎差距15~20度;但我們也同樣 發現,我們所用來觀察SSW的高空並沒有因海、陸性質差異而有明顯不同。

圖(四十八)、西元 2006~2010 年、北緯 40~45 度,第一與第三四分位數的溫度差作圖

圖(四十九)、西元 2006~2010 年、北緯 40~45 度,高低溫極端值的溫度差作圖

從圖(四十八)可看出,高度5公里以下低空的海洋均溫相對穩定許多, 陸地的溫度振幅明顯較大;而在圖(四十九)中,則沒有顯著的海陸差異。但 我們從圖(四十八)觀察出的結論,與我們所研究SSW影響高空溫度震盪的結 果並沒有直接的相關性。

(六)、北緯 30~35°N 溫度圖

圖(五十六)、西元 2006~2010 年、北緯 30~35 度,第一與第三四分位數的溫度差作圖

圖(五十七)、西元 2006~2010 年、北緯 30~35 度,高低溫極端值的溫度差作圖

最後,由圖(五十六)、圖(五十七)同樣地發現,我們所用來觀察的 SSW 高空溫度震盪並沒有因海、陸性質差異而有明顯不同。

陸、討論

一、SSW 發生的季節區間

整理資料作出圖(三)後,我們自其中觀察可看出,SSW的明顯震盪多發生於 當年年底冬至(約第264天)至隔年年初春分(約第80天)的區間內,而且其中最高峰大 多出現在年初,另外,高峰出現的時間也會因觀測的高度不同而在天數上有細微差 異:自圖(三)10公里以及12公里可明顯看出,低空時,震盪高峰出現的時間較接 近春季,約在第50~60天間;而當我們選取的觀測範圍越往高空,其震盪高峰出現 的時間越接近第25~30天,特別在高度28~38公里處尤為明顯。

二、SSW 對不同高度範圍的影響

由圖(三)可看出,高度較低(即高度 10~12 公里以下)的範圍在前 80 天溫度震 盪不規律、沒有明顯的高峰,我們猜測可能是受低空水氣及對流層天氣變化的影響, 導致多個高低起伏凌亂的波動,使我們難以測量何者是因北極震盪導致的溫度振幅,故此報告僅就14公里以上高空範圍的溫度變化作探討。

於是我們從 14 公里開始將圖形數據量化觀察,並作出圖(五),由圖可看出同 年度 30 公里以上的高空折線漸趨平緩,加上我們自地球科學的課程中得知平流層內 受劇烈天氣變化的影響較小,故我們選取 30~38 公里的高度範圍來討論 SSW。

三、SSW 對不同緯區的影響

根據西元 2007~2010 年圖(六)~圖(九)的作圖,我們觀察出從北緯 40 度開始,越接近北極中心受北極震盪而溫度上升的幅度越大,但是這與我們的預期有些許出入:原先我們認為極圈內的升溫是因為極地渦旋減弱、冷空氣外流而導致,故升溫現象應只出現於北極圈周圍約莫北緯 60 度以北的地區;然而,我們繪製的圖表顯示,從北緯 40 度開始即有升溫現象,且高度 30~38 公里等高度溫度上升的幅度皆有 8~10 度之差,因此我們猜測可能是受西風帶氣流擾亂的影響,造成升溫的範圍擴及北緯 40 度的地區。

西風帶在夏季時的範圍約在北緯 30~60 度間, 而冬季時因極地冷氣團南移,相對使西風帶往低緯 區移動至大約北緯 20 度左右;因此我們猜測西風帶 隨季節的改變或多或少影響了中低緯區溫度的變化。 又圖中顯示,低緯區確實有溫度下降的現象,符合 我們上述的猜測,但令我們驚訝的是低緯區溫度 下降的幅度相較於高緯區上升的幅度而言顯得較小 許多:我們發現,高度 30~38 公里中的每一個觀測 高度,其極圈內溫度上升的最高值皆在 30~60 度之

圖 (五十八)、冷空氣分散示意圖

間,然而低緯區溫度下降的幅度卻不到10度;根據我們在地球科學課所學的知識, 我們猜想:如圖(五十八)所用藍色區塊標示,當極圈冷氣流從表面積較小的極區 擴散到表面積較大的中低緯區時,遭中低緯區原有的空氣分散稀釋,因此造成的溫 度改變便較小。

- 四、討論西元 2009 年相較於其他年的異常
 - (一)、全年溫度振幅比較

我們觀察圖(五)的各年折線,可看出西元 2009 年北緯 60~90 度的平均溫度差明顯高於另外三年,且在 34km 達到高峰。

(二)、SSW 影響範圍

觀察圖(六)~圖(九)發現,僅有西元 2009 年的溫度上升最高峰範 圍為北緯 70~90 度,其餘三年的最高峰皆在北緯 80~90 度,這說明了西元 2009 年的 SSW 除了年平均溫度上升最劇烈,也同時導致了較大範圍的上升 高峰。

五、探討 SSW 週期

由圖(五)可看出西元 2009 年的溫度振盪幅度相較其他三年高出許多;當我們 以各高度溫度隨年份變化的結果作圖得圖(五十九),可看出西元 2007 年至 2009 年 溫度振幅漸增,而西元 2009 年後溫度振幅始降,形成部份 週期的規律變化。換言 之,如我們先前閱讀資料中提到的,SSW 可能如北極震盪,是隨一定週期規律起伏。

圖(五十九)SSW 週期圖

六、SSW 造成的各年度高峰數比較

由圖(三)北半球北緯 60~90 度的四年大氣溫度變化圖可看出,西元 2007 年高峰數落在1至3個;2008 年高峰數最多,平均為3至4個;而 SSW 最劇的西元 2009 年卻僅有單一高峰。我們推測,西元 2009 年的 SSW 強度較集中,導致了較劇烈的 溫度變化,而其餘三年則分散於較大的時間區間內,因此影響較小。

七、北半球海陸比較

觀察圖(十二)~圖(五十七),可看出北半球的溫度振動曲線,我們最後以各 緯度海陸振幅的溫度差(即海洋溫度振幅減去陸地溫度振幅)作圖,得圖(六十)、 圖(六十一)如下。

圖(六十)、西元 2006~2010 年,北半球各緯度的海陸四分位數溫度振幅差作圖

圖(六十一)、西元 2006~2010 年,北半球各緯度的海陸極端值溫度振幅差作圖

觀察圖(六十)、(六十一),搭配數據及研究過程中第三項所做的觀察,我們發現海陸溫度振幅差值在我們觀察 SSW 的高空呈現無規律的變化,並且在觀察緯度因素後發現,兩者之間並無顯著相關,故我們推測 SSW 造成的影響並不受限於海陸差異。

八、南、北半球溫度震盪的相關性

雖然本研究集中在 SSW 及北半球的探討,但我們也嘗試將南極圈內的數據作整理。下圖(六十二)以 30km 大氣溫度圖為例。

由圖可知,除了冬夏季節相反造成溫度曲線成反向變動外,南極圈內的震盪增 溫亦與北極圈內相反,以年中至年末(約第172天至第355天)的變化較明顯,南極溫 度震盪幅度在北半球溫度震盪最劇烈的年初季節區間內(約前80天)反而溫度穩定。

- 柒、結論
- 一、平流層急劇增溫現象發生的季節約在冬末至隔年春初,且溫度曲線的高峰多集中在第 25~60天。
- 二、低空較不易觀察平流層急劇增溫現象,而 30~38km 的高空受影響之程度相差不大。
- 三、北緯 40 度以北受平流層急劇增溫現象影響而升溫,且升溫幅度隨緯度增加而漸大; 反之,北緯 40 度以南相對降溫,但降溫幅度較小。
- 四、西元 2009 年溫度振幅高峰的緯度範圍最大,且其年平均溫度振幅也大於其餘三年, 這說明了西元 2009 年為 SSW 最劇烈的一年。
- 五、西元 2009 年的震盪為單一高峰,其餘三年則為多高峰,可說明 SSW 最劇的西元 2009 年強度集中,故造成的溫度改變亦最明顯。
- 六、比較過海陸區塊的四年溫度振幅之後,發現屬平流層的高空並沒有特別的規律,故我 們推測 SSW 應不受限於海陸差異。
- 七、南北半球高緯區均有溫度震盪的現象,但北半球高緯區平流層溫度變化的幅度明顯高 於南半球,且兩者的溫度震盪季節區間因南北半球季節相反而呈反向變動。

捌、參考資料及其他

 Atmos. Chem. Phys., 10, 3397–3404, 2010, Study on the impact of sudden stratosphere warming in the upper mesosphere-lower thermosphere regions using satellite and HF radar measurements, Received: 3 July 2009 –Discuss.: 2 November 2009-Revised: 18 February 2010 – Accepted: 29 March 2010 – Published: 12 April 2010, 8 pages

2. K. I. Nakagawa, K. Yamazaki, What kind of sudden stratospheric warming does propagate to the troposphere?, 2 pages

3. 楊竣凱, AO對東亞地區氣候影響之研究, 中央大學碩博士論文, 2008, 61頁

【評語】040509

利用福衛三號資料探討平流層增溫與北極震盪為極佳 之題目,頗有創見。部分物理原因的探討,需要多加考慮才 能得到較合理的推論或猜測。探討科學問題若能更聚焦,會 更凸顯本研究價值與優點,以及福衛三號資料的應用潛力。