中華民國第51屆中小學科學展覽會作品說明書

國中組 物理科

最佳團隊合作獎

030101

Domino & Taguchi

一骨牌效應與極速最佳因子研究

沈瑞郎

學校名稱:高雄市立英明國民中學

作者: 指導老師:

國二 蘇庭庭

國二 曾子芸 蘇明福

國二 林庭揚

關鍵詞:骨牌效應、田口玄一、因子實驗

Domino & Taguchi

摘要

Domino 是一門學問,其中「推推樂」只是多數人對骨牌的刻板印象。其實它有著「物理」碰撞和「數學」推砌的多樣變化,而本研究在探討骨牌效應及極速下的物理現象。 研究分別就 速度實驗、因子實驗與「Taguchi—田口法」實驗三階段進行。 在經多次實驗記錄、討論,提出結論如下:

- 一、骨牌間傳遞速度呈現暫態週期性,不同因子呈現不同變化週期。
- 二、骨牌效應下發現,骨牌間距小、質量輕、重心於中心<mark>趨前及擺錘質量大、</mark>撞擊 角度大,速度效應最佳。
- 三、極速最佳因子研究中,經分析因子實驗數據,依照田口 法最佳化實驗,並經驗證後發現,最佳因子組合是:骨牌間距小(2cm)、骨牌重心中心趨前、擺錘質量重(22.24g)以及撞擊角度大(90°)。與單一因子實驗呈現高度相依。

壹、研究動機

自從國一第一次接觸「多米諾(Domino)」時,就有濃厚的興趣,不時注意「<mark>骨牌</mark>」的消息也充實相關知識,且對於每次的骨牌秀總大呼驚奇。

骨牌秀最興盛的是荷蘭、日本,而兩國也分別更迭創下世界紀錄震驚全球,荷蘭骨牌 大賽於 2004 年用了 425 萬片,排出了世界七大奇景,結果卻只有埃及金字塔順利倒下。在 眾人驚訝聲中落幕,雖然到了 2009 年更締造 450 萬片紀錄,但心想骨牌只能一味的追求「量」 的提升嗎?「質」呢?,因此對於那清脆聲有了「物理」的疑問。

- 一、 同樣材質、重量、大小的骨牌,為何有些能成功,有些不能呢?到底有那些外在 的因素會影響骨牌<mark>倒下</mark>程度及<mark>速度</mark>呢?
- 二、 <mark>不同的因素</mark>之間又會有甚麼樣的差距呢?骨牌倒下的速度是否也呈現什麼樣的關 係呢?
- 三、在要求極速目標下骨牌的速度效應考慮那些因素?又要如何調整呢?

為解開這些對多米諾效應(Domino)的疑惑,我們於是展開了一連串的研究。

貳、研究目的

- 一、藉由研究探討與實作驗證,增進所學。
- 二、在已知的基本知識上分別作——各項因子實驗(骨牌不同<mark>間距</mark>、骨牌不同<u>重心</u>、骨牌不同<u>質量</u>、不同<mark>起始角度</mark>、不同<mark>擺錘質量、不同碰撞位置</mark>) 共有 六 項對影響<mark>骨牌速率</mark>的實驗。
- 三、藉「Taguchi —田口法」——找出骨牌速度效應之最佳因子。
- 四、經嚴謹實驗進行與數據研判——推論出骨牌與「數學」及「物理」的關係。

參、研究設備及材料

一、實驗所需設備 --(一)、實驗器材:

用品名稱	數 量	規格	用 途
塑膠骨牌(圖3-1)	200個	5.2 x 2.6 x 0.8 (cm)	研究主題
		13.5g ±3%	
水平儀	1 個		檢查桌面水平
捲尺	2 把	3 m · 5.5m	設定用間距用
膠帶台	1個	透明	固定儀器用
擺 錘	數個	5.55g · 14.85g ·	製作單擺用
		22.24g	
棉線	1 捲	白色	製作單擺用
硬 幣	30個	一元 3.75g ±3%	調整重心用
鐵 片(圖3-2)	60個	16.5g ±3%	增加骨牌質量

圖 3-1: 骨牌 5.2 x 2.6 x 0.8 (cm)

圖 3-2: 鐵片(增加骨牌質量)

(二)、儀器設備:

用品名稱	數量與規格	用途
光電感應器(圖3-3)	(36X6.9X46.85cm)	推倒時間測量
計時軟體(圖3-4)		
筆記型電腦	1台	開啟軟體、紀錄結果
攝錄影機	1台	微觀碰撞過程

圖 3-3: 光電感應器

圖 3-4:計時軟體

肆、研究過程與方法

一、 研究流程圖:

(一)、研究架構

針對「Domino & Taguchi」尋找骨牌速度效應與最佳因子研究,其中有關研究架構描述如下 圖 4-1:

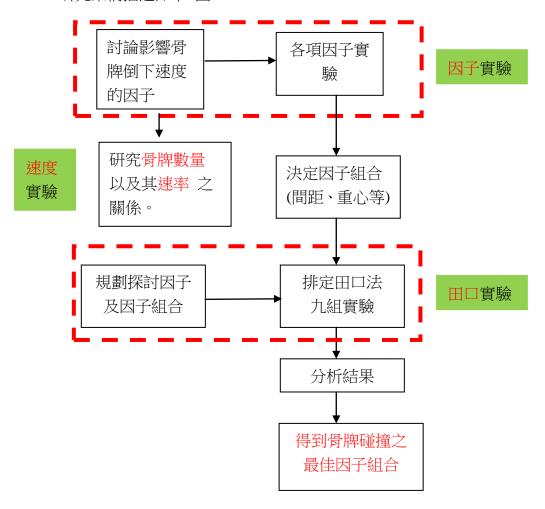
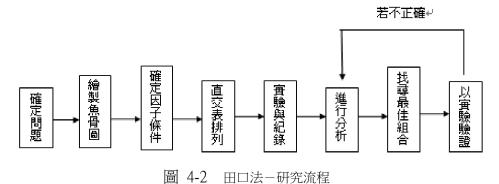



圖 4-1 Domino & Taguchi 研究架構

(二)、「Taguchi -田口法」研究流程

最佳因子研究應用到「Taguchi —田口法」,而其中有關之研究流程如下 圖 4-2。

二、研究過程:

(一)、前置作業:

- 1. 架構實驗桌台一在有關實驗進行中為求正確性,需保持水平狀態,因此藉由 水平儀調整保持桌台水平,並用<mark>膠帶</mark>將捲尺貼於桌面便於量測間距。
- 2. 擺放光電感應器-有關光電感應器之操作方式如 圖 4-3。

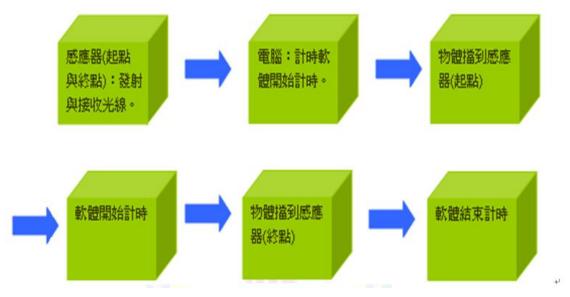


圖 4-3 光電感應器的原理

- 3. 設定<mark>碰撞方式</mark>一為求施力的可測量性,採用自由落體單擺、且以不同角度固定 三角板以便操作。
- 4. 應用計時軟體-為讓實驗容易進行採用光電感應器配合電腦軟體計時。
- 5. 架設攝影機 一微觀骨牌碰撞過程,以利研究。

(二)、實驗方法:

1. 先將骨牌按照捲尺上的刻度排列好。如圖 4-4

圖 4-4 骨牌按照捲尺上的刻度排列好

2. 將計時機器的連接埠(comport)到電腦,並將計時軟體打開。如圖 4-5

圖 4-5 計時軟體畫面「run 1」

圖 4-6 對齊三角板

- 3. 將<mark>單擺對齊</mark>三角板 90°-60°-30°。如圖 4-6
- 在計時軟體點一下「run 1」,如圖 4-5。

圖 4-7 計時軟體畫面「Finish」

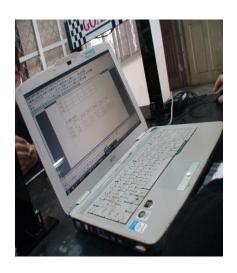


圖 4-8 記錄結果

- 5. 放開單擺,使得單擺在最低點時打到骨牌。
- 6. 記錄其結果,如圖 4-8。

三、研究實驗進行

- ※ 速度實驗:針對骨牌極速要求下,求出速度變化以便骨牌個數選擇。
- ※ 因子實驗-各項影響因子實驗

實驗方式:(一)、分為骨牌及不同初始碰撞方式兩部分共 六 項因 子實驗。

(二)、由先前的速率實驗,得知開始產生周期變化的個數為 30 個,因此下列因子實驗,除了間距部分用 30 個、36 個來作並驗證趨勢,其餘全部使用 30 個。

(一)、<mark>骨牌不同間距</mark>: 骨牌採用為 5.2 cm 高,間距以 2cm~5cm,分別間隔 0.5cm 七種不同 2cm、2.5cm、3cm、3.5cm、4cm、4.5cm、5cm 實驗 而間距的定義為中心線距,如 圖 4-9。

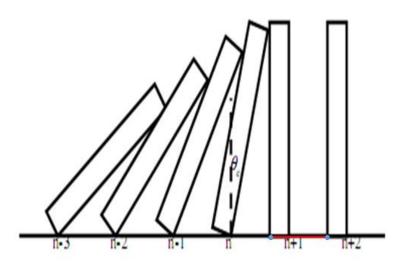


圖 4-9 骨牌的間距(紅色線部份)

(二)、<mark>骨牌</mark>不同<u>重心</u>: 利用硬幣之等值重量性質,分別就重心(質心)高低、偏向 作實驗,如 圖 4-10

圖 4-10 骨牌不同高低、偏向

- 1. 重心高低-分別以間距都是 2cm、3cm 將硬幣在上、中、下配置
 - (1). 重心高-硬幣在上於骨牌中心 1.6 cm
 - (2). 重心低-硬幣在下於骨牌中心 1.6 cm
 - (3). 重心中心-硬幣在中等於骨牌中心。
 - 2. 重心偏向一分別以硬幣朝面,作趨前或滯後討論。
 - (1). 重心趨前-硬幣面朝向終點。
 - (2).重心滯後-硬幣面朝向起點。

- (三)、骨牌不同質量:1. 三種質量分別為:骨牌為13.5g 重,採用
 - (1) 13.5g
 - (2) 27g
 - (3) 46.5g •
 - 2. 間距則採用
 - (1) 4 cm
 - (2) 4.5cm
 - (3) 5 cm °
- (四)、不同碰撞初始角度:在碰撞中考慮不同之衝量對骨牌速度影響。
 - 1. 三種角度分別為:以量角器測定,採用其整數倍作實驗,
 - $(1) 30^{\circ}$
 - $(2) 60^{\circ}$
 - (3)90° °
 - 2. 間距則採用:
 - (1) 2 cm
 - (2) 3cm
 - (3) 4 cm •
- (五)、不同碰撞<mark>擺錘質量</mark>:配合不同碰撞<mark>角度</mark>,採用不同<mark>擺錘質量</mark>作設定,其中擺 錘質量分別以 5.55g、14.85g、22.24g 三種作實驗、
- (六)、<mark>不同碰撞位置</mark>: 配合不同碰撞<mark>角度</mark>,與不同<mark>擺錘質量</mark>,在<mark>單擺碰撞位置</mark>作設 定,分別以上、中、下三種作實驗。
 - (1)上---碰撞位置在上於骨牌中心 1.8cm
 - (2)中---碰撞位置在骨牌中心
 - (3)下---碰撞位置下於骨牌中心 1.8 cm

※ 田口實驗(最佳因子):

本研究因為找尋最佳因子實驗,為多水準複因子實驗-其中有「一次一因子法」、「全因子法」、及「嘗試錯誤法」,為減少實驗次數又不失準確性因此採用「Taguchi-田口法」。下面有關「Taguch」說明

- 「Taguchi-田口法」:是由日本學者田口玄一所提出的實驗計畫法,原用於品質管理,應用其實驗計畫如下。
 - 1. 首先要進行因子實驗-評估因子的干擾程度,找出<mark>較具影響力的因</mark> 子。
 - 2. 利用直交表 依不同水準/因子取干擾程度較大(較具影響力)的因子 在進行組合,找出需要的實驗組合。

- 3. MSD、S/N 值:每組實驗組合,進行多次實驗求其 MSD 及 S/N 值。
 SN 比: signal to noise ratio 的縮寫,也就是所謂的信
 號雜音(信號誤差)比,在田口法實驗中,用來
 評估系統品質穩定度,其中,SN 比越大,代表
 生產品質越好。
- 4. SN 回應圖表:反映因子水準間的影響程度。以全部來的因子看,斜率越大,影響程度也越大。 而每個因子裡最高點即是最好的數值條件。
- 5. 品 質 特 性:實驗結果之特性值。依照品質(結果) 需求可分為三個 類型:
 - (1). 望小型:品質(結果)希望越小越好。
 - (2). 望大型:品質(結果)希望越大越好。
 - (3). 望目型:品質(結果)希望接近目標值。
- 專有名詞: (1) 因子:為達實驗目的而控制的控制變因或操縱變因。
 - (2) 水準:因子的狀態條件。

骨牌實驗方法—經由先期因子實驗後,分析各因子實驗數據跟討論後進行田口法最佳 因子實驗,並採用<u>田口玄一</u>博士提出的實驗計畫法,將其中因子與不 同水準,繪製成魚骨圖如下圖 4-11。

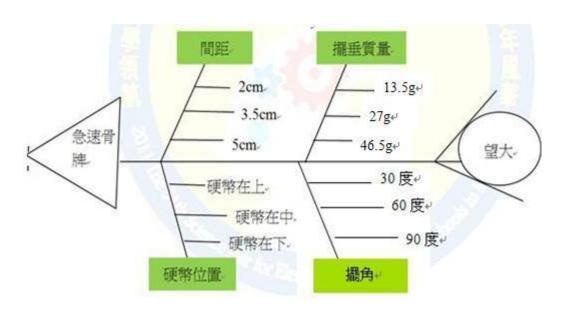


圖 4-11 最佳因子實驗 田口法 魚骨圖

伍、研究結果

在實驗過程中,為增加正確性避免實驗誤差。以每次實驗重複作5次,再去除最大與最小以三項平均求出其結果,

一、因子實驗-各項影響因子實驗

【實驗一】: 骨牌不同間距: 結果如下表圖 5-1

表 5-1 骨牌不同間距實驗結果(紅色字代表誤差較大,不列入考慮)

個數	問距 (cm)	第1次時間	第2次 時間	第3次 時間	第4次時間	第 5 次 時間	Ave 時間	速率 (cm/s)
	2	(s)	(s)	(s)	(s)	(s)	(s)	125.0
	2cm	0.46	0.47	0.50	0.46	0.48	0.468	125.8
	2.5cm	0.57	0.55	0.61	0.58	0.60	0.583	125.7
30	3cm	0.74	0.74	0.73	0.77	0.76	0.737	119.2
個	3.5cm	0.93	0.94	0.96	0.89	0.93	0.933	109.6
	4cm	1.12	1.11	1.11	1.10	1.08	1.110	105.2
	4.5cm	1.41	1.46	1.41	1.42	1.39	1.413	92.9
	5cm	1.85	1.83	1.70	1.76	1.85	1.843	79.1
	2cm	0.56	0.52	0.51	0.51	0.52	0.515	137.5
	2.5cm	0.69	0.71	0.73	0.64	0.67	0.690	128.0
36	3cm	0.93	0.88	0.88	0.93	0.89	0.883	119.8
個	3.5cm	1.06	1.07	1.08	1.14	1.02	1.070	115.2
	4cm	1.23	1.24	1.33	1.34	1.29	1.320	106.7
	4.5cm	1.63	1.45	1.64	1.54	1.52	1.563	101.3
	5cm	2.00	2.21	2.15	2.15	2.12	2.140	82.1

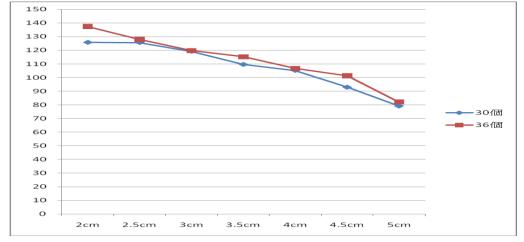


圖 5-1 骨牌不同間距比較

由上面表圖 5-1 可知:無論骨牌個數是 30 或 36 個,<mark>骨牌間距增加,倒下的時間也增加,速度越來越慢。</mark>

【實驗二】:骨牌不同重心(間距 2cm、3cm)。

(二之一) 重心滯後-硬幣面朝向起點:結果如下表 5-2-1

表 5-2-1 重心滯後 - 硬幣面朝向起點

間 距 (cm)	重心 位置	第1次 時間 (s)	第2次 時間 (s)	第3次 時間 (s)	第4次 時間 (s)	第5次 時間 (s)	Ave 時間 (s)	速率 (cm/s)
2cm	上	0.67	0.72	0.64	0.64	0.69	0.660	89.1
	中	0.62	0.57	0.57	0.59	0.61	0.585	100.5
	下	0.6	0.59	0.58	0.6	0.6	0.594	99.0
3cm	上	0.91	0.9	0.91	0.93	0.91	0.908	96.7
	中	0.86	0.86	0.82	0.87	0.86	0.863	101.8
	下	0.9	0.89	0.9	0.88	0.91	0.896	98.0

(二之二) 重心趨前-硬幣面朝向終點:結果如下表 5-2-2

表 5-2-2 重心趨前-硬幣面朝向終點

間	重心	第1次	第2次	第3次	第4次	第5次	Ave	速率
距	位置	時間	時間	時間	時間	時間	時間	(cm/s)
(cm)		(s)	(s)	(s)	(s)	(s)	(s)	
2cm	41	0.53	0.5	0.53	0.53	0.5	0.518	113.5
	中	0.44	0.45	0.45	0.4	0.43	0.443	132.9
	下	0.45	0.44	0.44	0.46	0.52	0.448	131.4
3cm	上	0.83	0.84	0.81	0.86	0.87	0.827	106.2
	中	0.78	0.77	0.78	0.75	0.74	0.764	114.9
	下	0.79	0.87	0.75	0.76	0.79	0.773	113.7

【結果】: 骨牌不同重心之比較: 結果如下圖 5-2 及圖 5-3

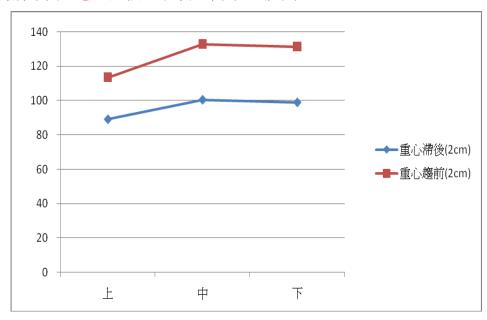


圖 5-2 骨牌不同重心之比較(2cm)

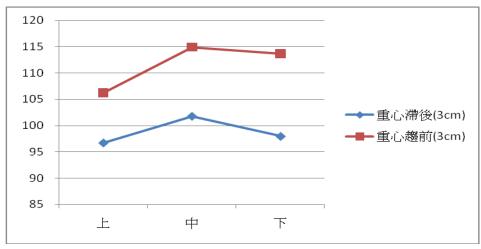


圖 5-3 骨牌不同重心之比較(3cm)

由上圖 5-2、5-3 可得知: 1. 重心趨前(硬幣面向終點)的倒下速率普遍比 重心滯後(硬幣面向起點)還要快。

> 2. 在兩組實驗裡,都是重心在中(硬幣在中間) 倒的最快。

【實驗三】:骨牌不同質量(間距 4cm、4.5cm、5cm):結果如下表圖 5-3

表 5-3 骨牌不同質量

次數	第1次	第2次	第3次	第4次	第5次	平均	速率
質量	時間(s)	時間(s)	時間(s)	時間(s)	時間(s)	(s)	(cm/s)
13.5g	0.97	0.98 ×	1.00 ×	0.96	0.96	0.977	111.4
27g	1.35	1.30 ×	1.44 ×	1.41	1.35	1.370	80.0
46.5g	1.25	1.21	1.23	1.17 ×	1.17×	1.210	90.2

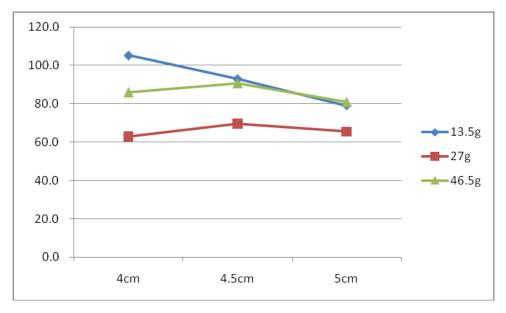


圖 5-3 骨牌不同質量

由表圖 5-3 得知: .質量越大, 倒下時間越久, 速度越慢。

【實驗四】: 不同碰撞初始角度(間距 2cm、3cm、4cm): 結果如下表圖 5-4

表 5-4 不同碰撞初始角度

間距	單擺	第1次 時間(s)	第 2 次 時間(s)	第3次 ^{時間(s)}	第4次 ^{時間(s)}	第5次 ^{時間(s)}	Ave 時間	速率 (cm/s)
(cm)	角度						(s)	
2cm	30	0.46	0.47	0.5	0.46	0.48	0.468	125.8
	60	0.46	0.33	0.46	0.45	0.45	0.455	129.2
	90	0.42	0.37	0.45	0.46	0.44	0.443	132.9
3cm	30	0.74	0.74	0.73	0.77	0.76	0.737	119.2
	60	0.71	0.73	0.72	0.7	0.72	0.720	121.9
	90	0.7	0.67	0.69	0.74	0.7	0.697	126.0
4cm	30	1.12	1.11	1.11	1.1	1.08	1.113	104.9
	60	0.99	1.05	1.07	1.06	1.04	1.055	110.7
	90	0.99	0.96	0.94	0.95	1.01	0.950	122.9

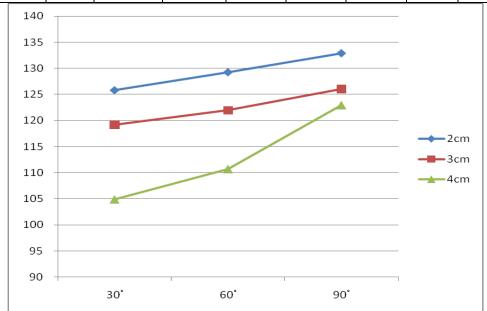


圖 5-4 不同碰撞初始角度

由上面圖表 5-4 可知:1.單擺角度越小,骨牌倒的越慢,單擺角度越大, 骨牌倒得越快。

2.圖形幾乎呈一直線。

【實驗五】:不同碰撞<mark>擺錘質量</mark>(間距 2cm、3cm、4cm):結果如下表圖 5-5

表 5-5 不同碰撞擺錘質量

間 距 (cm)	單擺質量	第1次 時間(s)	第2次 時間(s)	第3次 時間(s)	第 4 次 時間(s)	第5次 ^{時間(s)}	Ave 時間(s)	速率 (cm/s)
	5.55g	0.46	0.47	0.5	0.46	0.48	0.468	125.8
2cm	14.85g	0.43	0.47	0.46	0.46	0.46	0.463	127.1
	22.24g	0.42	0.45	0.44	0.44	0.46	0.448	131.4
	5.55g	0.74	0.74	0.73	0.77	0.76	0.737	119.2
3cm	14.85g	0.74	0.72	0.73	0.73	0.75	0.730	120.3
	22.24g	0.74	0.69	0.72	0.74	0.68	0.697	126.0
	5.55g	1.12	1.11	1.11	1.1	1.08	1.110	105.2
4cm	14.85g	1.04	1.07	1.07	1.07	1.11	1.070	109.2
	22.24g	1.03	1.07	1.05	1.01	1.08	1.030	113.4

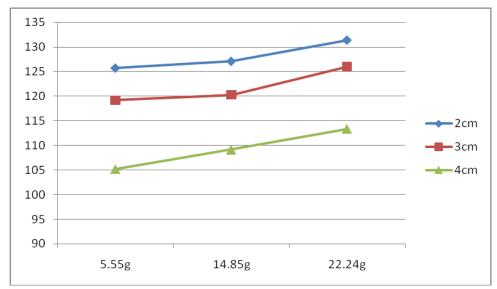


圖 5-5 不同碰撞擺錘質量

由上面圖表可知: 1.擺錘質量越大,骨牌倒的越快,反之則越慢。 2.圖形幾乎呈一直線。

【實驗六】:不同碰撞位置(間距 2cm、3cm、4cm) : 結果如下表圖 5-6

表 5-6 不同碰撞位置

間距	碰撞 點	第1次 時間(s)	第2次 時間(s)	第 3 次 時間(s)	第 4 次 時間(s)	第 5 次 時間(s)	Ave 時間 (s)	速率 (cm/s)
2cm	上	0.47	0.53	0.46	0.46	0.48	0.468	125.8
	中	0.56	0.49	0.53	0.56	0.56	0.560	105.0
	下	0.69	0.71	0.64	0.68	0.6	0.693	84.8
3cm	긔	0.74	0.74	0.73	0.77	0.76	0.737	119.2
	中	0.78	0.78	0.8	0.77	0.74	0.777	113.0
	卜	0.95	0.82	0.86	0.85	0.83	0.847	103.7
4cm	上	1.12	1.11	1.11	1.1	1.08	1.113	104.9
	中	1.16	1.13	1.17	1.17	1.13	1.167	100.1
	下	1.19	1.17	1.21	1.25	1.21	1.203	97.1

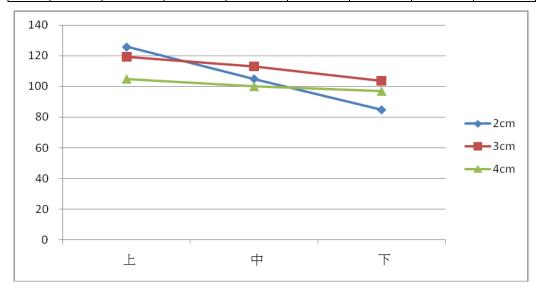


圖 5-6 不同碰撞位置

由上面圖表 5-6 可知:1. 碰撞越上面,骨牌倒下速率越快,反之,則越慢。 2. 圖形也幾乎成一直線

二、田口實驗-最佳因子實驗

由因子實驗後討論分析,就田口法步驟需求,進行實驗過程如下:

(一)、因子/水準:

就 4 項影響因子並 3 項不同水準如表 5-7,

表 5-7 影響因子/不同水準

因子\水準	水準1		水準 2		水準	3
A 骨牌不同間距	2cm	(A_1)	3.5 cm (A ₂)		5 cm	(A ₃)
B骨牌不同重心	上((\mathbf{B}_1)	中	(B ₂)	下	(B ₃)
C不同單擺角度	30°	(C_1)	60°	(C ₂)	90°	(C ₃)
D 不同擺錘質量	5.55g	(\mathbf{D}_1)	14.85g	(D ₂)	22.24g	(D ₃)

(二)、直交表:

採用 L9(3 ⁴)直交表如下表 5-8, 進行九項田口實驗。

表 5-8 田口實驗 L9(3 ⁴)直交表

實	号牌	骨牌	不同	不同
	, •	, •	, , ,	
驗	不同間距	不同重心	單擺擺角	擺錘質量
\$771)	1 4/484/48/	4,740
1	2cm	重心在上	30°	5.55g
	2	# \ + \ +	CO°	14.05
2	2cm	重心在中	60°	14.85g
3	2cm	重心在下	90°	22.24g
			- 0 0	
4	3.5cm	重心在上	60°	22.24g
5	3.5cm	重心在中	90°	5.55g
			0	
6	3.5cm	重心在下	30°	14.85g
7	5cm	重心在上	90°	14.85g
	30111			11.035
8	5cm	重心在中	30°	22.24g
9	5cm	重心在下	60°	5.55g
	2 Jiii	1	0	2.556

(三)、利用直交表,如果沒有用直交表的話,要做 $3^4 = 81$,共 81 個實驗。利用田口方

法,我們可以省下相當可觀的時間,且達到同樣的目的。

(四)、分別 進行 田口實驗 與修正實驗

【田口實驗】:

(一)、由表 5-8 田口實驗 L9(3 4)直交表依進行 5 次實驗,剔除過大或過小數值,取接近數值 3 次,計算速度值,及 MSD、S/N (Signal/ Noise; η)如下表 5-9。表 5-9 田口實驗直交表-

實驗	因子/水準	y ₁ (cm/s)	y ₂ (cm/s))	y ₃ (cm/s)	MSD	S/N (η)
1	A1B1C1D1	120.4	120.4	118	7.77×10 ⁻⁶	51.10
2	A1B2C2D2	140	136.7	133.6	5.94×10 ⁻⁶	52.26
3	A1B3C3D3	125.1	125.1	122.5	7.20×10 ⁻⁶	51.43
4	A2B1C2D3	104.4	104.4	105.5	1.01×10 ⁻⁵	49.95
5	A2B2C3D1	123.3	126.3	123.3	7.19×10 ⁻⁶	51.43
6	A2B3C1D2	120.4	120.4	119	7.72×10 ⁻⁶	51.12
7	A3B1C3D2	81.9	82.4	82.4	1.64×10 ⁻⁵	47.84
8	A3B2C1D3	81.5	81.8	82	1.66×10 ⁻⁵	47.79
9	A3B3C2D1	97.9	97.2	95.9	1.18×10 ⁻⁵	49.28

式中:MSD (Mean Square Deviation) = $\frac{1}{n} \sum_{i=1}^{3} \frac{1}{y_i^2}$ n=3

S/N (Signal/Noise; η) = $-10 \log$ (MSD) (dB)

η 值越大,表示骨牌速率越大。

(二)、以 S/N (Signal/ Noise; η) 回應表如表 5-10,計算出因子數值如表 5-11

表 5-10 信號雜訊比回應表

水準\	骨牌	骨牌	不同	不同
因子	不同間距(A)	不同重心(B)	擺錘角度(C)	擺錘質量(D)
1	$\frac{\eta_1 + \eta_2 + \eta_3}{2}$	$\frac{\eta_1 + \eta_4 + \eta_7}{2}$	$\frac{\eta_1 + \eta_6 + \eta_8}{2}$	$\frac{\eta_1 + \eta_5 + \eta_9}{2}$
	3	3	3	3
2	$\frac{\eta_4 + \eta_5 + \eta_6}{3}$	$\frac{\eta_2 + \eta_5 + \eta_8}{3}$	$\frac{\eta_2 + \eta_4 + \eta_9}{3}$	$\frac{\eta_2 + \eta_6 + \eta_7}{3}$
3	$\frac{\eta_7 + \eta_8 + \eta_9}{3}$	$\frac{\eta_3 + \eta_6 + \eta_9}{3}$	$\frac{\eta_3 + \eta_5 + \eta_7}{3}$	$\frac{\eta_3 + \eta_4 + \eta_8}{3}$

表 5-11 整理各因子之 SN 平均

水準\	骨牌		骨牌		不同		不同	
因子	不同間距	短(A)	不同重	广(B)	單擺角	芰 (C)	擺錘質量	量(D)
1	2cm	51.6	上	49.6	30度	50.0	5.55g	51.0
2	3.5cm	50.8	中	50.8	60度	50.4	14.85g	50.3
3	5cm	48.3	下	50.6	90度	50.6	22.24	50.2

(三)、 SN 回應圖表如下 圖 5-7

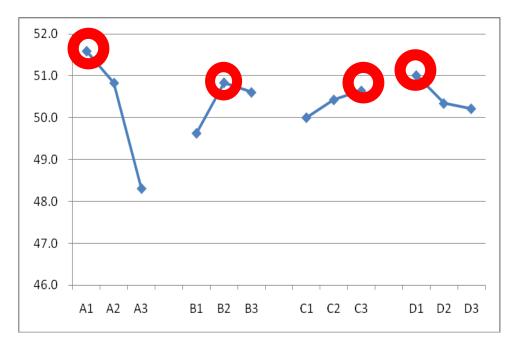


圖 5-7 SN 回應圖

(四)、最佳因子組合:由圖 5-7 依望大型,相對的 SN 回應圖表中找最大的數值,

因此我們推論最佳因子組合是:

- (1) 骨牌間距小(2cm)
- (2) 骨牌重心中心趨前
- (3) 單擺角度大(90)
- (4) 擺錘質量小(5.55g) 為最佳因子效應。

【修正實驗】:由先前田口實驗所找出的最佳組合,依理論作修正實驗,調整的因子組合

如表 5-12, 並作實驗測知速度如下表 5-13:

表 5-12 調整因子組合

實	骨牌不	骨牌不	不同單	不同擺	
驗	同間距	同重心	擺角度	錘質量	
1	2cm	中	90°	5.55g	
2	2cm	中	90°	14.85g	
3	2cm	中	90°	22.24g	
4	2cm	上	90°	5.55g	
5	2cm	下	90°	5.55g	
6	2cm	下	90°	14.85g	
7	2cm	上	90°	22.24g	
8	2.5cm	中	90°	5.55g	
9	3cm	中	90°	5.55g	

表 5-13 調整因子實驗

實驗	E1 (/s)	E2 (/s)	E3 (/s)	E4 (/s)	E5 (/s)	- y (/s)	速率(cm/s)
1	0.44	0.45	0.45	0.45	0.47	0.448	131.4
2	0.41	0.41	0.42	0.42	0.4	0.412	142.7
3	0.41	0.4	0.4	0.39	0.39	0.398	147.7
4	0.5	0.49	0.51	0.49	0.53	0.498	118.2
5	0.5	0.53	0.54	0.54	0.54	0.538	109.4
6	0.47	0.49	0.47	0.49	0.46	0.480	122.5
7	0.45	0.47	0.46	0.45	0.45	0.453	129.9
8	0.57	0.57	0.55	0.54	0.53	0.540	135.7
9	0.66	0.68	0.67	0.7	0.69	0.680	129.1

由上表 5-13 可知:

- 1. 實驗 3 速率(cm/s) 為最佳。
- 2. 對應 表 5-12 因子組合,最佳因子組合是:
 - (1) 骨牌間距小(2cm)
 - (2) 骨牌重心中心趨前
 - (3) 單擺角度大(90度)
 - (4) 擺錘質量大(22.24g)。

三、速度實驗

將骨牌速度特性進行實驗,分別從 6 個至 102 個紀錄速度,如下表 5-13 及圖 5-8 表 5-13 骨牌速度實驗

個數	第一次	第二次	第三次	第四次	第五次	平均	速率
6個	0.06	0.05	0.06	0.05	0.06	0.056	192.6
12 個	0.18	0.15	0.18	0.15	0.16	0.173	131.7
18個	0.27	0.28	0.28	0.27	0.26	0.272	127.9
24 個	0.34	0.36	0.34	0.39	0.34	0.350	133.7
30個	0.44	0.45	0.45	0.46	0.46	0.452	130.1
36個	0.56	0.52	0.52	0.51	0.51	0.515	137.5
42 個	0.60	0.63	0.58	0.59	0.57	0.585	141.5
48 個	0.68	0.69	0.72	0.73	0.69	0.687	138.0
54 個	0.82	0.76	0.81	0.78	0.84	0.803	133.0
60個	0.84	0.93	0.89	0.91	0.89	0.897	132.4
66個	0.94	1.01	1.00	0.92	1.04	1.016	128.7
72個	1.15	1.05	1.08	1.13	1.19	1.120	127.5
78個	1.19	1.18	1.17	1.25	1.22	1.190	130.0
84 個	1.32	1.25	1.35	1.29	1.29	1.300	128.3
90個	1.40	1.41	1.41	1.38	1.42	1.404	127.4
96個	1.50	1.54	1.49	1.48	1.49	1.500	127.2
102個	1.64	1.57	1.60	1.52	1.55	1.573	128.9

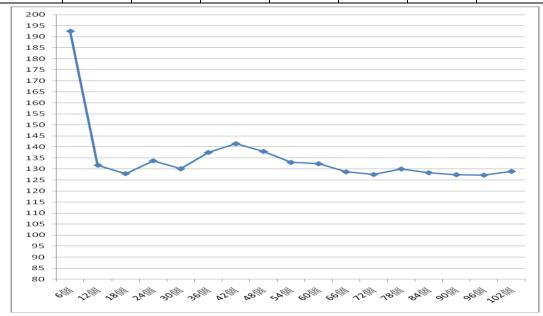


圖 5-8 骨牌速度變化

由上面圖表得知:速率分為兩個部分:

(1)速度不穩定期(6~24個):在六個骨牌時,速度竟達到

192.6cm/s,隨後速率上下起伏

不定。

(2)開始出現週期(30個~102個): <mark>速率是先升後降</mark>,在 42個 骨牌時達到高峰。

陸、討論

- 一、這次的實驗會需要排一整列的骨牌,剛開始時,常常因為不小心的碰撞使排好的骨牌 倒塌,而前功盡棄,因此,需要小心行事。
- 二、這次實驗我們學到實驗前一定要構思好所有的細節,才能避免萬一。如果做實驗手忙 腳亂的,到頭來還是空忙一場,又浪費許多的時間。
- 三、實驗裡會用到許多材料及儀器,所以在實驗之前,必須了解它的原理、特性、.....等, 無形中我們又增加了許多知識。
- 四、我們做了五次的實驗,有五組的數據。我們會將差距較大的兩組刪除,留下三組接近的算出平均。但若五組數據都非常接近,則就不再挑選,直接平均。
- 五、誤差的可能原因:1.每張骨牌的質量有誤差,造成的滑動及碰撞下一張骨牌的位置不 同而使時間些微差距。
 - 2.不一定每張骨牌的質地都很均匀,因此可能造成重心的些微偏移 使得滑動及碰撞下一張骨牌的位置不同而使時間些微差距。

六、因子實驗中的 實驗一 骨牌間距部分——

依據實驗結果,間距最大(5cm)的骨牌倒下速率,經過我們討論出可能影響的因素: 如圖 6-1

(一)、 依<mark>能量觀點</mark> **倒下時能量雖比較**大,但是因為倒下距離最長,時間上就已經較慢了。

(二)、 依<mark>力學觀點</mark>— 若以骨牌站的位置做支點,抗力臂等於零(不考慮滑動),而間距大的骨牌碰 撞時施力臂(綠色線段)較短,力量比較小, 轉動時間也較長。

綜合以上結果,間距最大(5cm)的骨牌是最慢的。

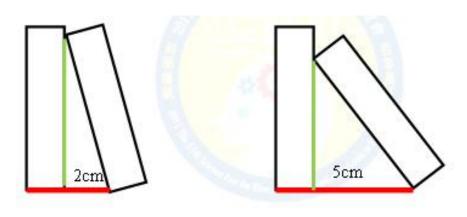


圖 6-1 實驗一 間距部分

七、因子實驗中的 實驗二 骨牌重心部分——

依據實驗結果,在<mark>重心</mark>中間(不論硬幣面向起點或終點)都較其他快。我們依討論出 可能影響的因素:

(一)、依能量觀點—

- 1、若重心偏上,會使轉換成的動能較其他大,但轉動所需時間會比較長。
- 2、若重心較低,在轉動的所需時間會比較短,但是轉換成的動能比較小。

綜合以上的因素的結果,以硬幣在中時的速率最快。

八、因子實驗中的 實驗三 骨牌質量的部分——

實驗結果顯示,46.5g 比 27g 的速率要快,與我們原先設想的不太一樣。

經過討論及請教老師後,也同樣的找出影響的因素:

(一)、依力學觀點—

- 1.質量較大,必較不易推動,形成的加速度也較小,但所形成的動能大。
- 2. 若質量較小,較易推動,

綜合以上所以縱然 46.5g 的骨牌不易被推動,但動能會比 27g 大,也使其速率較快。

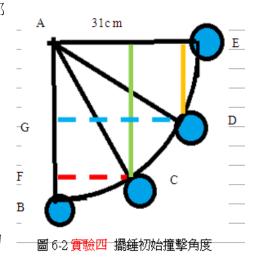
九、在實驗三 骨牌質量 部分,實驗結果顯示 27g、46.5g 間距 4.5cm 均比 4cm、5cm 快, 這也令我們不解, 經過討論及請教老師後,也找出影響的因素

(一)、依能量觀點—

倒下時能量比較大,雖倒下距離最長,但因骨牌質量有增加(27g、46.5g),因此所轉換的位能差距更大,因此影響程度也就加大了

(二)、依力學觀點—

若以骨牌站的位置做支點,抗力臂等於零(不考慮滑動),而間距大的骨牌碰撞時施力臂(綠色線段)較短,力量比較小,轉動時間也較長。


綜合以上所述,間距 4.5cm 時倒下速率最快

十、上述因子實驗一 ~ 三,骨牌速率同時受著轉動的力與能量的大小所影響。(當然也有摩擦力的影響,但沒有那麼大)

十一、因子實驗中的 實驗四 單擺初始<mark>撞擊角度</mark>的部分——

- (一)、單擺初始撞擊角度是 30°、60°、90°, 但位能 並未成 1:2:3 的比例。
- (二)、一開始單擺(與地面垂直)離地高度 為 4.4cm(碰撞位置在上)
 - (三)、圖 6-2 中每個扇形都是 30°。當單擺角 度為 30°,畫一條輔助線與地面水平,

交 AB 於 F 。 依直角三角形 30° - 60° - 90° 的 邊長比例 $1:\sqrt{3}:2$,

得知
$$\overline{AF}$$
 為 $\frac{31}{2}\sqrt{3}$ cm,

則緣色線段也為 $\frac{31}{2}\sqrt{3}$ cm \overline{BF} 為 $31-\frac{31}{2}\sqrt{3}$ cm 則可根據位能公式算出:

位能=m g h =0.00555 × 9.8 ×
$$\frac{31 - \frac{31}{2}\sqrt{3}}{100}$$
 = 2.259×10⁻³(焦耳)。

(四)、擺錘角度為 60° 時——也一樣畫輔助線,交 \overline{AB} 於G,

依直角三角形 30° - 60° - 90° 的邊長 比例 $1:\sqrt{3}:2$ 得知 $\overline{AG}=\frac{31}{2}$ cm,則 土黃色

線段 也為
$$\frac{31}{2}$$
cm 位能=m g h =0.00555 × 9.8 × $\frac{\frac{31}{2}}{100}$ = 8.430× 10^{2} (焦耳)

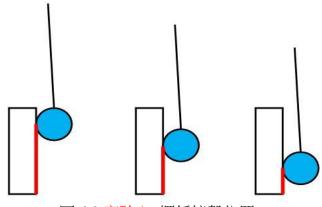
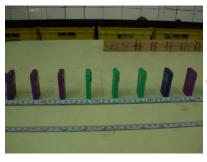
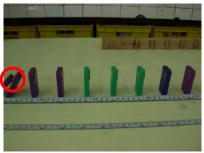
(五)、擺錘角度為90°時-

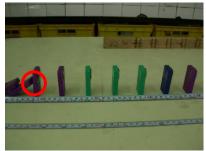
位能=m g h = 0.0055 * 9.8 *
$$\frac{31}{100}$$
 = 1.686×10⁻²(焦耳)

十二、因子實驗中的實驗六 不同單擺碰種位置部分——

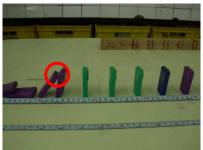
碰撞位置越高而骨牌倒下速率越快是因為碰撞位置在上時,所產生的施力臂較大,

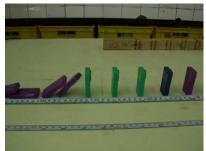
碰撞位置在下時,所產生的施力臂(紅色線段)較小。如圖 6-3

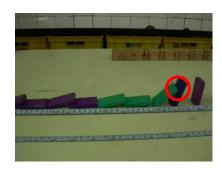




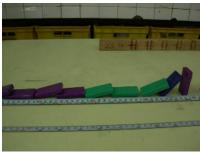

圖 6-3 實驗六 擺錘撞擊位置

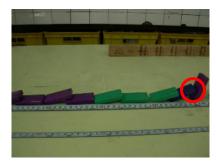
- 十三、.田口法實驗是我們以前從來沒有接觸過,因此需要查閱書籍、詢問師長……等,以 充實的知識,每一次實驗都會有新奇的知識等著我們去發現及了解。
- 十四、在速率在速率實驗當中,一開始(6個),是由單擺所給的能量,使得速率這麼快,但 12~24個期間,因為骨牌數尚少,所以速率容易波動,產生誤差(但遠觀是一條線), 到 30個時,漸趨穩定,而產生較穩定的週期。

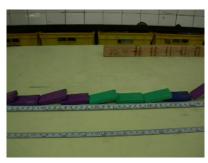

十五、微觀碰撞:我們利用攝錄影機將骨牌倒下的過程拍下來。如下(間距 5cm):

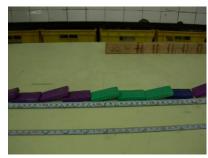


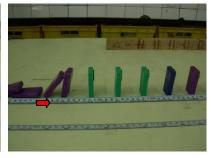












由上面照片(以間距 5cm 最明顯):

- → 骨牌倒下所碰撞的位置有高低起伏,大致呈現波動的情形。
- → 而其中我們發現會發生這種現象是因為有滑動的現象,如下圖:(➡:滑動)

柒、結論

- 一、從間距對骨牌的影響中,我們發現間距大的,速率遠較間距小的慢。這是因為當間距 大時,前一個骨牌倒下並要打到下一個骨牌所需要的時間較長,且力臂較小,而使總 時間比間距短的來的長。
- 二、在重心的部分,如同在討論裡說明的一樣,有動能轉換速度及動能大小兩種因素的影響,讓速度呈現重心(硬幣)在上<重心(硬幣)在下<重心(硬幣)在中。
- 三、質量的實驗中,骨牌兩兩相連(27g)為最慢的一組。而加上鐵片的(46.5g)速率比最初骨牌(13.5g)慢,卻又因動能較大的關係(討論)使其速率較27g快。

四、單擺的力道對骨牌的影響:

- 1. 單擺的角度影響的不大,但大致上還是角度最大的 90 度來的最快,速率也隨著角度變小而遞減。
- 2. 擺錘的重量是質量越大,花費的時間越少。是由於當擺錘質量越大時,給的力量越大,使骨牌倒下時間短。
- 五、單擺碰撞位置越上面,力臂越大,骨牌倒下速率越快,隨著打擊點越下面,骨牌倒下 速率越慢。
- 六、在田口法九項實驗裡,我們發現九組中以 間距較小(2cm)、重心偏前且位於中央、擺錘質量小(5.55g)、擺角最大(90 度) 最快,經過我們調整因子水準之後,發現間距較小(2cm)、重心偏前且位於中央、擺錘質量重(22.24g)、擺角最大(90 度),為最佳。
- 七、研究骨牌加速度方面,根據實驗結果,我們發現,其速率在骨牌 42 個的時候,達到 最高峰。速率的變化,大致上呈現一個週期的變化。

捌、未來展望

- 一、 能把骨牌的速率週期變化與各項因子的關係找出。
- 二、能將力及能量兩種因素分開探討並找出與骨牌倒下速度的關係。
- 三、 探討能量、力及對桌邊骨牌落點水平距離(拋體)的關係。
- 四、能把骨牌倒下的模式應用在生活中或分析具有骨牌效應的真實事件。
- 五、 將各項因子及骨牌倒下速率的關係找出

玖、参考資料及文獻

- 一、常雲惠譯(2008)。觀念物理I。台北: 天下文化出版社。
- 二、張明毅(2003)。田口法簡介。2011年2月8日,擷取自:
 www.ecaa.ntu.edu.tw/weifang/syseng/%A5%D0%A4f/%A5%D0%A4f%A4%E8%AAk.doc
- 三、蔡坤憲譯(2008)。觀念物理II。台北: 天下文化出版社。
- 四、yahoo知識+(2005)。什麼是SN比。2011年6月16日,擷取自: http://tw.knowledge.yahoo.com/question/question?qid=1205071408892
- 五、WEKIPEDIA(n.d). *Taguchi methods*. Retrieved Feb. 8 ,2011 from http://en.wikipedia.org/wiki/Taguchi methods#Loss functions-
- ∴ WEKIPEDIA(n.d). *Domino effec*. Retrieved Feb. 8 ,2011 from http://en.wikipedia.org/wiki/Domino_effect

【評語】030101

- 1. 骨牌遊戲是日常生活的益智活動,科學遊戲能融入科學研討的歷程相當值得肯定。
- 重心、碰撞等科學問題,能由遊戲及骨牌實驗驗證,利用團隊學習完成作品。
- 3. 骨牌排列需細心、耐心,問題解決也需要客觀正確,團 隊的學習態度值得嘉許。