中華民國 第50 屆中小學科學展覽會作品說明書

國小組 生活與應用科學科

080813

當號角響起~探究影響自製喇叭聲音之因素

學校名稱:臺北市內湖區麗湖國民小學

作者:

小六 曾俊瑋

小六 徐宇潔

小六 張哲嘉

指導老師:

黄郁雯

葉玖榮

關鍵詞:共振筒、集氣筒、薄膜

當號角響起

~探究影響自製喇叭聲音之因素

摘要

我們分別從自製喇叭的組成要件:共振筒、集氣筒、集氣筒薄膜、吹管等四方面,去探究可能影響喇叭聲音的各種因素,我們發現共振筒的材質影響聲音的音色最爲明顯,鐵罐音色響亮、寶特瓶音色清脆、紙罐音色直而厚;共振筒的粗細則明顯影響音量大小,共振筒口徑愈粗,音量愈大;而共振筒的長短、形狀對音調的高低有決定性的影響,共振筒長度愈短,音調愈高;集氣筒和吹管對音量及頻率的影響較小;薄膜的效果以氣球最好,鬆緊也會有影響。另外,我們發現可利用改變共振筒長度、口徑及按壓薄膜不同位置等方式讓音調呈現高低的變化。總之,如果能掌握要點,都能利用生活中的各項資源,製作出各式各樣、大大小小的自製喇叭。

壹、研究動機

看新聞報導,在聽奧的活動中,發生了觀眾爲了加油帶去的汽笛發生氣爆的意外,這引起我們的好奇心,想試一試利用生活中很容易取得的回收資源來製作加油用的喇叭,在運動會時派上用場;在五下的自然課第四單元「聲音與樂器」裡,也曾經上到自製樂器的課程,於是我們便開始了這項研究:如何利用生活周遭的物品來製作喇叭,同時探究可能影響它聲音的各種因素,提升喇叭的音調與音量,親身體驗自製樂器的樂趣與成就感。

貳、研究目的

- 一、 探究喇叭共振筒的材質、長短、粗細、形狀不同時,吹出來的聲音有何不同?
- 二、 探究喇叭集氣筒的材質、大小不同時,吹出來的聲音有何不同?
- 三、 探究喇叭集氣筒薄膜的材質、鬆緊不同時,吹出來的聲音有何不同?
- 四、 探究喇叭吹管的粗細、長短、角度不同時,吹出來的聲音有何不同?
- **万**、如何吹出音調的高低?

叁、研究流程

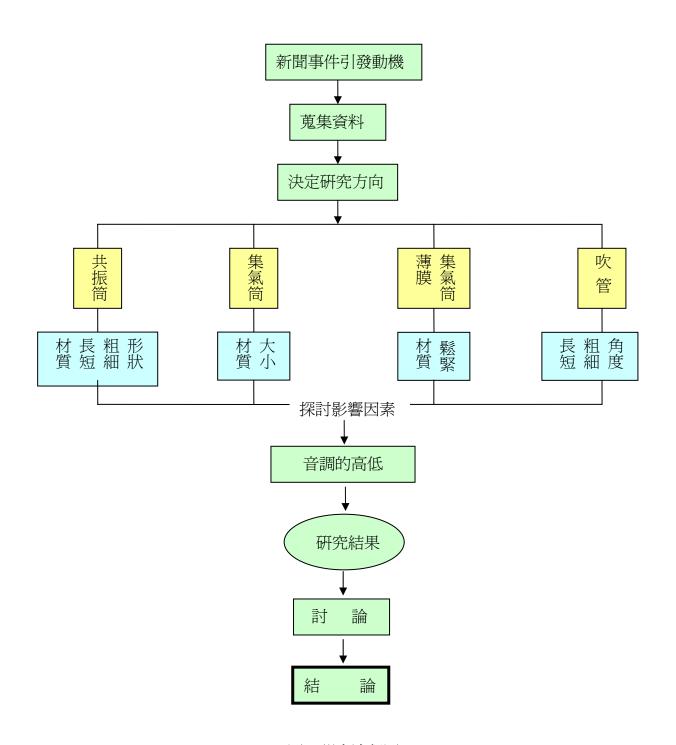
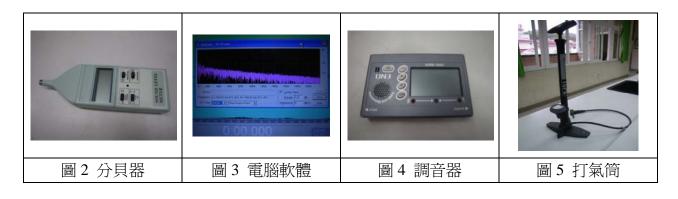



圖1研究流程圖

肆、研究設備及器材

- 一、使用材料:硬紙筒、塑膠瓶、鐵罐、硬塑膠碗、紙杯、塑膠杯、保利龍杯、氣球、保鮮膜、塑膠袋、塑膠吸管、膠帶、雙面布膠、保利龍膠、尺、量角器、剪刀、 美工刀、割圓器、開罐器、瓦楞板、油土、鐵釘、酒精燈。
- 二、實驗器材:分貝器、可收音麥克風、電腦軟體 Cool Edit 2000、調音器、打氣筒。

三、自製工具:各種喇叭-

蒐集市面上各式紙罐、寶特瓶、鐵罐,將其裁剪、接合成中空罐當作「共振筒」,選擇不同材質的免洗碗(杯)當作「集氣筒」,氣球、保鮮膜、塑膠袋當作「集氣筒薄膜」,三種粗細不同的塑膠吸管當作「吹管」,將它們分別組合成各式喇叭,如圖 6:

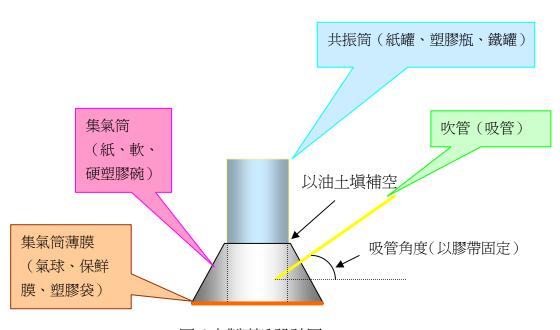
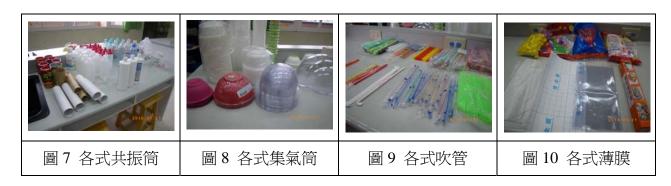
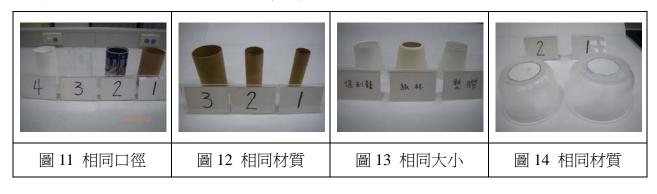



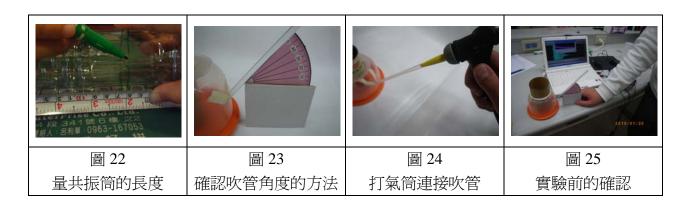
圖 6 自製喇叭設計圖

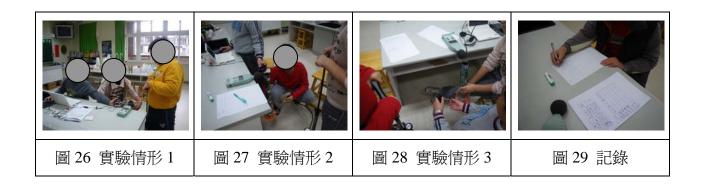

伍、研究方法

一、收集各種材質、大小的瓶子及免洗碗,各種口徑的吸管,各種材質的薄膜。

- 二、因爲作爲共振筒的鐵罐難以切割,所以共振筒的長度以鐵罐的長度爲標準,切割寶特瓶 及紙罐。
- 三、從收集到的瓶子和免洗碗(杯)中,依實驗項目分組。

四、把瓶罐(共振筒)的口徑用奇異筆描在免洗碗(集氣筒)底部,並用割圓器割下。




五、在免洗碗割好的圓洞裡放入共振筒,碗口處用裁切後 5 cm長的氣球包覆,作爲共振的薄膜。

六、將鐵釘放在點燃的酒精燈加熱,用加熱的鐵釘在集氣筒上離底部約 3.5 cm處配合吸管的口徑打洞。

- 七、吸管放入洞內約 1.5 cm處,檢查是否會漏氣,用雙面布膠固定好角度。
- 八、將打氣筒的氣嘴套在吸管上,利用打氣筒打氣的方式控制吹氣量。
- 九、把分貝器及麥克風置於共振筒正上方洞口處測音量,結合電腦軟體 Cool Edit 2000 測出頻率,紀錄並比較聲音的差異性。

陸、研究過程與結果

一、探究喇叭共振筒的材質、長短、粗細、形狀不同時,吹出來的聲音有何不同?

(一)不同材質的共振筒,對喇叭聲音的影響:

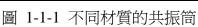


圖 1-1-2 實驗 1-1 的自製喇叭

表 1-1-1 共振筒材質不同時,喇叭聲音大小比較表

材質	紙罐	鐵罐	透明塑膠瓶	不透明塑膠瓶
第一次	124.7	122.1	117.2	117.3
第二次	122.9	121.7	122.0	118.8
第三次	124.8	122.5	118.4	119.8
平均值	124.1	122.1	119.2	118.6

表 1-1-2 共振筒材質不同時,喇叭聲音頻率比較表

材質	紙罐	鐵罐	透明塑膠瓶	不透明塑膠瓶
第一次	149.05	178.66	167.21	196.83
第二次	151.07	178.64	173.28	185.39
第三次	147.72	177.98	168.56	180.00
平均値	149.28	178.43	169.68	187.41

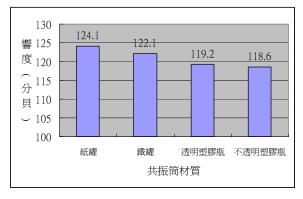


圖 1-1-3 共振筒材質不同時,喇叭聲音大小比較圖

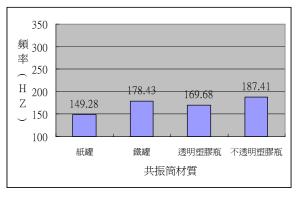
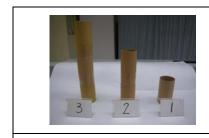


圖 1-1-4 共振筒材質不同時,喇叭聲音頻率比較圖

實驗發現: (1) 以紙罐和鐵罐的分貝值較高,但並沒有明顯的差異。

(2) 共振筒材質以不透明塑膠的頻率最高,紙罐的頻率最低。

(二)長短不同的共振筒,對喇叭聲音的影響:



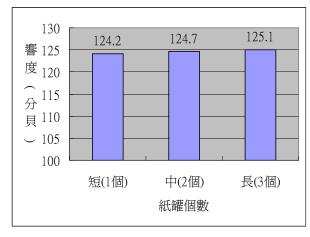

圖 1-2-2 實驗 1-2 的自製喇叭

表 1-2-1 共振筒長短不同時,喇叭聲音大小比較表

長短	短(1個)	中(2個)	長(3個)
第一次	124.1	124.0	124.4
第二次	124.9	124.7	125.4
第三次	123.6	125.4	125.4
平均値	124.2	124.7	125.1

表 1-2-2 共振筒長短不同時,喇叭聲音頻率比較表

長短	短(1個)	中(2個)	長(3個)
第一次	157.75	126.18	115.39
第二次	157.12	131.56	109.36
第三次	157.08	124.14	110.00
平均値	157.32	127.29	111.58

350 頻 300 250 H ₂₀₀ 157.32 Z 127.29 _ 150 111.58 100 短(1個) 中(2個) 長(3個) 紙罐個數

圖 1-2-3 共振筒長短不同時,喇叭聲音大小比較圖 圖 1-2-4 共振筒長短不同時,喇叭聲音頻率比較圖

實驗發現:(1) 共振筒的長度和聲音的大小並沒有關係。

(2) 共振筒長度愈短時,頻率愈高。

(三)粗細不同的共振筒,對喇叭聲音的影響:

圖 1-3-1 各種口徑的共振筒

圖 1-3-2 實驗 1-3 的自製喇叭

表 1-3-1 共振筒粗細不同時,喇叭聲音大小比較表

口徑	小	中	大
第一次	115.0	121.1	125.2
第二次	114.7	120.6	125.4
第三次	114.8	121.4	124.6
平均値	114.8	121.0	125.1

表 1-3-2 共振筒粗細不同時,喇叭聲音頻率比較表

口徑	小	中	大
第一次	203.54	192.79	167.92
第二次	203.55	196.83	157.83
第三次	210.96	194.14	153.06
平均値	206.02	194.59	159.60

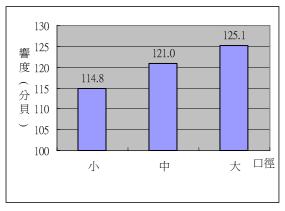


圖 1-3-3 共振筒粗細不同時,喇叭聲音大小比較圖

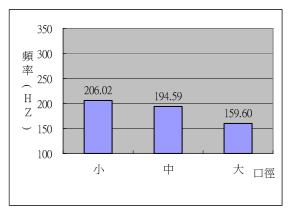


圖 1-3-4 共振筒粗細不同時,喇叭聲音頻率比較圖

實驗發現:口徑越大的共振筒音量越大、頻率越低。

(四)形狀不同的共振筒,對喇叭聲音的影響:

圖 1-4-2 實驗 1-4 的自製喇叭

表 1-4-1 共振筒形狀不同時,喇叭聲音大小比較表

形狀	上細下粗	上粗下細	瓶身波浪狀	瓶身有刻紋	直筒塑膠瓶
第一次	104.5	111.9	113.6	114.7	117.2
第二次	104.8	113.4	112.7	114.3	122.0
第三次	104.8	112.7	112.6	114.8	118.4
平均值	104.7	112.7	113.0	114.6	119.2

表 1-4-2 共振筒形狀不同時,喇叭聲音頻率比較表

形狀	上細下粗	上粗下細	瓶身波浪狀	瓶身有刻紋	直筒塑膠瓶
第一次	133.57	261.43	216.34	152.42	167.21
第二次	134.22	261.43	214.99	152.43	173.28
第三次	133.57	261.42	210.96	151.09	168.56
平均值	133.79	261.43	214.12	151.98	169.68

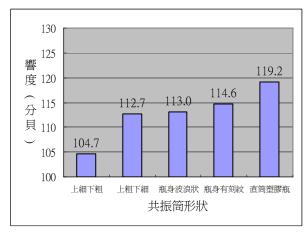


圖 1-4-3 共振筒形狀不同時,喇叭聲音大小比較圖

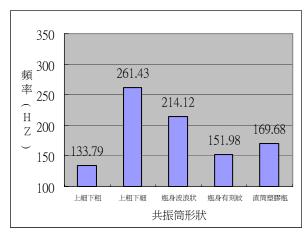


圖 1-4-4 共振筒形狀不同時,喇叭聲音頻率比較圖

- 實驗發現: 1. 上細下粗共振筒音量最小,直筒狀的共振筒音量最大。
 - 2. 共振筒的形狀對頻率有很大的影響,上細下粗的頻率最低,上粗下 細共振筒頻率最高。

二、在相同條件下,探究喇叭集氣筒的材質、大小的不同,吹出來的聲音有何不同?

(一) 不同材質的集氣筒,對喇叭聲音的影響:

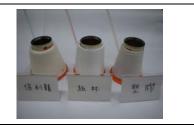


圖 2-1-1 各種材質的集氣筒

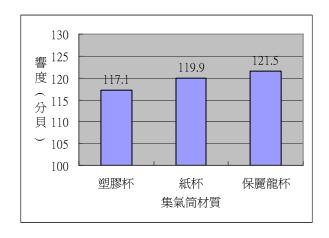

圖 2-1-2 實驗 2-1 的自製喇叭

表 2-1-1 集氣筒材質不同時,喇叭聲音大小比較表

	2 2 2 1 7 1 7 1	142 (1 1 4 4 1 1 1 4 7 1 E 1 E 1 F 1	
材質	塑膠杯	紙杯	保利龍杯
第一次	115.6	122.2	122.4
第二次	116.1	117.7	122.7
第三次	119.6	119.7	119.3
平均值	117.1	119.9	121.5

表 2-1-2 集氣筒材質不同時,喇叭聲音頻率比較表

材質	塑膠杯	紙杯	保利龍杯
第一次	199.5	200.91	203.50
第二次	200.22	196.16	202.20
第三次	196.84	221.71	202.87
平均値	198.85	206.26	202.86

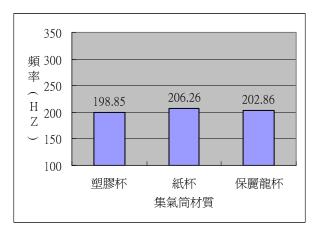
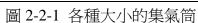


表 2-1-3 集氣筒材質不同時,喇叭聲音大小比較表

表 2-1-4 集氣筒材質不同時,喇叭聲音頻率比較表

實驗發現:集氣筒材質不同時,對喇叭發出的音量及頻率並沒有明顯的差別。

(二)大小不同的集氣筒,對喇叭聲音的影響:



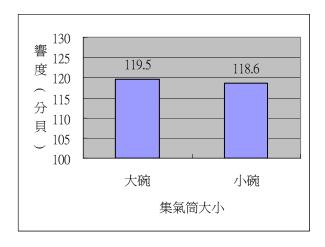

圖 2-2-2 實驗 2-2 的自製喇叭

表 2-2-1 集氣筒大小不同時,喇叭聲音大小比較表

大小	大碗	小碗
第一次	117.6	118.3
第二次	120.9	119.1
第三次	120.1	118.3
平均値	119.5	118.6

表 2-2-2 集氣筒大小不同時,喇叭聲音頻率比較表

大小	大碗	小碗
第一次	188.07	201.54
第二次	190.79	201.54
第三次	192.09	202.20
平均值	190.32	201.76

350 類 300 率 250 H 200 Z 150 100 大碗 小碗 集氣筒大小

圖 2-2-3 集氣筒大小不同時,喇叭聲音大小比較圖

圖 2-2-4 集氣筒大小不同時,喇叭聲音頻率比較圖

實驗發現:1. 集氣筒大小不會對聲音大小產生影響。

2. 集氣筒越大,頻率較低;集氣筒越小,頻率較高。

三、探究喇叭集氣筒薄膜的材質、鬆緊不同時,吹出來的聲音有何不同?

(一) 不同材質的集氣筒薄膜,對喇叭聲音的影響:

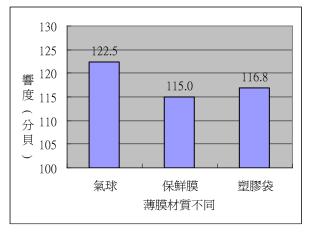
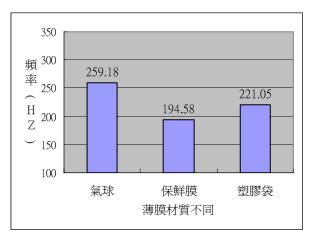

圖 3-1-2 實驗 3-1 的自製喇叭

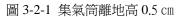
表 3-1-1 集氣筒薄膜材質不同時,喇叭聲音大小比較表

<u> </u>						
材質	Í	氣球	保鮮膜	塑膠袋		
第一	次	121.4	116.3	114.5		
第二	次	123.5	113.6	119.5		
第三	次	122.7	115.0	116.5		
平均	値	122.5	115.0	116.8		

表 3-1-2 集氣筒薄膜材質不同時,喇叭聲音頻率比較表

材質	氣球	保鮮膜	塑膠袋
第一次	252.02	190.1	221.72
第二次	262.76	195.48	229.13
第三次	262.77	198.17	212.31
平均値	259.18	194.58	221.05




圖 3-1-3 集氣筒薄膜材質不同時,喇叭聲音大小比較圖 圖 3-1-4 集氣筒薄膜材質不同時,喇叭聲音頻率比較圖

實驗發現:1. 這三種材質以氣球的音量較大,保鮮膜和塑膠袋的音量差不多。

2. 以氣球做爲薄膜的頻率較高。

(二) 鬆緊不同的集氣筒薄膜,對喇叭聲音的影響:

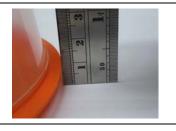
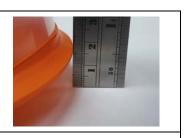


圖 3-2-2 集氣筒離地高 1 cm



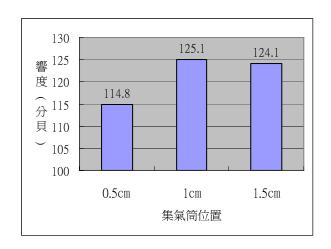

圖 3-2-3 集氣筒離地高 1.5 cm

表 3-2-1 集氣筒位置不同時,喇叭聲音大小比較表

200 - 1 NOW (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
位置	0.5 cm	1 cm	1.5 cm		
第一次	110.8	125.3	123.9		
第二次	115.1	126.0	124.6		
第三次	118.6	124.1	123.8		
平均值	114.8	125.1	124.1		

表 3-2-2 集氣筒位置不同時,喇叭聲音頻率比較表

位置	0.5 cm	1 cm	1.5 cm				
第一次	184.04	221.05	247.30				
第二次	207.65	224.42	247.27				
第三次	198.85	220.38	246.59				
平均値	196.85	221.95	247.05				

350 類 300 率 250 H 200 Z 150 100 0.5cm 1cm 1.5cm 集氣筒位置

圖 3-2-4 集氣筒位置不同時,喇叭聲音大小比較圖

圖 3-2-5 集氣筒位置不同時,喇叭聲音頻率比較圖

實驗發現:1. 集氣筒和共振筒底部對齊時,自製喇叭發不出聲音。

2. 集氣筒的位置在 1 cm和 1.5 cm處較大聲。

3. 隨著位置越突出,氣球越緊繃,聲音頻率越高。

四、探究喇叭吹管的粗細、長短、角度的不同,吹出來的聲音有何不同?

(一)吹管的粗細,對喇叭聲音的影響:

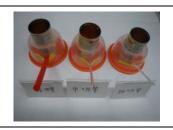


圖 4-1-1 各種口徑的吸管

圖 4-1-2 實驗 4-1 的自製喇叭

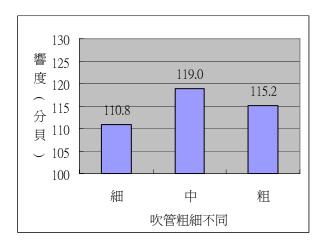
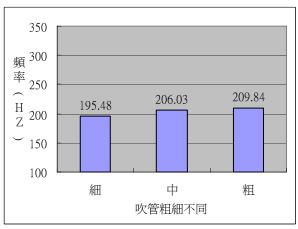

圖 4-1-3 實驗 4-1 的自製喇叭

表 4-1-1 吹管粗細不同時,喇叭聲音大小比較表

	<u> </u>						
粗細	細	中	粗				
第一次	111.2	118.3	114.7				
第二次	110.4	119.0	116.7				
第三次	110.8	119.6	114.3				
平均值	110.8	119.0	115.2				

表 4-1-2 吹管粗細不同時,喇叭聲音頻率比較表

粗細	細	中	粗
第一次	196.16	206.25	207.59
第二次	194.13	206.24	208.94
第三次	196.14	205.59	212.98
平均値	195.48	206.03	209.84



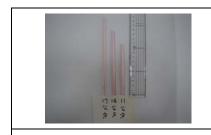

圖 4-1-4 吹管粗細不同時,喇叭聲音大小比較圖

圖 4-1-5 吹管粗細不同時,喇叭聲音頻率比較圖

實驗發現:1. 吹管以中吸管聲音較大聲。

2. 吹管的粗細對頻率的影響並不大。

(二)吹管的長短,對喇叭聲音的影響:

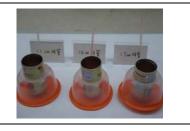


圖 4-2-1 各種長短的吸管

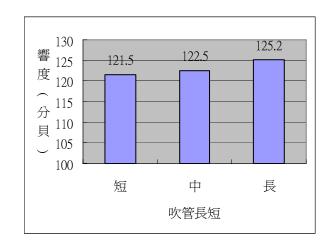

圖 4-2-2 實驗 4-2 的自製喇叭

表 4-2-1 吹管長短不同時,喇叭聲音大小比較表

長度	短(11 cm)	中(14 cm)	長(17 cm)
第一次	120.4	120.6	125.1
第二次	122.6	123.4	124.7
第三次	121.6	123.6	125.7
平均値	121.5	122.5	125.2

表 4-2-2 吹管長短不同時,喇叭聲音頻率比較表

長度	短(11 cm)	中(14 cm)	長(17 cm)
第一次	241.94	241.26	239.96
第二次	241.96	241.90	239.23
第三次	238.54	241.20	239.9
平均値	240.81	241.45	239.7

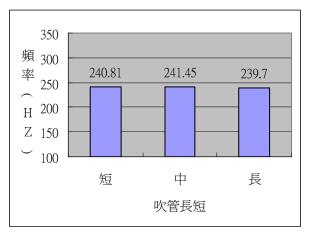
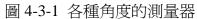


圖 4-2-3 吹管長短不同時,喇叭聲音大小比較圖 圖 4-2-4 吹管長短不同時,喇叭聲音頻率比較圖

實驗發現: 吹管的長短和聲音大小及頻率並無關聯。

(三)吹管插入的角度不同時,對喇叭聲音的影響:



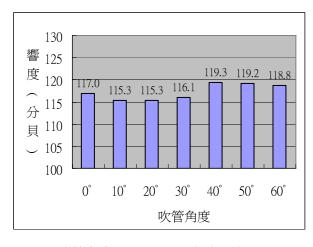

圖 4-3-2 測量吹管角度的方法

表 4-3-1 吹管角度不同時,喇叭聲音大小比較表

角度	0 °	10 °	20 °	30 °	40 °	50 °	60 °
第一次	115.8	114.8	116.7	115.6	119.4	119.4	118.8
第二次	117.7	115.4	114.5	116	119	118.2	118.1
第三次	117.6	115.7	114.8	116.7	119.5	120	119.4
平均値	117	115.3	115.3	116.1	119.3	119.2	118.8

表 4-3-2 吹管角度不同時,喇叭聲音頻率比較表

7,17,42,42,41,44,41,42,41,43,41,41,41,41,41,41,41,41,41,41,41,41,41,							
角度	0 °	10 °	20 °	30 °	40 °	50 °	60 °
第一次	207.6	185.4	190.77	190.08	197.5	213	195.5
第二次	207.59	186.07	191.43	195.48	198.16	211.65	195.47
第三次	206.97	186.05	191.43	193.46	210.33	212.98	208.2
平均值	207.39	185.84	191.21	193	202	212.54	119.72

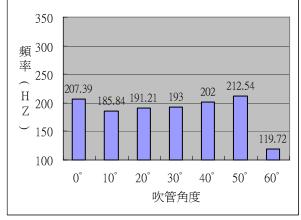


圖 4-3-1 吹管角度不同時,喇叭聲音大小比較圖 圖 4-3-2 吹管角度不同時,喇叭聲音頻率比較圖

實驗發現:1. 吹管的角度和聲音大小並無太大關聯。

- 2. 吹管角度在50°時頻率最高,60°時頻率最低。
- 3. 吹管角度在60°時,角度過大,吸管容易變形、彎曲,氣流較不順。

五、如何吹出音調高低

我們從以上的實驗結果發現,共振筒及薄膜是影響音調的主要因素,於是我們嘗試利用 這樣的發現來改變可能的變因,並觀察喇叭音調的變化。

實驗一:在共振筒上等距離打洞

我們想到笛子上的開孔能控制音調的高低,如果在共振筒上 打洞是否也能吹出不同音調呢?我們找了長鐵罐作爲共振筒,請 老師協助用電鑽在上面打了五個等距離的洞,從完全沒按孔開始 依序測試,用調音器紀錄音調的變化。

圖 5-1-1 實驗 5-1 的自製喇叭表 5-1-1 在共振筒上打洞的喇叭音調的變化

鐵罐粗 (直徑 6.5cm)	第一次	第二次	第三次	音名範圍	唱名範圍
完全沒按孔	3F-28	3F+08	3F+15	3F	Fa
按住1個孔	3F	3F-30	3F+03	3F	Fa
按住2個孔	3F-03	3F-23	3F-28	3F	Fa
按住3個孔	3F-35	3F-15	3F+18	3F	Fa
按住4個孔	3E + 20	3F-05	3F-15	3E~3F	Mi~Fa
按住5個孔	3F-28	3F-35	3F+33	3F	Fa

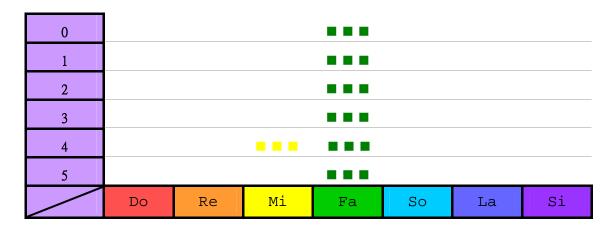


圖 5-1-2 喇叭音調的變化

實驗發現:共振筒上的開孔並不會影響喇叭音調的高低。

實驗二:改變共振筒的口徑

在實驗 1-3 中,我們得知口徑越大的共振筒頻率越低,那音調與口徑之間的關係又如何呢?我們試著用調音器測出音調的變化

圖 5-2-1 實驗 5-2 的自製喇叭

表 5-2-1 喇叭音調的變化

紙罐粗	第一次	第二次	第三次	音名範圍	唱名範圍
細	4D-20	4D-13	4D-25	4D	Re
中	4C+20	4C-23	4C+18	4C	Do
粗	3F+03	3F+20	3F-10	3F	Fa

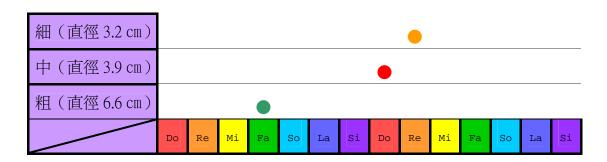


圖 5-2-2 喇叭音調的變化

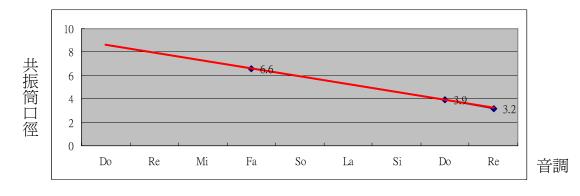


圖 5-2-3 共振筒口徑與音調的關係圖

實驗發現:1. 改變共振筒口徑大小能改變音調的高低。

2. 共振筒口徑和音階成正比關係;共振筒直徑每增加 0.7 cm,音階會下降一個音。

實驗三:加上圓形調音板

有沒有什麼方法可以隨時改變共振筒的口徑呢?我們想利用調音板可以隨時替換的特性來改變共振的口徑。我們找了口徑較粗的罐子作爲共振筒,用塑膠瓦愣板切割出各種不同半徑的調音板蓋在共振筒上,用調音器紀錄音調的變化。

圖 5-3-1 實驗 5-2 的自製喇叭

表 5-3-1 喇叭音調的變化

鐵罐粗(直徑 9.7cm)	第一次	第二次	第三次	音高範圍	唱名範圍
蓋上半徑 4.0cm 圓形調音板	2E-15	2E+3	2E+8	2E	Mi
蓋上半徑 3.5cm 圓形調音板	2F-15	2F	2F+3	2F	Fa
蓋上半徑 3.0cm 圓形調音板	2D-8	2D-5	2D	2D	Re
蓋上半徑 2.5cm 圓形調音板	2D+38	2D+20	2D+43	2D	Re
蓋上半徑 2cm 圓形調音板	2D+18	2D+30	2D+25	2D	Re
蓋上半徑 1.5cm 圓形調音板	2C+25	2C+33	2C+35	2C	Do
蓋上半徑 1.0cm 圓形調音板	2E+8	2E+8	2E+8	2E	Mi

圖 5-3-2 喇叭音調的變化

實驗發現:1. 加上圓形調音板,改變共振筒口徑大小能改變音調的高低。

2. 從半徑 3.5 cm到半徑 1.5 cm的圓形調音板的音調逐漸升高;過大或過小的調音板不會改變音調。

實驗四:增加共振筒的長度

從上面的實驗中,我們已經知道共振筒的長度可以改變音調,但是否能有規律性的改變呢?我們利用共振筒的長度不同來改變喇叭的音調;由一個鐵罐開始,慢慢加到六個鐵罐,以調音器測出音調的高低。

鐵罐 (直徑 6.4cm)	第一次	第二次	第三次	音名 範圍	唱名 範圍
一個鐵罐	5G+8	5G+35	5A+33	5G	So∼La
二個鐵罐	5G-5	5G-40	5F+38	5F∼5G	Fa∼So
三個鐵罐	5D+35	5D+38	5D-45	5D	Re
四個鐵罐	5C+25	5C-33	5C+5	5C	Do
五個鐵罐	4B+8	4A+43	4A+5	4A~4B	La∼Si
六個鐵罐	4C-5	4E-3	4G-28	4C~4G	Do∼So

表 5-4-1 喇叭音調的變化

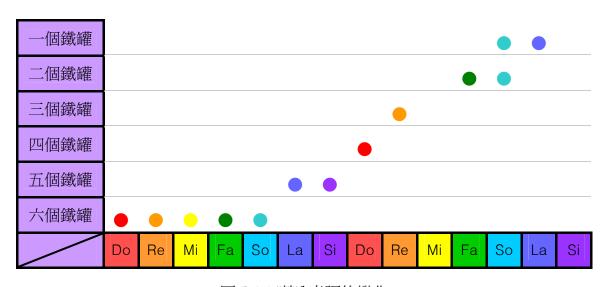


圖 5-4-1 喇叭音調的變化

實驗發現:喇叭音調的高低,會隨著鐵罐數量的增減產生變化;鐵罐的數量愈少, 音調愈高,鐵罐的數量愈多,則音調愈低。鐵罐數量的增減,雖然無法 剛好降低或升高一個音調,但卻能規律的改變。

實驗五:同時使用多個共振筒

如果使用很多個共振筒搭配一個集氣筒是否可以改變音調的高低?我們切掉小罐子的底部作為共振筒,將三個共振筒放進集氣筒內,同樣用打氣筒打氣,以調音器測出音調的高低。首先,我們完全不遮住共振筒的開口處,作三次測試;接著,我們將一個共振筒遮住,測試其音調的變化;最後將兩個共振筒遮住,測試其音調的變化。

圖 5-5-1 實驗 5-5 的自製喇叭

表 5-5-1	喇叭音調的變化
表 5-5-1	喇叭音調的變化

塑膠罐粗 (直徑 2.2cm)	第一次	第二次	第三次	音名範圍	唱名範圍
完全不遮	5C	5C-28	5C-33	5C	Do
遮住1個共振筒	4B-05	5C+23	4B-38	4B~5C	Si~Do
遮住2個共振筒	5C-33	5C+05	4B-10	4B~5C	Si~Do

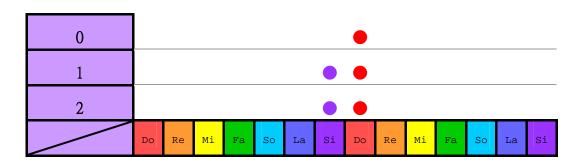


圖 5-5-2 喇叭音調的變化

實驗發現:1. 當完全遮住三個共振筒時,自製喇叭無法發出聲音。

2. 多個共振筒無法改變音調的高低。

實驗六:多個長短不一的共振筒

從實驗 5-5 結果中,我們發現共振筒的長短能讓音調有規律性的 變化。那麼,如果使用多個長短不同的共振筒搭配一個集氣筒,是否 也能使音調高低具有規律性?

圖 5-6-1 實驗 5-5 的自製喇叭

表 5-6-1 喇叭音調的變化

塑膠罐粗 (直徑 2.2cm)	第一次	第二次	第三次	音名範圍	唱名範圍
遮住低共振筒	4C+25	4C+28	4C+13	4C	Do
遮住中共振筒	4D+05	4D-18	4D-33	4D	Re
遮住高共振筒	4E	4F-18	4F+35	4E~4F	Mi~Fa
遮住低、中共振筒	4C+20	4C-05	4C+08	4C	Do
遮住低、高共振筒	4G+05	4G-25	4G-08	4G	So
遮住中、高共振筒	4A-08	4A+25	4B+28	4A~4B	La~Si

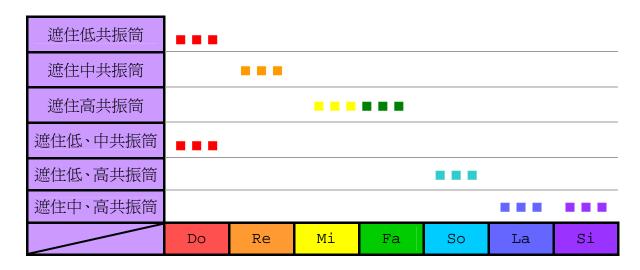


圖 5-6-1 喇叭音調的變化

實驗發現:1. 當按住低共振筒或低、中共振筒時,所發出的聲音最低。

- 2. 按住一個共振筒的時候,聲音會隨著所按住共振筒的長短而有規律性的由高至低。
- 3. 使用多個高低不同的共振筒,能使音調具有規律性的變化。

實驗七:按住薄膜不同位置

在之前的實驗過程中,我們曾經不小心手壓到氣球薄膜,驚訝的發現音調竟然改變了,所以我們想知道按住薄膜的不同部位,是否能控制音調的變化?

首先,我們將氣球薄膜在共振筒的位置上畫出同心圓,接著再依米字等分,並用號 碼作記號。

圖 5-7-1 氣球薄膜編號圖

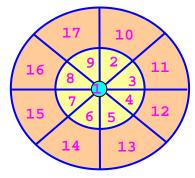


圖 5-7-2 氣球薄膜編號圖解

表 5-7-1 喇叭音調的變化

鐵罐粗 (直徑 5.2cm)	第一次	第二次	第三次	音名範圍	唱名範圍
按住1的位置	4F+10	4F-18	4F+35	4F	Fa
按住2的位置	3B-25	3B-33	3A+05	3A~4B	La~Si
按住3的位置	3A+10	3A+23	3A-33	3A	La
按住4的位置	3A+15	3A+03	3A-10	3A	La
按住5的位置	3A+03	3A+30	3A+18	3A	La
按住6的位置	3A-13	3A-23	3A+23	3A	La
按住7的位置	3A+08	3A-28	3A+15	3A	La
按住8的位置	3A-35	3A+33	3A+05	3A	La
按住9的位置	3A-30	3A-15	3A-08	3A	La
按住 10 的位置	3F-18	3F-28	3F+13	3F	Fa
按住11的位置	3F-35	3F-20	3G+18	3F~3G	Fa~So
按住 12 的位置	3F-10	3F-23	3F-25	3F	Fa
按住13的位置	3F-10	3F-23	3F+18	3F	Fa
按住 14 的位置	3G-03	3F-28	3F+28	3F~3G	Fa~So
按住 15 的位置	3F-35	3F-28	3E+23	3E~3F	Mi~Fa
按住 16 的位置	3E+23	3F+03	3F-20	3E~3F	Mi~Fa
按住17的位置	3E+10	3E	3E+25	3E	Mi

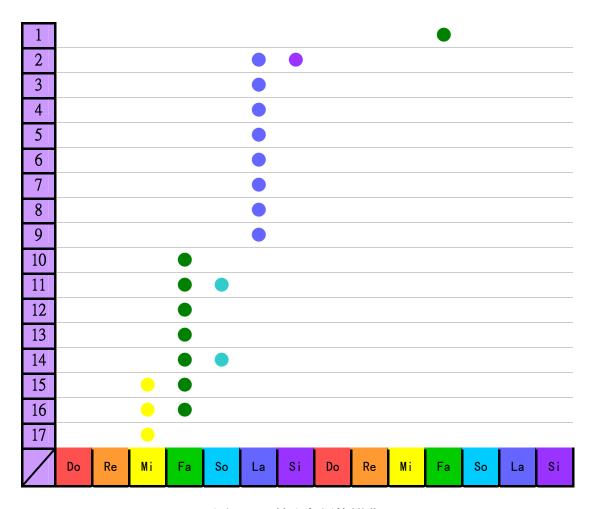


圖 5-7-3 喇叭音調的變化

實驗發現:1. 編號2到9的音調相近,編號10到17的音調相近。

- 2. 編號 1 的音調最高,編號 2-9 的音調其次,編號 10-17 的音調最低。
- 3. 按住中心點的音調最高;按住的薄膜位置越外圈,音調越低。

柒、討論

一、我們的實驗方向:

決定了題目後,我們討論出兩個方法來進行我們的實驗,一個是找五金行裁切水管做共振筒,這樣做的好處是實驗的變因容易控制,缺點是不環保;另一個是利用回收瓶罐來實驗,優點是環保,缺點是實驗要配合器材,不容易變因控制。討論了很久,我們還是決定用隨手可取得的回收瓶罐來實驗,雖然實驗過程常常爲了實驗材料的變因控制問題頭痛,但我們認爲這樣的自製喇叭不但可以應用在生活中,而且還可以將資源做二次利用,是比較有價值性的。

二、實驗變因的控制:

在決定實驗方法後,從製作實驗用的喇叭開始,就碰到許多的問題;爲了控制變因, 我們努力試著從市面上尋找尺寸、大小都一樣的紙罐、塑膠瓶與鐵罐來做實驗,但並不 順利;例如:剛開始幾乎找不到口徑大小、長度相同的紙罐、塑膠瓶、鐵罐;集氣筒的 材質、大小無法適用於每一種共振筒…等等;我們嘗試利用相對比較的方式——排除困 難,希望這些實驗所得到的結果,有一定的參考價值。

三、發聲原理的探討:

在這個實驗中,讓喇叭發出聲音的原理:透過打氣筒吹氣→集氣→震動橡皮膜發聲 →共振筒共振→放大音量。

四、實驗的標準流程:

在實驗過程中,我們希望控制好所有的變因,以減低實驗的誤差,所以討論出實驗的標準流程:先量背景聲音→確認實驗項目、器材→組裝喇叭,確認吹管角度 50 度、薄膜高度 1 公分、有無漏氣→靜音,進行實驗。

五、漏氣問題的解決方式:

我們發現在集氣筒和共振筒的接縫處容易漏氣,喇叭在漏氣時不會發出聲音,而且會有清楚的嘶嘶聲。可以利用油土填補,將油土搓成長條狀,填補集氣筒和共振的接縫。

六、薄膜的選擇:

一開始我們準備了很多塑膠材質做爲薄膜,但因爲與集氣筒不夠密合會漏氣,所以 只用了塑膠袋、氣球和保鮮膜做實驗。

七、氣流量的控制:

一開始實驗時,我們其中固定一人來吹自製喇叭,但吹出來的氣量不夠穩定,於是 改採打氣筒灌氣。在實驗過程中,我們也發現實際用人的嘴巴來吹自製喇叭,因密合度 較好,所以吹出來的效果更好,很容易便能發出聲音,而且聲音更響亮。我們也訪問音 樂老師有關喇叭的吹氣問題,音樂老師表示,技巧好的喇叭樂手能用嘴唇去控制音階高 低呢。

八、薄膜的使用:

氣球的張力夠,可以直接套上集氣筒,但如果集氣筒太大或太軟,氣球會使集氣筒變形;塑膠袋和保鮮膜則必須利用橡皮筋捆上,同時用手拉緊的方式才能吹出聲音。

九、氣嘴連接吸管方式:

一般用的打氣筒的氣嘴連接我們最常用的中吸管密合度很好,但小吸管和大吸管則無法用,試了許多方法後,我們最後將打氣筒裝上針嘴,吸管套上小氣球,在小氣球上 戳洞,針嘴放進洞中的方式完成實驗。

十、氣球薄膜的使用限制:

實驗了幾天後,我們發現氣球如果一直套在集氣筒上的話,氣球會彈性疲乏,變得沒有彈性,所以實驗前要先檢查過,換新的氣球;而且如果讓氣球一直套在集氣筒上數天,也會造成集氣筒的變形。

十一、頻率、音量與距離關係的實驗:

在實驗的設計中,我們本來還討論出距離關係的實驗,但實際測試時,發現聲音的傳播受到風向的影響很大,在不是迎風面距離 1.5 公尺的地方測試,分貝計的數字完全沒有變動;但在迎風面同樣 1.5 公尺處測試,卻發現分貝計有一次高達 100 分貝,原因不是喇叭吹出的聲音,而是風吹的影響。即使在無風的情況下,測試出的差異性並不高,數值大約都在 80 幾分貝,沒辦法作比較。

捌、結論

- 一、共振筒的材質不同時,吹出的音色截然不同;紙罐的音色直而厚,寶特瓶的音色清脆而 亮,鐵罐的音色則又清脆、又響亮。
- 二、共振筒的材質對音量的影響不大,頻率部分則以紙罐的頻率最低。
- 三、共振筒長度愈長時,聲音頻率愈低;相反的,當它的長度愈短時,聲音頻率愈高。共振 筒長短的不同,對喇叭吹出聲音頻率的高低有明顯的影響,但對音量並沒有影響。
- 四、共振筒的粗細,影響它吹出來的音量和頻率;口徑愈大,音量愈大,頻率愈低。
- 五、共振筒的形狀以直筒狀的音量最大聲,上細下粗的形狀音量最小聲;共振筒形狀對頻率 的影響很大,上粗下細形狀的共振筒頻率最高。
- 六、集氣筒的材質對音量、頻率的影響不大。
- 七、集氣筒大小對音量沒有影響,小集氣筒比大集氣筒頻率高。
- 八、氣球很適合作爲集氣筒薄膜的材質,不僅操作簡單,而且音量大、頻率高。
- 九、薄膜越緊,發出的聲音頻率會越高;集氣筒的位置凸出來1、1.5公分左右,效果最好。
- 十、吹管的粗細會影響音量,但對頻率的影響不大。
- 十一、吹管的長短對音量和頻率的影響不大。
- 十二、吹管插入的角度會影響聲音的高低,吹管的角度不同時,頻率的差距明顯不同。
- 十三、在共振筒上打洞,無法改變音調的高低。
- 十四、共振筒的口徑越粗,音調愈低,而且呈現規律性的變化;利用大小適當的調音板改變 共振筒口徑,亦能使音調有規律的變化。
- 十五、共振筒的長度越長,音調愈低,而且呈現規律性的變化。
- 十六、使用多個一樣長度的共振筒無法改變音調;但若將長度改變,則能透過按壓共振筒口的方式調整音調的高低。
- 十七、吹喇叭時,可利用手壓薄膜的方式調整音調,越往中心壓,音調越高;越往外圈壓, 音調越低。

玖、參考資料

- 一、曾秋雲(2009)。科學研習 48(2), 21-34。
- 二、國小自然與生活科技五下。臺北市:康軒。
- 三、上誼文化出版(1999)。進入科學世界的圖畫書。臺北市:上誼文化。
- 四、勁爆喇叭與養樂多大聲公。取自
 - http://tw.myblog.yahoo.com/jw!pXwue4yIFhav2YOS.v0Afpc-/article?mid=703&next=702&l=a&fid=5

【評語】080813

能利用日常生活中隨手可得的材料來自製喇叭,值得鼓勵。但是喇叭的型式與作法,在歷屆科展都有許多類似的作品,較欠缺創意。