中華民國 第50 屆中小學科學展覽會作品說明書

國小組 生活與應用科學科

最佳團隊合作獎

080801

「瘋」力發電~風力發電研究

學校名稱:連江縣立仁愛國民小學

作者:

小六 林楨曄

小六 劉安妮

小六 陳佳琳

小六 林俞婷

小六 張洪愷

小六 溫佳蓁

指導老師:

曹鳴傑

陳君業

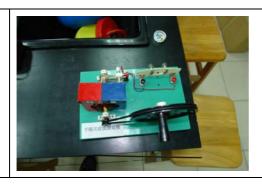
關鍵詞:風力發電、磁電感應、風能利用

「瘋」力發電~風力發電研究

壹、摘要

近年來,溫室效應的話題引起全界的關注,如何節能減碳,幫地球降溫,是許多政治人物、科學家在努力方向。華視電視台曾播放了一個「正負二度 C」,看了這個影片,我們更覺得減少溫室氣體排放,找出綠色替代能源的重要。我們居住的馬祖,雖然人少地小,較無舉足輕重的地位,但每一個人若有環境保護的素養,並確實的做法才行,地球一定會降溫的,生物也會快樂活著,沒有物種會消失。

根據維基百科資料,每天的太陽能會有百分之三左右轉成風能,如何有效利用風能是各國努力的目標,我們決定效仿風力發電,期望能喚起世人對綠色能源的關注。本項研究是利用「磁電感應」的原理,研究如何利用風力帶動風車葉片旋轉,產生足夠感應電流,讓 LED 燈泡發亮。


貳、研究動機

今年的寒假,同學中有人看了 PPS 網路電視,裏面播到了大陸連續劇「神話」,劇中男主角聶小川居然用磁鐵與金絲線,做起了發電機,那真得太厲害了,真得好想也做一個。有一天,我們與老師放學走路回家,路上有些太陽能的閃燈,我們發把它遮光就會亮,還居然也會產生電,真是太神奇了,路上我們就跟老師討論發電原理,看看可不可以學電視也做個發電機。第二天老師就在自然教室拿了「手搖交直流發電機」來解釋發電原理(如補充說明),我們從六上康軒版教科書電磁鐵談到發電機,大家老好想自己也做出一台,甚至有同學想不用手搖,利用風動力來吹來自動發電,最後在大家的起哄中,我們往風力發電研究,也不知道會不會成功,老師說我們「瘋」了,也希望這種瘋的精神,能成爲我完成夢想的動力。

補充說明:老師與我們測試手搖發電機情形:

		T
編號	圖片	我們發現說明
	THE X BLIVE	手搖方向不同,也會有不同燈泡 亮,用力愈大,燈炮也愈亮,搖的 時候很晃,要扶好。
		手搖方向不同,也會有不同燈泡 亮,用力愈大,燈炮也愈亮,搖的 時候很晃,要扶好。

 \equiv

手搖發電機上有 N、S 磁極,手搖 交直流發電機-磁極在兩旁,漆包 線在中間,漆包線轉動而磁極不動 產生電來讓燈炮發亮

參、研究目的

- 一、找出馬祖風的吹力如何?是否可做風力發電?
- 二、找出學校內哪一個地方風場最好?
- 三、找出小馬達是否就可以當成發電機?
- 四、找出網路購買常見口吹風力發電小馬達構造爲何?
- 五、找出如何自製風力發電機?
- 六、找出何者材料適合做風扇,省錢又快速?
- 七、找出自製保特瓶風扇,幾葉風吹較會轉動?

肆、研究器材

1. LED 燈泡	2. 三秒快乾膠	3. 小鋸子	4. 冰棒棍
5. 尖嘴鉗	6. 玩具景觀風扇	7. 直尺	8. 保特瓶
9. 指南針	10.指針三用電表	11. 砂紙	12. 美工刀
13. 原子筆管	14. 烙鐵槍	15. 針筒	16. 剪刀
17. 強力磁鐵	18. 斜口鉗	19. 塑膠碗	20.小馬達
21. 塑膠杯或咖啡	22. 塑膠碗	23. 硬碟內拆解之	24. 塑膠管
飲料塑膠罐		強力磁石、小馬達	
25. 裝光碟布丁桶	26.電子式三用電表	27. 鉛筆	28. 廢棄鋁罐
29. 熱融膠	30. 漆包線	31. 橡皮筋	32. 螺絲起子
33.竹筷			

伍、研究方法、過程與結果、討論

一、研究問題:找出馬祖風的吹力如何?是否可做風力發電?

研究方法與過程:1、去馬祖氣象台找資料及訪談氣象站工作人員。

2、訪談台電馬祖營運處處長。

研究結果:1. 老師與馬祖氣象站工作人員談馬祖風力之重點

記錄日期:九十九年四月二十一日

記錄來源:老師轉述記錄人員:劉〇〇

記錄重點:

- 1. 氣象站工作人員說:「馬祖氣象站的氣象資料要收費,每份二百元」,建議我們上網(中央氣象局網站)尋找。
- 2. 氣象站工作人員說:「馬祖是海島,對流強,風力強,一年平均約有4公尺/秒以上的風,夏天常吹南風,冬天常吹北風,應該可以發展風力發電這種綠色能源」。
- 3. 氣象站工作人員說:「馬祖氣象站大概是民國九十三年成立營運,之前的氣象資料沒有 是正常的」。

研究結果: 2. 我們上中央氣象局網站,我們整理馬祖這幾年的氣象平均資料,沒有每年的平均風速,只有每月最大瞬間風速,最高有17公尺/秒,那應該是颱風時吧!另外,網路上還查到一個月內的每日風速情形,多數風速在3公尺/秒以上。

研究結果: 3. 老師與台電馬祖營運處處長談馬祖風力之重點

記錄日期:九十九年四月二十二日

記錄來源:現場旁聽與老師協助回憶解釋

記錄人員:林○○

記錄重點:

- 1. 台電馬祖營運處處長說:「現在的學校教室設備真好,各種器材都有,現在小朋友也很不 簡單,發電是很難懂的科學,妳們要拿它來做科學展覽的主題,很有挑戰性,預祝妳們大 家成功」。
- 2. 台電馬祖營運處處長說:「馬祖當然適合風力發電,但不要並入發電廠運作,因爲現在風力發電的技術,有一定風速才能發電,會時而有電,時而無電,時而電強,時而電弱,馬祖電廠只是小水槽,不像台灣電廠大水槽,突然電多、電少都會造成已運轉的火力發電系統當機,切換供電來源會來不及。我曾建議過縣長,應該要發展風力發電,可以用在水庫打水系統及曝氧水車上,馬祖現在蓋了水庫,水要循環才能用」。
- 3. 台電馬祖營運處處長說:「台灣大型風力發電機在少風的狀況下,可調整增加葉片受風面積,風大可調整減小葉片受風面積,。
- 4. 老師向處長解釋我們的實驗發現。
- 5. 處長向我們師生教導三用電表的使用方法,在處長指導下,由老師操作測量牆壁插座是否 電壓爲 110 伏特。

研究討論:根據氣象台工作人員與處長的說明,我們認為馬祖風力發電是可能的,但是 因為技術還需要進步,還不能替代現在的火力發電廠設施,最好將來能研究

出在微風下能發出多電。

二、**研究問題**:找出學校內哪一個地方風場最好? **研究方法**:1.自製風速計、風向計來測量風速。

> 2.99 年 4 月 12 日至 99 年 5 月 12 日 每天上課日,利用課間活動二十分 鐘,至本校鼓房外、校門口、四年 級教室後走廊(選點是老師建議),

拿自製好的風向風速計測量風速。

研究過程:1.自製風速計製作

- (1)將冰棒棍一端黏上熱融膠後,黏在保特瓶蓋上。
- (2)重複動作(1),並製作成三葉式、四葉式、五葉式葉片。
- (3)將完成之葉片冰棒棍一端黏上熱融膠後,再黏上塑膠碗。
- 2.自製風向計製作:
- (1)將竹筷用美工刀直向切成二半至中心。
- (2)將竹筷切面處黏上熱融膠並夾上廢棄光碟,再次施以熱融膠加強固定。
- (3)將保特瓶蓋用烙鐵槍橫向鑽二個直線大小與竹筷相同的孔。
- (4)將上述步驟(2)做出的竹筷穿過上述步驟(3)的保特瓶蓋。
- (5)測量風向時,要用指南針輔助找出方向

實驗結果: 1. 自製風速計製作測試結果:

名稱 圖片 說明 三葉測速器 我們將三種測速器在每個其中-個碗上黏上貼紙,拿到立式電風 扇前進行風力測試,準備碼錶, 看看每1分鐘內,測速器會轉幾 圈?電風扇風力要開到最小的3 號測試後,發現1分鐘內,五葉 測速器轉的圈數最多,三葉測速 四葉測速器 器轉的圈數最少,我們決定用五 葉測速器作爲我們判定風速的工 具,並生產三個這種測速器,來 量校園三個地方的風速。 五葉測速器

實驗結果 2: 99.4.12 日至 99.5.12 測量校園三個點風力風向情形

日期(月.	風向(都在鼓房	鼓房外風力(圏	校門口風力	四年級教室後走廊風力
日)	外測量)	/分鐘)	(圏/分鐘)	(圏/分鐘)
4.12	北	15	14	7
4.13	東北	8	9	6
4.14	東北	8	7	3

4.15	北	8	6	4
4.16	東北	7	7	2
4.19	東北	9	7	3
4.20	東北	6	6	3
4.21	西南	2	1	0
4.22	無風	0	0	0
4.23	西南	6	9	5
4.26	東北	2	2	2
4.27	無風	0	0	0
4.28	無風	0	0	0
4.29	南	10	9	9
4.30	東北	7	8	6
5.3	東北	8	9	4
5.4	東北	6	10	3
5.5	東北	7	5	4
5.6	東北	8	6	3
5.7	東北	11	9	7
5.10	東北	3	6	2
5.11	北	6	8	5
5.12	東北	8	9	8

本表註:風力測量是看五葉自製風速機1分鐘內能轉幾圈。

研究討論:在我們觀察的日子裏,學校附近多是北風或東北,所以在空曠的校門口及位置高的鼓房,都比較有風,而面向南方的四年級教室後走廊,就沒什麼風,也許夏天時,面向南方就有風。如果這個時節想做風力發電,在學校最好的位置是校門口或鼓房。

三、研究問題:找出小馬達是否就可以當成發電機?

研究方法及過程:網路查到的資料說到,我們平常用的電動機小馬達是電生磁轉動,把它反轉,應該會能磁生電,所以我們用螺絲起子拆解廢棄電腦電源供應器風扇、CPU風扇、硬碟內小馬達;廢棄吹風機、電動刮鬍刀、印表機內小馬達,並從網路上購買口吹風力發電小馬達、增速齒輪小馬達等,加玩具景觀風扇與保特瓶風扇(做法參考研究問題七)做是否讓LED燈亮測試,及三用電表電壓量測。最後,我們也希望從我們找到的馬達樣本中,找到我們自製風力發電機的模範對象。

實驗結果:各式小馬達測試結果

馬達	馬達名稱	馬達照片	風力來源	使用風	LED 燈	電子試三	
編號				扇型式	泡是否	用電表電	
					亮	壓量測(V)	

1	電源供應器風扇馬達		體材室空 壓打氣機	無	會亮	2.175
2	CPU 風扇馬 達		體材室空 壓打氣機	無	會亮	2.019
3	硬碟內小馬達		立式電風 扇最強 1 號風速	保特瓶 製四葉 風扇	不亮	0.099
4	吹風機馬達		立式電風 扇最強 1 號風速	玩具景 觀四葉 風扇	不亮	0.564
5	電動刮鬍刀馬達	U	立式電風 扇最強 1 號風速	保特瓶 製四葉 風扇	不亮	0.217
6	印表機內小馬達		立式電風 扇最強 1 號風速	玩具景 觀六葉 風扇	會亮	1.87
7	網路購買口吹 風力發電小馬 達		口吹	小馬達 本身所 附小風 扇	會亮	1.54
8	網路購買增速 齒輪小馬達		立式電風 扇最強 1 號風速	保特瓶 製四葉 風扇	會亮	3.554

本表註 1: 所有風扇都是儘量最大受風面吹風。

本表註 2: 因爲受風不穩,電子式三用電表數字一直跳,我們選曾經出現的最大値電壓。

研究討論: 1.把買的馬達或拆來的馬達,給它風能測試,雖然我們給的風能大小不同,風扇型式不同,三用電表指數都會跑,都能產生感應電流,只是有得多,有的少,這代這小馬達也就是小型發電機,我們平時看到的電風扇若在風力夠強環境,轉動夠快,也可以成爲發電機的。

- 2.有的馬達會使 LED 燈泡亮,代表產生足夠量的電,我們上網查詢,要讓 LED 燈泡發亮,至少要 1.424V,還要有足夠電流。
- 3.除網路購買的馬達,印表機內拆的馬達產生電的效果很好,以後有丟掉的印 表機,一定要把它留著,拆出馬達來做風力發電。
- **4.**網路口吹小馬達看起來最好拆,給它風能又能使 LED 亮,結構看起來又不複雜,我們決定以它爲藍本,研究設計我們的自製風力發電機。

四、研究問題:找出網路購買常見口吹風力發電小馬達構造爲何?

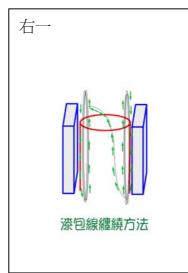
研究方法:拆解口吹風力發電小馬達,並拍照拆解過程,注意它的材料爲什麼?長什麼樣

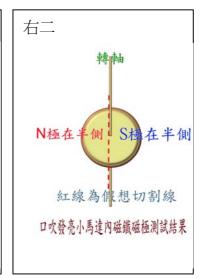
子?漆包線如何捲?磁鐵的磁極是如何的?

研究過程與結果:

研究步驟	研究照片	說明
1		拿網路購買的風力發電小馬達進行拆解研 究,拆解一定要小心仔細有耐心。
2	Sitor	拆開風扇與電線, 拆的時候要用些力, 手指要 夾好。
3	Situ	拆開漆包線並注意漆包線纏繞的方法,我們發 現口吹小馬達漆包線很細,左右邊都纏有五百 圈以上的漆包線。
4		拆開後,我們發現材料有電線、很細漆包線、 塑膠容器、圓形有中軸磁鐵。

5




拆解出來的圓磁鐵靠近指南針,並上下左右翻轉,做磁極(N、S)判斷。

研究討論:1.口吹風力發電小馬達內 滚包線非常細,不用粗

的,可以產生較好的電流量,老師指導說:「這是截面積小,電阻小,可產生較佳電流」。所以我們自製發電機用的漆包線要細。

2.漆包線捲的方面左右 兩邊都相同,若是順時 針就一定都要順時 針。漆包線纏繞方法分 析圖如右一。

- 3.口吹風力發電小馬達磁極測試,發現磁極左右兩邊,小磁鐵的磁力極強,我們 也畫了分析圖如右二。
- 4.口吹風力發電小馬達它是漆包線在外,轉動磁極產生感應電流;拆解的其他小馬達,都是磁極在外,轉動漆包線產生感應電流。
- 5.找到適當強力磁鐵、細漆包線、適當低摩擦力的容器,並注意捲線方向,我們 應該也能做出自製的風力發電機。

五、研究問題:找出如何自製風力發電機?

研究方法:根據拆解口吹風力發電小馬達,購買器材,並嘗試製作自製風力發電機。

研究過程:1.軸心製作-竹筷版

サラフロルごり上	州元迪住· 1 •种心袋 [F-]] [宋/[汉				
實驗步驟	實驗照片	說明			
1		直向切開竹筷至中心			
2		夾上薄強力磁鐵,並用橡皮筋綁夾 好,而磁鐵不能太厚,否則會夾不 住。夾好後將竹筷一端削尖,一端 做成適當長度,適當長度決定在外 殼高度。			

研究過程: 2.軸心製作-塑膠管版

	。44. 即心表下空形目版					
實驗步驟	實驗照片	說明				
1		將筆管帶筆芯的部位,用鋸子切至 適當長度,適當長度決定在外殼高 度。				
2		將塑膠用鋸子切至適當長度,適當 長度決定在外殼高度。。				
3		將快乾滴在厚強力磁鐵上				
4		將切好筆管帶筆芯的部位黏在一面 強力磁鐵中心,另一面黏上切好的 塑膠管				
5		完成塑膠管版軸心製作,並一定要 使快乾乾了硬了才能動軸心,因為 我們軸心製作多次失敗。				

研究過程:3.外殼製作

實驗步驟	實驗照片	說明
1		將塑膠杯或塑膠咖啡罐裁剪修整, 長度注意軸心的高度。本圖是用塑 膠咖啡罐裁剪。
2		用烙鐵槍在塑膠罐後打一小洞,注 意烙鐵槍有燙傷的可能,要非常小 心,這個步驟老師一定要在旁邊。

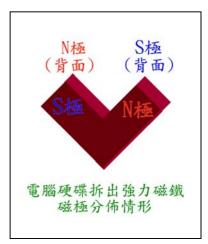
3		裁割冰棒棍約成每個 4 公分長,至 少要四個
4		用熱融膠槍擠些熱融膠在剪裁好的冰棒棍中間。
5		將沾有熱融膠的冰棒棍黏在咖啡罐 上,並再加些熱融膠加強固定,兩 面都要黏冰棒棍。
6	The second secon	將黏冰棒棍咖啡罐之冷卻後纏繞漆 包線(本研究多使用 0.32mm 厚漆包 線),注意纏繞方向要固定

研究過程:4. 軸心與外殼組合

		_
實驗步驟	實驗照片	說明
1		將裝光碟之布丁桶用烙鐵槍鑽好長 度適當大小的洞,將做好的軸心加 入外殼,再用熱融膠黏好
2		裝置自製保特瓶風扇,可用熱融膠 固定
3		檢查風扇及底座布丁桶固定情形, 熱融膠一定要冷卻固定,千萬不可 隨意移動,否則前功盡棄。

4

用砂紙將最後的漆包線表皮漆磨掉,促使導電正常,最後並加上 LED燈,即可進行亮燈測試。


研究結果:所有自製風力發電機測試

編號	馬達照片	風力來源	使用風扇 型式	LED 燈 泡是否 亮	說明
1		立式電風扇 最強1號風 速	保特瓶四葉式風扇	會亮	漆包線纏二堆, 每堆 250 圈,軸 心使用厚強力磁 鐵
2		立式電風扇 最強1號風 速	保特瓶五葉式風扇	會亮	漆包線纏四堆, 每堆 200 圈,軸 心使用厚強力磁 鐵
3		立式電風扇 最強1號風 速	保特瓶四葉式風扇	會亮	漆包線纏二堆, 每堆 250 圈,軸 心使用厚強力磁 鐵
4		立式電風扇 最強1號風 速	保特瓶三葉式風扇	不亮	纏較粗漆包線二 堆,每堆200圈, 軸心使用薄強力 磁鐵,線圈繞法 有問題
5		立式電風扇 最強1號風 速	保特瓶四葉式風扇	不亮	漆包線纏 6 堆, 每堆 140 圈,軸 心使用硬碟內磁 鐵製作,線圈繞 法有問題
6		立式電風扇 最強1號風 速	保特瓶四葉式風扇	不亮	漆包線纏 4 堆, 每堆 200 圈,軸 心使用薄強力磁 鐵製作,線圈繞 法有問題

7		立式電風扇	保特瓶四	不亮	最早製作之失敗
		最強1號風	葉式風扇		風力發電機,後
	11 2	速			來被拆解重新研
					究

研究討論: 1.在台灣強力磁鐵未買至時,我們一度用硬碟內強 磁試驗,希望節省材料費,測試多次皆只有少量 電壓產生,無法製作出風力發電機,我們猜測是 硬碟內強磁極複雜(一顆磁鐵有四個磁極),磁鐵 較薄,磁力可能還是不夠強。右圖是我們用指北 針測試硬碟內強磁磁極分析表。

> 2.風力發電機不容易製作,平均一個要花去我們四 小時間製,每一個環節都很重要,一定要小心翼 翼,至今有許多失敗作品,我們都還不能找出它 確定失敗的原因。

- 3.軸心最好使用厚強力磁鐵,配合塑膠管版軸心製作方式,雖然比較久,但摩擦力影響也會比較小。我們用薄強力磁鐵都未試成功一組自製風力發電機, 也許也跟我們纏繞方式有關,因爲我們常交替換手纏繞。
- 4. 風扇換來換去不便利,最好研發方便可拆式保特瓶風扇。
- 5.LED 燈會亮的自製發電機,LED 都是一閃一閃的,上網查詢,網路解答是產生交流電,不是直流電的關係。

研究結果:各材料製作風扇比較(都做成四葉式風扇)

材料名稱	材料取得處	製作便易性比較	保存期	其他
厚紙板風扇	與美術老師要厚	容易(美術老師	短	
	紙板	對我們很好)		
鋁罐風扇	垃圾筒撿鋁罐	容易	稍短	鋁罐風扇容易割
				手,有同學受傷
保特瓶風扇	垃圾筒撿悅氏礦	容易	長	
	泉水保特瓶			
免洗盤風扇	購買取得	少且不易	長	

研究討論:我們想到做風扇的材料還有很多,但馬祖不易取得。研究我們做的風扇中,保 特瓶風扇算是取得容易,製作容易的。 七、研究問題:找出自製保特瓶風扇,幾葉風吹較會轉動?

研究方法:製作出三、四、五、六、八葉保特瓶風扇,用眼睛看比較轉動順暢度與轉速,

看何者最適合組裝在我們自製風力發電機上。

研究過程:保特瓶風扇製作流程

實驗步驟	實驗照片	說明
1		用圓規在紙上畫些同心圓
2		用量角器在紙上畫上欲做風扇的角度,三葉 120度,四葉 90度,五葉72度,六葉 60度,八葉 45度。
3		將保特瓶切除多餘的尾端,並剪修 平整
4		將保特瓶多餘的部分去除,多除水 分清除乾淨
5		將保特瓶放在作好的角度圖上,並 在保特瓶上做好等分記號
6		將等分記號用直尺延伸,畫出裁切 線
7		用剪刀把裁切線剪開
8		切好的風扇葉片折成水平,並令葉片弧度順暢

9	將尾端多餘的葉片剪掉,最好要剪 成斜角
10	套上筆管進行風扇轉動測試

研究結果:三、四、五、六、八葉保特瓶風扇轉動順暢度與轉速比較

風扇名稱	風扇照片	轉動順暢度	轉速
自製三葉保特瓶風扇	37	5	Е
自製四葉保 特瓶風扇	O and	4	D
自製五葉保 特瓶風扇		3	С
自製六葉保 特瓶風扇	Storbulo or	2	В
自製八葉保 特瓶風扇	O mino	1	A

本表註 1: 所有測試的來源都是立式電風扇最低 3號風速,觀察低風速下轉動順暢度與轉速。

本表註 2: 順暢度排序 1~5,以 1 最順暢,5 順暢度最差。

本表註 3:轉速排序 A~E,以 A轉速最好, E轉速最慢。

研究討論:1.我們自製的保特瓶風扇,發現八葉式轉速最快,順暢度也最好不會晃,最適合為我們的自製風力發電機的風扇。

- 2.我們也比較了葉片長短對轉速影響,以四葉做實驗樣本,發現葉片長受力大,可推動扭力強的馬達,但轉速稍慢;葉片短,轉速快,需扭力稍強馬達較無法轉動。
- 3. 風扇做的愈大,推動力愈強,但阻力也愈強。

陸、結論

- 1.馬祖處海島地區,對流旺盛,等待科技更進步後,可適合風力發電,若能取代現在的 火力發電就更好。
- 2.學校四周也有很好的風場,今年度這個時節,以鼓房與校門口風力最強,若想利用自 然風產生發電,應在這兩個位置比較好。
- 3.我們證實馬達就是發電機。
- 4.只要強力磁鐵夠強、磁極單純,漆包線繞對,摩擦力處理到最小,我們已有自製風力 發電機的技術。
- 5.自製風扇材料以保特瓶最易製作取得,而做出的風扇以八葉保特瓶自製風扇較佳。

柒、参考資料

- 1.維基百科網站(http://wikipedia.tw/)。
- 2.強而青科技開發有限公司(http://www.solar-i.com)。
- 3.康軒版六上自然與生活科技第四單元-電磁作用。

捌、其他

「瘋」力發電-科展錢的使用狀況表─整理者:老師與林○○同學

項次	名稱	數量	單價	總價(元)	購買處及來源
			(元)		
	三用電表-指針式	1個	500	500	馬祖介壽村華明五金行
<u> </u>	三用電表-電子式	1個	200	200	五年級老師代買
三	漆包線 0.32mm	2 捲	250	500	五年級老師代買
四	漆包線 0.32mm	1 捲	450	450	五年級老師代買
五	LED 燈炮	20 顆	5	100	五年級老師代買
六	口吹會亮小馬達	5個	80	400	指導老師網路買的
七	熱融膠槍	1個	200	200	馬祖介壽村華明五金行
八	熱融膠條	10條	15	150	馬祖介壽村華明五金行
九	塑膠杯、碗、盤	1堆	100	100	梅石阿通賣場
十	快乾膠	1瓶	60	60	馬祖第一書局
+	增速齒輪小馬達	4個	100	400	指導老師網路買的
十二	強力磁鐵 4cm*2cm*1cm	4個	200	800	指導老師網路買的
十三	強力磁鐵	4個	75	300	指導老師網路買的
	5cm*3cm*3mm				
十四	強力磁鐵(直徑2公分)	6個	80	480	指導老師網路買的
十五	風力測量計	1個	2300	2300	指導老師網路買的

總計:		6940	

林〇〇心得:為了這次研究風力發電,我們真的瘋了,很多地方花了很多錢,也花了很多時間,老師都一直開玩笑說他生小孩的本錢都用上了,最主要的馬祖買材料不易,又怕買不到,有時就會買過多。我們原本都一直研究不出來,老師一直不放棄研究,花了好幾個日與夜,每天都留在學校自然教室到晚上九點半,我們也一同想怎麼改造,陪在身邊,找最容易找也不花錢的材料來做設計,幸好皇天不負苦心人,我們買到強力磁鐵後,又多經兩個禮拜奮鬥,做出了第一台讓LED燈一閃一閃的風力發電機,那時,我們一群人抱在一起發瘋大叫。實驗真得很花時間,做事沒有一種衝動,沒有一股傻勁,真得是不會成功的。由這次的實驗,更發覺科學家的偉大,像愛迪生實驗燈絲二十多年,失敗一千多次才成功,我們才實驗二個月,失敗十多次就一直喊著放棄,前人的精神真值得我們效法,以後做事,我也會告訴自己堅持下去。

【評語】080801

- 1. 作品所探討主題與地方特色結合,值得鼓勵。
- 2. 學生在樣品製作、實驗操作及現場解說充分展現團隊合作 精神,非常難得。
- 3. 不同樣品設計或改進的原理說明,宜可再加強。實驗的變因控制應再加強。實驗結果的量化表達應再加強。實驗目標及結論應該更具體。