中華民國第51屆中小學科學展覽會 作品說明書

高中組 物理科

040105

光之尺:解開金屬膨脹的秘密

學校名稱:桃園縣私立復旦高級中學

作者:	指導老師:
高二陳 寧	游勝凱
高二 葉政廷	陳福龍
高二 曾揚富	

關鍵詞:干涉儀、金屬膨脹係數

摘要

使用馬赫·曾特爾干涉儀,它可以利用光波微小波長(可見光 400~700 奈米,1 奈米 = $\ln m = 10^{-9} m$)的特性,來進行微小的長度變化的測量。在干涉圖形中每一個環或圈數的變化都是一個光波長 λ ,透過觀察圈束的變化 ΔN ,算出真正金屬所膨脹的厚度。最後,利用熱學中的長度增加量 $\Delta L = L_0 \times \alpha \times \Delta t$,得到我們要的:金屬的熱膨脹係數 α 。

壹、研究動機

大同電鍋生產於1960年,但到今日每個家庭尙有至少一個電鍋仍然在使用,究竟是 什麼樣的秘訣讓大同電鍋能縱橫市場幾十年呢?不外乎就是品質耐用及多用途,但這全都是 歸功於電鍋本身的內部構造,而我們發現開關是個重要的幕後功臣,決定導熱的時間長短, 其使用的是金屬膨脹的原理,金屬複合棒因爲加熱,金屬膨脹時長度增加速率不同而產生彎 曲,進而使簧片彈起。藉著這項家電,引發了我們想藉由干涉儀器可以測量微小長度變化的 性質,來測量金屬膨脹的速率。

我們找到了馬赫·曾特爾干涉儀,它比起麥克森干涉儀便於觀察,具有獨立的兩條獨立 的光路,但在現實中,要調出比光波還要短的光程差是很困難的。在多次嘗試下,我們抓了 幾次長度變化取平均值,希望能壓低誤差。

貳、研究目的

一、量測錠子油的折射率,並探討折射率與溫度的關係。

二、實際製作麥克森干涉儀。

三、從馬赫·曾特爾干涉儀,透過干涉圖形中亮紋圈數變化量算出實際長度變化量。

四、利用公式算出金屬的線膨脹係數。

參、研究設備及器材

He-Ne 雷射 x 1	矽膠片 x 8
光學桌 x 1	載玻片 x 8
分光鏡 x 2	蓋玻片 x 8
反光鏡 x 2	數位攝影機(相機)x 1
光學支架、平台	腳架 x 1
熱絲 x 2	電腦(分析軟體)
直流電源供應器 x1	加熱板
水平儀 x 1	針筒
自製夾具 x 1	鋁合金(5052)x2
熱電偶溫度計 x 1	黑鐵 x 2
錠子油	

肆、研究過程或方法

一、實驗原理:

(一)光學的發展

<u>牛頓</u>(Isaac Newton, 1642-1727)在1704年出版的光學一書中,提出光的「粒子說」,認為光是由很多極為微小的粒子所組成。

和<u>牛頓</u>同一年代的荷蘭科學家<u>海更士</u>(Christiaan Huygens, 1629-1695)提出 另一種「波動說」理論,以子波(wavelet)的概念來解釋波前的形成和波的傳播,。波動的 產生是由於介質受到擾動所致。波前上的每一點皆可視為一個新的點波源,以各點波源為中 心各自發出球面波(即子波),所有子波的包跡面形成新的波前,因此波動可以自行前進, 其能量也藉此傳遞,稱為海更士原理。

「波動說」理論在當時卻沒有<u>牛頓</u>所提出的光的「粒子說」來的盛行。直到1801年 <u>英</u>國人<u>楊格</u>(Thomas Young, 1773-1829)做了著名的雙狹縫干涉實驗後,光的 「波動說」才慢慢被大家所接受,因為干涉現象無法使用光的粒子性來解釋,卻可以用光的 波動性來說明。而到了1864年,馬克士威爾(James Clerk Maxwell, 1831-187 9)從理論上證明光是一種電磁波,不需要靠介質來傳遞,更奠定了光是以波動來傳遞的說 法!如圖(1)所示。

1881年美國人<u>邁克生</u>(Albert Abraham Michelson, 1852-1934)和<u>莫立</u> (Edward William Morley, 1838-1923)從實驗中證明所謂的「以太」是不存在 的。1905年<u>愛因斯坦</u>(Albert Einstein, 1879-1955)提出「光子說」,認爲光 由光子所組成,光子兼具有粒子和波動的特性,亦稱爲光的二象性。

圖(1)

(二)波的重疊

兩波重疊時組成新合成波的現象,稱為「波的干涉」(interference)。當兩波在同一介 質中傳播,相向行進而重疊時,重疊範圍內介質質點的振動位移等於個別兩波動所造成位移 的向量和,此稱為「波的重疊原理」(principle of superposition for waves)。若介質質點受 到兩波作用產生的位移分別為 y₁和 y₂,則實際上質點的合成位移 y 為:

 $y = y_1 + y_2$

若為正弦波(sinusoidal wave)持續通過介質中某一定點的振動位移,則其隨時間而變的函數可寫為:

 $y_{2} = A \sin \left[\frac{2\pi}{T}(t_{1} + nT) + \psi\right] = A \sin \left(\frac{2\pi}{T}t_{1} + \psi\right) = y_{1}$ 兩者所對應的相位差 (phase difference)等於

(相角)₂ - (相角)₁ = $\left[\frac{2\pi}{T}(t_1 + nT)\right] - \left(\frac{2\pi}{T}t_1\right) = 2n\pi$

上述討論可知,當兩週期正弦波通過介質中的某一定點時,其振動位移隨時間作週期性的變化,如圖(2)所示,特例討論如下:

1、完全建設性干涉(fully constructive interference):

若所經歷的時間差爲一個週期的整數倍,或其相位差爲 360° 的整數倍,則該點在這兩個不同的時刻的振動位移相同,即同相(in phase)。

2、完全破壞性干涉(fully destructive interference):

若所經歷的時間差為半週期的奇數倍,或其相位差為 180°的奇數倍,則該點在這兩個不同時刻的振動位移相反,即反相(out of phase)。

3、 建設性干涉與破壞性干涉:

在上述兩種情況之間,即兩波未能剛好同相或反相者,則其合成波的振幅可能大於或小 於成分波的振幅,視兩波波峰(或波谷)錯開的時間間隔而定。若合成波的振幅大於成分波 的振幅者,稱爲相長干涉;反之,則稱爲相消干涉。

圖(2)

(三)雙狹縫干涉,單狹縫繞射

<u>楊格</u>(Thomas Young,1773-1829)利用如圖(3)所示的裝置,以平行入射的單 色光(即單一頻率的色光)經光屏A上的單狹縫S₀透出後,形成一個線波源,產生柱面 波,再經光屏B上的雙狹縫S₁和S₂透出後,形成兩個線波源。由於這兩個線波源是來自於 同一線波源S₀所產生的波前,因此光源便具有相干性(coherence),滿足產生穩定干涉的 條件。光屏C上的干涉條紋是從兩線光源S₁和S₂所發出的光波交會產生的結果。當兩波交 會於同一點時,若兩波同相,光程差為波長的整數倍,則產生完全相長干涉,形成亮點;若 兩波反相,光程差為半波長的奇數倍,則產生完全相消干涉,形成暗點。但因使用線光源, 相當於有許多點光源排列在一條線上,因此在光屏上產生的亮點連結成一條亮紋,而暗點則 相連成一條暗紋,成為亮暗相間的條紋。<u>楊格</u>的實驗結果顯示了光具有波動性。

圖(3)

光通過單狹縫的繞射情況中,如果照射狹縫的光源是平行光,且從狹縫透出後,沿任一方向射抵光屏的光線皆可視為彼此平行(即相當於將光屏置於離狹縫無窮遠處),則因所涉及的波前可視為平面波,故可用簡單的數學來分析。在這種情況下的繞射,稱為<u>夫朗和斐</u>繞射(Fraunhofer diffraction)。圖(4)左為單狹縫繞射實驗的裝置,凸透鏡的功用在使繞射光會聚在光屏上,其作用相當於將光屏置放於無窮遠處,以符合上述理論分析的要求。圖上的曲線代表在光屏上不同位置的光強。圖(4)右為在光屏上所見的繞射圖樣。中央部分為較狹縫寬得多的亮帶,其兩側為相間的亮帶和暗帶。

入射的單色平行光經單狹縫透出時,形成線光源,可視為由許多同相的點波源所形成。 假設光屏置放於離狹縫無窮遠處,則從這些點波源沿同一方向平行射出的光,理論上將交會 於光屏上某一處。因為光程差的不同,造就了光屏上有亮帶和暗帶相間的條紋。

(四)麥克生干涉實驗

圖(5)

麥克生干涉儀是由<u>阿伯爾特-麥克生</u>(Albert Abraham Michelson,1852-193
1)所製造的,用途是為了著名的麥克生-莫立實驗。麥克生・莫立實驗主要是為了證明以太(Ether)的存在。1900年<u>克耳文勛爵</u>認為物理學已經相當完備,但還是存在者兩大謎團,第一個是光的傳遞,試圖測定地球在太空(以太)中的絕對速度;第二個則是黑體輻射。這兩個謎團在近代物理學掀起很大的風暴,前者使愛因斯坦的相對論更加完備,後者則是量子力學的前身。而麥克生莫立實驗就是為了證明以太存在而設計的。

根據古典力學理論,波都是需要介質來傳遞的,所以科學家們就假想太空中充滿者以太的存在,而電磁波就是藉此來傳遞的!以太的假設事實上代表了傳統的觀點:電磁波的傳播需要一個「絕對靜止」的參照系,當參照系改變,光速也改變。在1881-1884年時,<u>阿伯爾特-麥克生和愛德華-莫立〈</u>Edward William Morley,1838-1923)進行了著名的麥克生,莫立實驗。

麥克生·莫立實驗原理:假如真的有以太的存在,因地球自轉與公轉會使地球表面的以 太產生流動稱之爲以太風,因此光線在傳遞時,必然會受到地表的以太風的影響。

麥克生干涉儀的原理有別於楊式雙狹縫的波前分割,而是用分光鏡的振幅分割,當雷射 光束被一面鍍上一層銀的光分束器依比例分成兩束光,一束光穿過分光鏡,一束光則是被分 光鏡反射,兩道光束經由不同的反射鏡,最後匯集在一起產生干涉。當平面鏡嚴格垂直時, 單色光會再螢幕上形成一個同心圓。形成同心圓的成因是因為擴張光束的凸透鏡,若再反射 時產生光程差則會有不同的干涉圖形產生,而調節平面鏡使光程差減小,條紋向中心收縮, 直到光程差爲零。接者記錄其干涉圖形之後,再把干涉儀旋90°再做一次干涉實驗,發現干 涉圖樣並無改變,因而推翻了以太存在的理論,此項發現對日後愛因斯坦然所提出的狹義相 對論有著重大的影響。

(五)馬赫·曾特爾干涉儀

馬赫·曾特爾(Mach-Zehnder)干涉儀有兩個獨立的光路,如圖(6)所示,不像麥克生干涉儀一般,光路會重疊,若於光路上放上待測物,光線會在待測物穿過兩次,而增加光程差,而在馬赫-曾特爾干涉儀的光路上放待測物,光線僅通過一次,且不用考慮光波經過平面鏡後相位會相反,較易分析之。故我們使用此干涉儀,在計算上較簡易也較精準。

7

(六)折射率與光的波長

光從一種介質進入另一種不同的介質時,行進方向發生改變 的現象稱為折射(refraction)。如圖(7)所示,光從第一介質傳播 進入第二介質,O為入射點,AO為入射光線,ON為法線,從 入射點偏折進入第二介質的光線OC,稱為折射光線。θ1為入射 角,折射線與法線的夾角稱為折射角θ2。從實驗結果中,我們得 知光在折射時遵守下列規則:

物質	n
空氣	1.000293
二氧化碳	1.00045
水	1.333
酒精	1.361
甘油	1.473
二硫化碳	1.628
冰	1.309
石英	1.458
冕玻璃	1.52
食鹽	1.544
鉛玻璃	1.6~1.9
鑽石	2.419
金紅石	2.62
磷化鎵	2.50

註:表中數值為在1大氣 壓下,溫度範圍在0℃ 至20℃內,以波長589nm 的黃色鈉光所測得。 1. 入射線、折射線、和法線在同一平面上, 且入射線和折射線分別在法線的兩側。

2. 入射角和折射角的正弦比值為一定值,即 $\frac{\sin \theta_1}{\sin \theta_2} = n$,式中 n 為一常數,此關係式 為荷蘭人<u>司乃耳</u>(Snell Willebrord, 1581-1626)於1626年發現,稱為<u>司乃耳</u> 定律。若光從真空中傳播進入某介質時,則上式中的 n 定義為該介質的折射率(index of refraction)。

若光從真空中傳播進入某介質時,則上式中的 n 定義為該介質的折射率(index of refraction)。按此定義,真空的折射率即為1。一般物質的折射率如表所列。由表中可知空氣的折射率為1.000293,非常接近1,故在一般實驗中,常以光由空氣進入介質時,所測得的 n 值作為該介質的折射率。

圖(8)

如上圖(8)所示,一束光線從真空中以入射角 θ_1 進入一透明的介質。設光在真空及介質中的速率分別為 c 和 v (c >v),圖中 A 和 B 為同一波前上的兩點,若光從 B 至兩介質界面上的 C 點需時 t,則 $\overline{BC} = c t$;在同長的時間內,光從 A 點進入介質後,行進至 D 點, 得 $\overline{AD} = v t$ 。這時 C 和 D 兩點位在同一波前上,圖中的 θ_2 為折射角。由圖中可得 $\overline{BC} = \overline{AC} \sin\theta_1$, $\overline{AD} = \overline{AC} \sin\theta_2$, 故 $\frac{\sin\theta_1}{\sin\theta_2} = \frac{\overline{BC}}{\overline{AD}} = \frac{ct}{vt} = \frac{c}{v}$,比較上式和 $\frac{\sin\theta_1}{\sin\theta_2} = n$ 式,可得折射率的另一定義: $n = \frac{c}{v}$ 或 $n \times v = 1 \times c$ 。

 $波速 v = \frac{\Delta x}{\Delta t} = \frac{\lambda}{T} = f \times \lambda \circ \overline{A} \cdot \overline{A}$

(七) 實驗設計

我們在馬赫·曾特爾干涉儀的兩條光路皆調成等長後,在一條光路中放上我們想要測量 的金屬樣品,在待測金屬中間挖洞灌油,以兩片載玻片與兩片矽膠片(中間挖洞)夾住,當 加熱金屬,洞柱增長,而油也會充滿整個洞柱,當光線經過油,光程差或是光的波數將發生 變化,進而干涉圖形產生變化。在第二條光路中,放上一個補償板,即爲兩片載玻片與兩片 矽膠片(中間挖洞也裝有油),補償板亦可同步加熱,以簡化光程差的分析。我們的實驗如 圖(9)所示。因載波片厚度度大,所以要加入補償板;我們亦用蓋玻片厚度小直接做實驗。

圖(9)

光線1穿過待測物時,實際上依序經過了載玻片→油(厚度為金屬與矽膠片之厚度)→ 載玻片,光線2穿過補償板時,實際上依序經過了載玻片→油(厚度為矽膠片之厚度)→載 玻片。假設待測物升溫時的金屬厚度增加量為ΔL,則光線1與光線2的差別在於:

光線 1 多穿過ΔL、折射率 n 的油,光的波長數為 $N_m = \frac{\Delta L}{\lambda_n} = \frac{\Delta L}{(\lambda/n)} = \frac{n\Delta L}{\lambda}$

光線1少穿過 Δ L、折射率1的空氣,光的波長數為 $N_a = \frac{\Delta L}{\lambda}$

光線1與光線2一同射向光屏時,光線1之波數差即為相位改變數,亦為干涉圖形中的條紋 變化數 $\Delta N = N_m - (-N_a) = \frac{n\Delta L}{\lambda} + \frac{\Delta L}{\lambda} = \frac{\Delta L}{\lambda} (n+1)$

大多數物質具有熱脹冷縮的現象,其原因是物質溫度升高時,組成物質的分子間的平均距離變大,造成外觀上的膨脹。加熱使得固態物體的長度隨溫度上升而增加。由實驗的結果得知,物體長度增加的比例 <u>AL</u>與上升的溫度成正比。

如圖(10)所示,若物體在初溫時的起始長度為 L₀,溫度升高 Δt 時的物體長度為 L,則其 長度增加量 ΔL=L-L₀,除了與上升的溫度 Δt 成正比外,也與物體起始長度 L₀成正比,可 寫為 ΔL=L-L₀=αL₀Δt,亦即 L=L₀(1+αΔt),式中 α 是一個與材料種類有關的常數, 稱爲線膨脹係數(coefficient of linear expansion)。此係數的單位為℃⁻¹,其意義爲溫度上升 1℃時,物體長度的增加量與起始長度的比值。在一般溫度範圍內,α之值都很小,且幾乎 不變。

常見物質在室溫 25℃時之線膨脹係數

物 質	線膨脹係數 (×10 ⁻⁶ ℃ ⁻¹)	物 質	線膨脹係數 (×10 ⁻⁶ ℃ ⁻¹)
鉊	23.1	金	14.2
鐵	11.8	鋅	30.2
銅	16.5	錫	22.0
銀	18.9	鎳	13.4
鉛	28.9	罁	11.0
普通玻璃	9.0	耐熱玻璃	1.2
低膨脹鋼	0.7	合成石英	0.5

我們將待測物與補償板同步加熱,利用加熱絲纏繞物品,以直流電源供應器調整升溫,以熱電偶溫度監測溫度,在相同的升溫區間 Δt ,盼能從干涉圖形中的條紋變化數 ΔN ,推算 出金屬塊的厚度 $\Delta L = \frac{\lambda}{(n+1)} \times \Delta N = \alpha L_0 \Delta t$,以求出金屬的線膨脹係數 α 。

二、量測錠子油的折射率,並探討折射率與溫度的關係。

- (一)將錠子油裝在半圓形的壓克力容器中,將容器放再加熱板上並於下方壓一張方格紙。
 將熱電偶溫度計固定於半圓形的壓克力容器側邊,方可監控溫度。
- (二)以紅光雷射做實驗,並於光線的出發點於方格紙上做記號,因光在空氣中的光徑是不易觀測的;而光在錠子油中傳播的光徑是清楚的。在加熱板升溫的過程中,每增加 10℃時,於上方以數位相機拍攝光的路徑。
- (三)重複一次升溫實驗。實驗照片如圖(11)所示。利用<u>司乃耳定律</u>分析出折射率。

圖(11)

三、實際製作麥克森干涉儀與馬赫·曾特爾干涉儀。

(一)待測物體:黑鐵 × 2、鋁 × 2、錫 × 1

1. 黑鐵:

圖(12)

長:70.3mm	
寬:24.4mm	
柱高:10.1mm	柱高: 4.6 mm
內徑:12.8mm	內徑:11.6mm
厚片	薄片

2. 鋁合金5052:

長:71.1mm	
寬:25mm	
主高:10.1mm	柱高: 4.3 mm
內徑:12.7mm	內徑:11.6mm

薄片

3. 錫:

外圍:20.2mm 內徑:10.6mm 柱高:10.1mm

厚片

圖 (14)

圖 (13)

- (二)準備光學儀器:
- 1.分光鏡、反光鏡、支架、基座 圖(15)
- 2. 熱絲、補償板 圖(16)
- 3. 電源供應器 圖(17)
- 4. 夾具 圖(18)

圖(16)

圖(17)

圖(18)

(三) 實驗步驟

1. 架設馬赫·曾特爾干涉儀:

準備好以上所需的材料後,先在光學桌上架好馬赫·曾特爾干涉儀。如圖(19)所示。

2. 製作金屬樣本:

準備兩塊小木板、四片中間有孔洞的矽膠 片、兩片載玻片、錠子油和鑽好洞的待測金屬。 如同製作漢堡般,一層一層的疊起,在載玻片與 金屬中擺兩片矽膠片,防止中間液體漏出以及壓 破玻璃,在載玻片與木版間也擺上一片矽膠片使 金屬膨脹時可以不被壓迫影響準確度。接著使用 針筒灌入錠子油。如圖(20)所示。或用薄的蓋玻片 直接密貼住金屬樣品的圓孔,外側以熱熔膠黏 好,防止錠子油流出,但不宜升至太高的溫度。

圖(20)

3. 放置待測金屬樣本:

在兩條獨立光束中,一邊擺上欲測量的金屬樣品(含兩片載玻片和兩片矽膠片),另一 邊則是擺設補償板(兩片載玻片和四片矽膠片)。在兩條獨立光束中僅一邊擺上欲測量的金 屬樣品(含兩片蓋玻片)。

4. 加熱待測金屬樣本:

從室溫向上升溫,每10℃為一間距,在待測金屬以及補償板上纏繞熱絲加熱,控制電 源供應器所輸出的電流,使兩邊的溫度達成一致。而以薄的蓋玻片製成的金屬樣品,從室溫 向上升溫,每5℃為一間距。

5. 觀察結果:

由於圖形變化時快時慢,用肉眼紀錄其圈數變化可能會有很大誤差,於是我們運用數位 攝影機將圖形變化紀錄下來。溫度計上升 10℃或 5℃的變化量,便將攝影機上的時間紀錄下 來,事後在影片檔上做加工,人工數出干涉圖案中的圈數變化,最後在從每溫度梯度所紀錄 的時間上找到當時的 ΔN(累積圈數變化)。

15

伍、研究結果

一、量測錠子油的折射率,並探討折射率與溫度的關係。

(一)小入射角做實驗,當溫度每增加10℃時,以數位相機連續拍2張,取10張照片。

(二)大入射角做實驗,當溫度每增加10℃時,以數位相機連續拍2張,取10張照片。

(三)利用應用程式 slide show 開啓資料夾之照片,在圖中所需的位置處點一點,一張圖中點4點,下一張圖亦重複之。點選完畢後,利用工具列 Anchor 中的 Save Anchors 將 數據儲存成 dat 檔案,以 Microsoft Excel 打開 dat 檔,分析如下:

點 1 的座標 (x_1, y_1) ,其他可類推,點 1 與點 2 決定了界面向量 $\vec{A} = (A_x, A_y)$,點 3 與點 1 決定了入射向量 $\vec{B} = (B_x, B_y)$,點 4 與點 1 決定了折射向量 $\vec{C} = (C_x, C_y)$,利用:

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = \mathbf{AB} \cos \phi_1 \Rightarrow \cos \phi_1 = \frac{\vec{\mathbf{A}} \cdot \vec{\mathbf{B}}}{\mathbf{AB}} = \frac{\mathbf{A}_x \times \mathbf{B}_x + \mathbf{A}_y \times \mathbf{B}_y}{\sqrt{\mathbf{A}_x^2 + \mathbf{A}_y^2} \times \sqrt{\mathbf{B}_x^2 + \mathbf{B}_y^2}} \quad \text{iff} |\cos \phi_1| = \sin \theta_1 \quad \text{;}$$
$$\vec{\mathbf{A}} \cdot \vec{\mathbf{C}} = \mathbf{AC} \cos \phi_2 \Rightarrow \cos \phi_2 = \frac{\vec{\mathbf{A}} \cdot \vec{\mathbf{C}}}{\mathbf{AC}} = \frac{\mathbf{A}_x \times \mathbf{C}_x + \mathbf{A}_y \times \mathbf{C}_y}{\sqrt{\mathbf{A}_x^2 + \mathbf{A}_y^2} \times \sqrt{\mathbf{C}_x^2 + \mathbf{C}_y^2}} \quad \text{iff} |\cos \phi_2| = \sin \theta_2 \quad \text{;}$$

司乃耳定律: $1 \times \sin \theta_1 = n \times \sin \theta_2 \Rightarrow n = \frac{\sin \theta_1}{\sin \theta_2}$,便可求出折射率 $n \circ$

(四)數據分析:

1. 小入射角

溫度	聖	; 1	點	i 2	黑	; 3	點	i 4
°C	Х	у	Х	У	Х	у	Х	у
25	444	171	443	79	715	265	106	110
	535	221	530	154	744	307	166	154
35	507	211	504	112	784	302	141	151
	480	242	478	160	688	317	211	192
45	568	261	566	166	789	356	173	170
	542	230	541	142	760	314	198	158
55	560	243	551	132	739	310	275	192
	506	234	509	144	797	339	119	144
65	470	267	465	174	708	332	172	221
	472	277	474	165	689	339	146	216

溫度	界	面向量	入射	向量	折射阿	句量	正弦	玄値	錠子油
°C	A _x	Ay	B _x	By	C _x	Cy	入射角	折射角	折射率
25	-1	-92	271	94	-338	-61	0.3380	0.1883	1.7949
	-5	-67	209	86	-369	-67	0.4483	0.2514	1.7833
35	-3	-99	277	91	-366	-60	0.3407	0.1916	1.7785
	-2	-82	208	75	-269	-50	0.3620	0.2067	1.7518
45	-2	-95	221	95	-395	-91	0.4142	0.2450	1.6908
	-1	-88	218	84	-344	-72	0.3701	0.2160	1.7138
55	-9	-111	179	67	-285	-51	0.4251	0.2551	1.6662
	3	-90	291	105	-387	-90	0.3079	0.1939	1.5875
65	-5	-93	238	65	-298	-46	0.3149	0.2054	1.5330
	2	-112	217	62	-326	-61	0.2575	0.1663	1.5480

2. 大入射角

溫度	點	; 1	割	į 2	點	; 3	點	i 4
°C	Х	У	Х	У	Х	у	Х	у
30	571	241	570	173	799	383	206	124
	544	203	543	154	755	329	180	93
40	568	235	561	160	768	346	206	140
	432	181	429	102	697	316	103	94
50	538	273	536	233	762	398	173	165
	492	216	493	140	747	362	151	101
60	452	198	449	144	719	326	102	107
	531	224	524	165	767	348	141	124
70	390	212	388	152	671	364	43	101
	436	273	435	209	707	411	79	163

溫度	界面	面向量	入射	向量	折射	向量	正引	玄値	錠子油
°C	A _x	Ay	B _x	By	C _x	Cy	入射角	折射角	折射率
30	-1	-68	228	142	-365	-117	0.5411	0.3192	1.6950
	-1	-49	211	126	-364	-110	0.5301	0.3087	1.7170
40	-7	-75	200	111	-362	-95	0.5644	0.3426	1.6474
	-3	-79	265	135	-329	-87	0.4874	0.2922	1.6683
50	-2	-40	224	125	-365	-108	0.5303	0.3313	1.6008
	1	-76	255	146	-341	-115	0.4854	0.3071	1.5808
60	-3	-54	267	128	-350	-91	0.4816	0.3049	1.5795
	-7	-59	236	124	-390	-100	0.5662	0.3608	1.5694
70	-2	-60	281	152	-347	-111	0.5048	0.3362	1.5014
	-1	-64	271	138	-357	-110	0.4676	0.3094	1.5117

3. 整理

小	角度	大角度		
溫度	折射率	溫度	折射率	
25	1.7891	30	1.7060	
35	1.7652	40	1.6579	
45	1.7023	50	1.5908	
55	1.6269	60	1.5744	
65	1.5405	70	1.5065	

二、實際製作麥克森干涉儀。

圖(21)

圖(22)

三、從馬赫·曾特爾干涉儀,透過干涉圖形中亮紋圈數變化量算出實際長度變化量。

(一)金屬樣品(含兩片載玻片和兩片矽膠片),補償板(兩片載玻片和四片矽膠片):

T(影片時間)	t(溫度)	ΔN(累積圈數變化)	Δt(累積溫度變化)
3分16秒	30	20	10
5分29秒	40	41	20
7分38秒	50	65	30
9分46秒	60	83	40

1. 影片的時間點與溫度,分析圈數。對黑鐵(厚度 10.1mm)的數據。

圖(23)

2. 影片的時間點與溫度,分析圈數。對鋁 5052 (厚度 10.1mm)的數據。

T(影片時間)	t(溫度)	ΔN(累積圈數變化)	Δt(累積溫度變化)
4分33秒	35	33	10
7分11秒	45	66	20
9分47秒	55	98	30
12分38秒	65	126	40

圖(24)

3. 影片的時間點與溫度,分析圈數。對錫環(厚度 10.1mm)的數據。

T(影片時間)	t(溫度)	ΔN(累積圈數變化)	Δt(累積溫度變化)
4分27秒	25	18	10
7分25秒	35	38	20
10分06秒	45	60	30
13分10秒	55	94	40

圖(25)

(二)金屬樣品(含兩片蓋玻片),無補償板:

1. 影片的時間點與溫度,分析圈數。對黑鐵(厚度 10.1mm)的數據。

1427 I - 4 - 4 I - 476 H			4 20 44 4
T(影片時間)	t(溫度)	ΔN(累積圈數變化)	Δt(累積溫度變化)
2分31秒	25.5	5	5
4分16秒	30.5	12	10
5分56秒	35.5	23	15
7分55秒	40.5	34	20
10分14秒	45.5	41	25

2. 影片的時間點與溫度,分析圈數。對鋁 5052 (厚度 10.1mm)的數據。

T(影片時間)	t(溫度)	ΔN(累積圈數變化)	Δt(累積溫度變化)
3分00秒	25	13	5
5分27秒	30	24	10
7分23秒	35	36	15
9分11秒	40	49	20
10分36秒	45	61	25

3. 影片的時間點與溫度,分析圈數。對黑鐵(厚度 4.6mm)的數據。

T(影片時間)	t(溫度)	ΔN(累積圈數變化)	Δt(累積溫度變化)
1分38秒	25	3	5
3分14秒	30	7	10
4分22秒	35	11	15
6分23秒	40	16	20
8分44秒	45	22	25

4. 影片的時間點與溫度,分析圈數。對鋁 5052 (厚度 4.3mm)的數據。

T(影片時間)	t(溫度)	ΔN(累積圈數變化)	Δt(累積溫度變化)
2分24秒	25.6	5	5
4分41秒	30.6	10	10
7分24秒	35.6	17	15
9分28秒	40.6	26	20
13分03秒	45.6	37	25

四、利用公式算出金屬的線膨脹係數。

我們利用
$$\Delta L = \frac{\lambda}{(n+1)} \times \Delta N = \alpha L_0 \Delta t \Rightarrow \alpha = \frac{\lambda \times \Delta N}{(n+1) \times L_0 \times \Delta t}$$
,便求出線膨脹係數 α 了。

(一) 若錠子油的折射率以n=1.6 代入,所得實驗結果如下:

1. 金屬樣品(含兩片載玻片和兩片矽膠片),補償板(兩片載玻片和四片矽膠片)

	波長	ΔN	n	L ₀	Δt	α
Fe	6.328×10^{-7}	20	1.6	0.0101	10	4.8196×10^{-5}
厚	6.328×10^{-7}	41	1.6	0.0101	20	4.9399×10^{-5}
	6.328×10^{-7}	65	1.6	0.0101	30	5.2211×10^{-5}
	6.328×10^{-7}	83	1.6	0.0101	40	5.0002×10^{-5}
Al	6.328×10 ⁻⁷	33	1.6	0.0101	10	7.9521×10^{-5}
厚	6.328×10^{-7}	66	1.6	0.0101	20	7.9521×10^{-5}
	6.328×10^{-7}	98	1.6	0.0101	30	7.8718×10^{-5}
	6.328×10^{-7}	126	1.6	0.010	40	7.5901×10^{-5}
Sn	6.328×10 ⁻⁷	18	1.6	0.0101	10	4.3375×10 ⁻⁵
厚	6.328×10^{-7}	38	1.6	0.0101	20	4.5785×10^{-5}
	6.328×10^{-7}	60	1.6	0.0101	30	4.8195×10^{-5}
	6.328×10^{-7}	94	1.6	0.0101	40	5.6629×10 ⁻⁵

2. 金屬樣品(含兩片蓋玻片),無補償板:

	波長	ΔN	n	L ₀	Δt	α
Fe	6.328×10 ⁻⁷	5	1.6	0.0101	5	2.4097×10 ⁻⁵
厚	6.328×10 ⁻⁷	12	1.6	0.0101	10	2.8917×10^{-5}
	6.328×10^{-7}	23	1.6	0.0101	15	3.6949×10 ⁻⁵
	6.328×10^{-7}	34	1.6	0.0101	20	4.0965×10^{-5}
	6.328×10^{-7}	41	1.6	0.0101	25	3.9519×10^{-5}
Al	6.328×10^{-7}	13	1.6	0.0101	5	6.2653×10^{-5}
厚	6.328×10^{-7}	24	1.6	0.0101	10	5.7834×10^{-5}
	6.328×10^{-7}	36	1.6	0.0101	15	5.7834×10^{-5}
	6.328×10^{-7}	49	1.6	0.0101	20	5.9038×10^{-5}
	6.328×10^{-7}	61	1.6	0.0101	25	5.8797×10 ⁻⁵

	波長	ΔN	n	L ₀	Δt	α
Fe	6.328×10^{-7}	3	1.6	0.0046	5	3.1745×10^{-5}
薄	6.328×10^{-7}	7	1.6	0.0046	10	3.7036×10 ⁻⁵
	6.328×10^{-7}	11	1.6	0.0046	15	3.8800×10 ⁻⁵
	6.328×10^{-7}	16	1.6	0.0046	20	4.2327×10^{-5}
	6.328×10^{-7}	22	1.6	0.0046	25	4.6560×10^{-5}
Al	6.328×10^{-7}	5	1.6	0.0043	5	5.6601×10^{-5}
薄	6.328×10^{-7}	10	1.6	0.0043	10	5.6601×10 ⁻⁵
	6.328×10^{-7}	17	1.6	0.0043	15	6.4147×10^{-5}
	6.328×10^{-7}	26	1.6	0.0043	20	7.3581×10^{-5}
	6.328×10^{-7}	37	1.6	0.0043	25	8.3769×10^{-5}

(二)若考慮錠子油的折射率n會隨溫度升高而下降,以自行推估的下表代入計算,所得 實驗結果如下:

溫度	25	30	35	40	45	50	55	60	65	70
n	1.7	1.68	1.66	1.64	1.62	1.6	1.58	1.56	1.54	1.52

1. 金屬樣品(含兩片載玻片和兩片矽膠片),補償板(兩片載玻片和四片矽膠片)

	波長	ΔN	n	L ₀	Δt	α
Fe	6.328×10^{-7}	20	1.68	0.0101	10	4.6756×10 ⁻⁵
厚	6.328×10^{-7}	41	1.64	0.0101	20	4.8651×10^{-5}
	6.328×10^{-7}	65	1.6	0.0101	30	5.2211×10 ⁻⁵
	6.328×10 ⁻⁷	83	1.56	0.0101	40	5.0783×10 ⁻⁵
Al	6.328×10^{-7}	33	1.66	0.0101	10	7.7728×10^{-5}
厚	6.328×10 ⁻⁷	66	1.62	0.0101	20	7.8914×10^{-5}
	6.328×10^{-7}	98	1.58	0.0101	30	7.9328×10^{-5}
	6.328×10^{-7}	126	1.54	0.0101	40	7.7700×10^{-5}
Sn	6.328×10^{-7}	18	1.7	0.0101	10	4.1769×10^{-5}
厚	6.328×10^{-7}	38	1.66	0.0101	20	4.4752×10^{-5}
	6.328×10^{-7}	60	1.62	0.0101	30	4.7827×10^{-5}
	6.328×10^{-7}	94	1.58	0.0101	40	5.7068×10^{-5}

2. 金屬樣品(含兩片蓋玻片),無補償板:

	波長	ΔN	n	L ₀	Δt	α
Fe	6.328×10^{-7}	5	1.68	0.0101	5	2.3378×10 ⁻⁵
厚	6.328×10^{-7}	12	1.64	0.0101	10	2.8478×10^{-5}
	6.328×10^{-7}	23	1.6	0.0101	15	3.6949×10 ⁻⁵
	6.328×10^{-7}	34	1.6	0.0101	20	4.0965×10^{-5}
	6.328×10^{-7}	41	1.56	0.0101	25	4.0137×10^{-5}
Al	6.328×10 ⁻⁷	13	1.66	0.0101	5	6.1240×10 ⁻⁵
厚	6.328×10 ⁻⁷	24	1.62	0.0101	10	5.7392×10 ⁻⁵
	6.328×10 ⁻⁷	36	1.58	0.0101	15	5.8282×10^{-5}
	6.328×10 ⁻⁷	49	1.58	0.0101	20	5.9496×10 ⁻⁵
	6.328×10 ⁻⁷	61	1.54	0.0101	25	6.0186×10 ⁻⁵

	波長	ΔN	n	L ₀	Δt	α
Fe	6.328×10 ⁻⁷	3	1.68	0.0046	5	3.0798×10 ⁻⁵
薄	6.328×10^{-7}	7	1.64	0.0046	10	3.6475×10 ⁻⁵
	6.328×10^{-7}	11	1.6	0.0046	15	3.8800×10 ⁻⁵
	6.328×10^{-7}	16	1.6	0.0046	20	4.2327×10^{-5}
	6.328×10^{-7}	22	1.56	0.0046	25	4.7288×10^{-5}
Al	6.328×10 ⁻⁷	5	1.66	0.0043	5	5.5324×10 ⁻⁵
薄	6.328×10^{-7}	10	1.62	0.0043	10	5.6169×10 ⁻⁵
	6.328×10^{-7}	17	1.58	0.0043	15	6.4645×10^{-5}
	6.328×10^{-7}	26	1.58	0.0043	20	7.4151×10^{-5}
	6.328×10^{-7}	37	1.54	0.0043	25	8.5748×10^{-5}

(三)數據整理:

1. 金屬樣品(含兩片載玻片和兩片矽膠片),補償板(兩片載玻片和四片矽膠片)

	n=1.6 線膨脹係數α	變動的 n 線膨脹係數α
Fe	4.9952×10^{-5}	4.9900×10 ⁻⁵
Al	7.8417×10^{-5}	7.8417×10^{-5}
Sn	4.8496×10^{-5}	4.7854×10^{-5}

2. 金屬樣品(含兩片蓋玻片),無補償板:

	n=1.6 線膨脹係數α	變動的 n 線膨脹係數α		n=1.6 線膨脹係數α	變動的 n 線膨脹係數α
Fe 厚	3.4089×10^{-5}	3.3981×10 ⁻⁵	Fe 薄	3.9294×10^{-5}	3.9138×10 ⁻⁵
Al 厚	5.9231×10 ⁻⁵	5.9319×10 ⁻⁵	Al 薄	6.6694×10^{-5}	6.7207×10^{-5}

陸、討論

一、錠子油的折射率與溫度之關係,由我們實驗的數據可看出,溫度越高折射率略下降。與 搜尋的資料相符合。

기가	、问温度下水和乙醇的折射率		
t∕°C	純 水	99.8%乙醇	
14	1.33348		
16	1.33333	1.36210	
18	1.33317	1.36129	
20	1.33299	1.36048	
22	1.33281	1.35967	
24	1.33262	1.35885	
26	1.33241	1.35803	
28	1.33219	1.35721	
30	1.33192	1.35639	
32	1.33164	1.35557	
34	1.33136	1.35474	
36	1.33107	1.35390	
38	1.33079	1.35306	
40	1.33051	1.35222	
42	1.33023	1.35138	
44	1.32992	1.35054	
46	1.32959	1.34969	
48	1.32927	1.34885	
50	1.32894	1.34800	
52	1.32860	1.34715	
54	1.32827	1.34629	

不同温度下水和乙醇的折射率

錠子油的實驗折射率

小	角度	大角度		
溫度	折射率	溫度	折射率	
25	1.7891	30	1.7060	
35	1.7652	40	1.6579	
45	1.7023	50	1.5908	
55	1.6269	60	1.5744	
65	1.5405	70	1.5065	

二、我們亦觀察到兩組不同的入射角度作實驗,大角度時算出的折射率較小,我們的推論是 因為壓克力容器有厚度造成光的側位移,與數據分析時只取點 1 所造成,造成 sin θ₁

$$=\sin \theta_{\parallel} > \sin \theta_{\parallel}$$
 較小,而折射率 $n = \frac{\sin \theta_{\parallel}}{\sin \theta_{2}}$ 亦較小。

三、我們將平均的線膨脹係數α整理如下表,雖然我們不知道黑鐵、鋁合金 5052 的α值, 但比較 25℃時之線膨脹係數α(鐵11.8×10⁻⁶、鋁23.1×10⁻⁶、錫22.0×10⁻⁶),發現數 據的因次是吻合的但都偏大一點,我們推想應該是因為紅光並不是嚴格垂直入射樣品, 有轉動角度造成光於樣品內所走的距離D'= D/cosφ>D 會較長,因此金屬塊的長度增加

- 四、從數據中可見,我們用厚的載玻片、矽膠片、補償板的那一套實驗時,α的數值較大, 因為光線通過樣品與補償板非嚴格垂直,且兩邊的真實溫度必定不相同所造成誤差。
- 五、從數據中可見,我們用薄的蓋玻片做實驗,因金屬的厚度有厚與薄兩組,我們發現金屬 的厚度較薄時,即金屬厚度與玻璃片厚度較接近時,α的數值會較真實值大,因計算時 我們忽略了光在玻璃中傳播時所造成的光程差。。

柒、結論

- 一、以紅光去量測錠子油的折射率,其折射率會隨溫度升高而下降。
- 二、從馬赫•曾特爾干涉儀,我們可透過圈數變化量推算出實際長度變化量,甚至推算出線 膨脹係數。
- 三、誤差原因:
- (一) 測錠子油的折射率:
 - 拍攝照片時,應以腳架架起數位相機,由上往下垂直拍攝壓克力容器,光徑才不會因 為斜拍而造成入射角與折射角失真。
 - 2. 數據分析時,應把壓克力容器的兩界面都標出,分析入射角與折射角方能更準確。

(二)從馬赫•曾特爾干涉儀的變形,由干涉圖形去測線膨脹係數:

- 夾具與補償板溫度不同,使兩光路上的光程除了金屬加熱變厚之外,尙有玻璃與矽膠 所產生的光程差。
- 2. 夾具與補償板因受力的作用,金屬塊的膨脹多少受到影響。
- 3. 錠子油在夾層內產生對流,折射率有所改變,使圖形的光程發生變化。
- 4. 在影片加工時,判斷圈數跑到哪時增加?很主觀,不同人可能會有不同結果。
- 馬赫•曾特爾干涉儀,紅光雷射的光線並非嚴格垂直入射待測物與補償板,應以可微 調角度的夾具固定之,好好的微調。
- 當補償板及待測物受加熱時並非均匀膨脹,以至同心圓偏移影響計算結果(我們計算 的方式是以當一圓環過一定點時算一圈)。
- 7. 熱電偶溫度計所顯示的溫度,應該也與物體的溫度有些差距。

捌、參考資料及其他

- --- Robert c. Weast, Ph. D.(1976).Handbook of chemistry and physics.
- 二、David Halliday, Robert Resnick, Jearl Walker (2009) 原著. 田麗文,李佳榮 編譯. Fundamentals of Physics Extended. 台北市:全華圖書股份有限公司(第8版)。
- 三、林明瑞(民92)。高級中學物質科學物理篇下冊。11(4),182-184。台北市:南一。
- 四、林明瑞(民92)。高級中學物理上冊。16,62-79。17,112-136。台北市:南一。
- 五、不同温度下水和乙醇的折射率,取自: http://202.194.4.88:8080/wulihx/data/t14.html
- 六、國立中央大學物理系教學實驗室,麥克森干涉實驗講義,取自: <u>http://uep.phy.ncu.edu.tw/content/general-physics/expcourse/second-semester/michelson/pdf4.pdf</u>
- 七、維基百科,干涉(物理學),取自: <u>http://zh.wikipedia.org/wiki/%E5%B9%B2%E6%B6%89_(%E7%89%A9%E7%90%86%E5%AD%A6)</u>

【評語】040105

- 本作品使用馬赫·曾特爾干涉儀測量極微小的長度變
 化,以高中生的程度架設整組實驗並進行測量,值得鼓
 勵。
- 本作品使用之方法為已成熟常用之方法且結果亦僅為膨 脹係數之測量,主題探索態度較為保守。
- 本作品可考慮以精進測量精度為指標,若有可能則應進 一步探索膨脹現象之處理。