中華民國 第50 屆中小學科學展覽會

作品說明書

高中組 地球科學科

第三名

最佳團隊合作獎

040509

觀音草漯海灘沉積物分析

學校名稱:桃園縣立南崁高級中學

作者:	指導老師:
高一 黄 偉	潘建熾
高一 杜嘉彬	徐文祥
高一 吳修禎	
高一 王尹彤	

關鍵詞:草潔、沉積物、粒度

摘要

草漯村位於桃園縣觀音鄉沿海,海岸線因風浪作用有向內陸退後之現象,海岸線平直, 沿海沙灘分布,坡度平緩約2至4度。採樣點位置附近有兩小溪出海口,沙丘平行海岸線分 布,呈東西走向。

本研究於 2010 年 1 月 10 日距沙丘底部 40 至 65 公尺間垂直採樣 12 管沉積物,採樣深度 由 30 公分至 84 公分不等,並以每 2 公分分層取樣進行過篩粒度分析,並使用顯微鏡觀察各 粒徑沉積物之內含物,藉以了解影響海灘沉積物之營力隨時間之變化。

依據粒度分析發現此區,沉積物粒徑大於 0.25mm 之比例,從 10.0%到 79.9%不等,影響 此區海灘沉積物分布主要力量有水流及海浪,營力隨時間有增強的趨勢。依據沉積物內含物 及分層圖觀察,近砂丘底部沉積物主要沉積營力為流水、距陸較遠海灘應以風浪為主,且海 岸有向陸地退縮之趨勢。

壹、研究動機

科技發展,人們往往為了自身的利益而迫害 自然,全球暖化議題正在國際間發酵著,海平面 上升、劇烈氣候變化,似乎成為世人關心的問 題。

看著上幾屆學長、姐所做科展題目,研究觀 音草潔海灘沉積物分布,發現粗顆粒貝殼砂分布 位置與沙灘營力有相關性。故延伸學長姐科展想 法,我們想利用沙灘沉積物垂直粒度及組成成分 變化,以了解桃園觀音海岸線、氣候變遷及海平 面變化之情況。

圖 1-1 觀音草潔海岸的沙灘

貳、研究目的

藉由沉積物粒度垂直變化、沉積物內含物分層,找出草潔沙灘地形變化,進而瞭解影響 草潔沙灘營力的變化情況。

一、室外採樣部分:	二、室內分析工作:
工作手套…1副/人	皮尺…1 個
封口袋…2袋	卡式爐…1具
PVC 塑膠空管(口徑 3 吋、1 公尺長)…12 支	篩網(孔徑 0.25mm、0.125mm)… 2 個
油性筆…隻/人	電子秤…1具
鐵鎚…3 個	鬃毛刷…1隻
鋼筋…1支	秤量紙…1 疊
電鑽…1支	封口袋…10袋
保鮮膜…1 捆	電動線鋸機…1架
報紙…10張	解剖顯微鏡…1架
封箱膠帶···數捆	數位攝影機…1台
三、數據分析:	
電腦…1部	
軟體(EXCEL、PHOTOIMPACT)…各一套	

參、研究設備及器材

肆、研究過程及方法

一、研究地區及採樣點環境介紹:

(一)研究地點環境介紹:

桃園海岸線總長約 39 公里,屬砂質海岸,桃園海岸冬季東北季風強烈,造成風浪侵蝕海岸,具明顯之夏淤冬刷現象。

觀音草潔海岸位於老街溪及大堀溪之間,海岸分布沙灘,海岸線平直,此區海岸在 1904-2001年,海岸線侵蝕後退達 20-280 公尺。此段海岸的沙丘在 1978-1994 年間也向內陸後 退 30-160 公尺(楊美萍 2004),雖政府近年來在此施設編籬定砂工,但砂丘規模已不復往常盛 況(經濟部 水利署)。取樣點位置(12 管)及附近景觀如圖 4-1 所示。

圖 4-1 採樣點附近環境及取樣位置示意圖

(二)採樣方式及目的介紹:

1.採樣點位置選定原因:

本研究採樣位置在一平坦灘地上,兩側有小溪入海。取樣時間為 2010 年 1 月 11 日, 距離沙丘底部約 40 公尺至 65 公尺處打管取樣,取樣點地圖如圖 4-2 所示。

選定此採樣點位置的原因是依據草潔地區海灘沉積物分析(48 屆北二區科學展覽),發 現貝殼砂分布位置代表著海浪營力較大區域,主要分布在距離沙丘底部 30 至 60 公尺處, 故選定此區域垂直打管取沉積物分析粒度及顯微鏡觀察,藉此了解此海灘區域之營力變化 情況。

圖 4-2 草漯海灘採樣點位置圖

2.採樣方式及目的

(1)採樣方式(如圖 4-3):

本次採樣打管位置距沙丘底部約40公尺處,以 東西、南北方向每間隔5公尺向下垂直打管取樣12 管,深度30至84公分不等,取樣點分布如圖4-3所 示。

(2)「由」字採樣原因:

由圖 4-3,採樣點 1 至 9 管分布成正方形,方便 層位對比、繪製立體圖。10 至 12 管延伸向海方向, 可與管 2、管 5、管 8 做比較,藉由層面剖面圖,可 推知沉積層厚度分布趨勢。並由顯微鏡下觀察沉積物 比對了解岸邊沉積物與距離岸邊沉積物的不同。

圖 4-3 採樣點分布位置示意圖

(三)分析篩網選用原則

依據先前研究(2001 石再添)研究報告指出,草漯海灘沉積物粒徑約 0.5mm 到 0.125mm 範 圍間。故本研究選定 0.25mm(粒徑介於中間)及 0.125mm 兩種孔徑之篩網,藉此分析各層粒度 變化趨勢,以了解此區營力隨時間變化。

二、實驗原理:

(一)海灘區域受潮流之營力分布:

當海浪到達岸邊,受海水變淺影響,波形改變,產生破浪,挖蝕時海床。破浪帶以內, 水流高速前衝,而後減弱,稱為衝浪帶。衝浪帶最靠陸地區域水淺,水流流速快,海浪夾帶 沉積物向上潑濺,侵蝕力強烈,稱為掃浪帶(何春蓀 普通地質學),如圖 4-4。掃浪帶區域營力 大,粗顆粒沉積物含量較高,故沙灘常出現貝殼砂集中某些區域之情況,屬掃浪帶特徵。

圖 4-4 破浪帶、衝浪帶、掃浪帶示意圖(摘自:普通地質學 376頁)

(二)海灘沉積物內含物質:

礦物風化的難易與其在岩漿,中 結晶先後順序相反,包溫系列列出火 成岩結晶之順序(圖 4-5),其中越早結 晶的礦物越易風化,如橄欖石、輝石 等。越晚結晶之礦物越不易風化,如 石英等,故岩石經歷長時間風化,故 陸地上風化最後堆積於海邊的沙便 以石英爲主,其次是長石與雲母(陳 汝勤、莊文星 岩石學)。且陸地上第 層風化生成的沙,常見氧化紅土沾黏 其上,形成黃色沙灘。

圖 4-5 包溫系列火成岩結晶順序及風化難易度示 意圖(摘自:岩石學 140頁)

二、研究方法及過程:

實驗流程區分為採管前準備工作及採管過程、分層取樣並裝袋、沉積物過篩並秤重、顯 微鏡下觀察沉積物、沉積物分層分析及成因探討,如圖 4-6 所示。

圖 4-6 研究流程

(一) 採管前準備工作及採管過程(參見圖 4-7):

1.將 PVC 管兩側鑽孔:將 PVC 管其中一端的兩側於適當位置利用電鑽穿孔。

2.將鋼筋穿過 PVC 管兩側孔:確認鋼筋能否順利穿過 PVC 管兩側孔。

3.將 PVC 管垂直敲入沙灘:於選定採樣點位置,將 PVC 管,利用鐵鎚垂直敲入沙灘。

4.穿過鋼筋,用力抽起 PVC 管:將鋼筋穿過兩孔,兩人手握 PVC 管兩側鋼筋,同時向上施力,抽出沉積物。

5.將多餘 PVC 管鋸斷:將 PVC 管取樣上方無沉積物之部分鋸斷。

6.將 PVC 管兩端封口,帶回實驗室:利用保鮮膜、膠帶先將 PVC 管取樣下方處封口,再利 用報紙將 PVC 管取樣上方處壓實沉積物後封口。

圖 4-7 步驟一: 採管前準備工作及採管過程圖

(二)分層取樣並裝袋(參見圖 4-8)

1.將 PVC 管垂直剖開:利用電動線鋸機將 PVC 管垂直剖開。

- 2.每2公分厚度畫出分隔線:每2公分為單位,標示沉積物編號。若取樣位置在第1點, 表層0至2公分編號為1-1、離表層2至4公分編號為1-2,依此類推。
- 3.觀察並記錄各管沉積物分層狀況:以數位相機拍下各管分層狀況,並將各管中如貝殼砂 多等特殊層位紀錄於紀錄紙上。
- 4.分層取樣並編號、裝袋:依據沉積物分層編號,分別取出沉積物樣本,並將沉積物分別 裝袋,且在袋上貼上沉積物編號樣本號碼。

圖 4-8 步驟二:分層取樣並裝袋流程圖

(三)沉積物過篩並秤重(參見圖 4-9):

- 1.將樣本沙放置鍋爐上炒乾:將樣本放入鍋中加熱,去除水分,放入標示編號袋中製成樣本。
- 2. 樣本沙量取總重並記錄:將沉積物取出以電子秤秤量總重,紀錄於紀錄紙上。
- 3.過篩並秤量各篩沉積物重並記錄:將樣本沉積物倒入篩網(孔徑 0.25mm 及 0.125mm 組合 篩網)中過篩,並分別秤取孔徑 0.25mm、0.125mm 篩網上沉積物及剩餘沉積物重量,紀錄 於紀錄紙上。若測重誤差大於 3%,樣本則重新測量。
- 4.將樣本各篩網沉積物分袋包裝保管:將秤量完之沉積物依粒徑大小分袋包裝,第1-1袋沉 積物孔徑大於0.25mm標示為1-1-1,孔徑0.25mm~0.125mm標示為1-1-2,孔徑小於0.125mm 標示為1-1-3,依此類推。

圖 4-9 步驟三:沉積物過篩並秤重流程圖

(四)顯微鏡下觀察沉積物(參見圖 4-10):

- 1.利用解剖顯微鏡觀察各層沉積物:將孔徑大於 0.25mm、0.25~0.125mm 和小於 0.125mm 的沉積物放置培養皿中利用解剖顯微鏡分別觀察之。
- 2.利用數位相機拍下各層沉積物:主要以拍攝各層孔徑大於 0.25mm 和小於 0.125mm 的沉 積物特徵為主,及若干孔徑 0.25~0.125mm 之沉積物。
- 3.紀錄各層沉積物特徵:將顯微鏡下觀察到的各層特徵記錄下來。
- 4.比對各樣本沉積物特徵:比對各樣本所觀察到沉積物特徵,觀察各管分層沈積物異同。

圖 4-10 步驟四: 顯微鏡下觀察沉積物流程圖

(五)沉積物分層分析及成因探討(參見圖 4-11):

- 將樣本過篩各層重量輸入表格,製成柱狀圖進行各管層位分析:將各層重量輸入 excel 表格中,利用 excel 軟體功能,計算出各粒徑沉積物之重量百分比,測重誤差等。並繪製 成各管孔徑大於 0.25mm 和孔徑小於 0.125mm 的橫向柱狀圖,藉此了解各管沉積物粒徑 變化。
- 2.結合沉積物剖面觀察資料,找出各層層面深度分佈:利用孔徑大於 0.25mm 的柱狀圖, 比對沉積物剖面觀察資料和孔徑小於 0.125mm 的柱狀圖找出各層面的深度分佈。
- 3.將各管層面深度,輸入表格。繪製層面立體圖及等深度圖:將各管層面深度資料輸入表格,資料不足處以內插法補足18個位置,並以顏色區分之。再以此18個位置繪製層面立體圖及等深度圖。
- 4.配合沉積物特徵判別,找出各層營力變化之原因:利用立體圖、等深度圖配合沉積物特 徵判斷,找出各層營力變化原因。

圖 4-11 步驟五:沉積物分層分析及成因探討流程圖

伍、研究結果

一、沉積物垂直剖面觀察及各層粒度分析(請參照表 5-1):

(一)沉積物垂直剖面觀察

採管(12 管)剖開後觀察沉積物分布狀況,如下表 5-1 所示。可見各管中有許多層中內含貝 殼砂及貝殼,如表中標示。除此之外第 2 管編號 2-33 至 2-42 及,第 12 管 12-26 至 12-29 可見 膠結良好之泥質層。第二管 2-30 至 2-32 內含黃色石塊。 (二)各管分層粒度分布:

本研究採樣 12 管,採樣深度由 30 公分(第 1 管)至 84 公分(第 2 管)不等。分布位置請參見 肆採樣方式。本次採管 12 管中,粗顆粒(粒徑大於 0.25mm)的重量百分比最多達 79.9%(編號 2-17),粗顆粒(粒徑大於 0.25mm)的重量百分比最少 10.0%(編號 12-28)。

表 5-1(a) 沉積物垂直剖面觀察及各層粒徑分布記錄表

表 5-1(b) 沉積物垂直剖面觀察及各層粒徑分布記錄表

表 5-1(c) 沉積物垂直剖面觀察及各層粒徑分布記錄表

表 5-1(d) 沉積物垂直剖面觀察及各層粒徑分布記錄表

表 5-1(e) 沉積物垂直剖面觀察及各層粒徑分布記錄表

表 5-1(f) 沉積物垂直剖面觀察及各層粒徑分布記錄表

●註1:粗顆粒粒徑大於0.25 mm -、中顆粒-粒徑0.25 mm -0.125 mm、細顆粒-粒徑小於0.125 mm ●註2:每個樣本沉積物厚度2公分

二、沉積物分層與立體層面圖繪製

(一)依據粒度變化趨勢將沉積物分層:

依據粒度隨深度變化趨勢比對各管相對層位(請參見表 5-1),共區分六層。分層依據如表 5-2。

層位	深度分布	分層依據標準	代表顏色
第一層	0到12公分	表層向下第一個粗顆粒相對低點,細顆粒相對高 點,全符合	
第二層	6到18公分	粗顆粒相對高點,細顆粒相對低點,獨立高點。除 第1管、第3管、第11管其餘符合。	
第三層	18 到 34 公分	粗顆粒相對特高點,細顆粒相對低點,下方層有侵 蝕不連續面,除第5管、第11管、第12管其餘符 合。	
第四層	22 到 54 公分	粗顆粒相對高點,細顆粒相對低點,全符合,缺第 1 管深度資料	
第五層	40到68公分	粗顆粒相對特低點,細顆粒相對高點,全符合,缺 第1管深、第7管、第9管度資料	
第六層	46 到 82 公分	粗顆粒相對低點,細顆粒相對特高點,正常值2 倍以上,僅有第2、3、11、12管有達到此層深度, 全符合	

表 5-2 各管沉積物分層依據表

(二)利用分層深度資料繪製立體圖及等深線圖:

將各層深度依據各管相對位置填入 office excel 表格中,若有數據不足者用內插法推得其深度數值,製成立體層面圖及等深線圖,如表 5-3 所示。

表 5-3(a) 各層深度表(含立體層面圖及等深線圖)

表 5-3(b) 各層深度表(含立體層面圖及等深線圖)

表 5-3(c) 各層深度表(含立體層面圖及等深線圖)

三、顯微鏡下沉積物觀察:

(一)各粒徑下沉積物組成:

觀察顯微鏡下 76 個樣本粗、中、細顆粒沉積物, 觀察如表 5-4 所示。

粒徑	圖示		內含物質說明(依據數量排列)			
粗顆粒 粒徑大於 0.25mm	夏若確属 生物激離 石英碎属	編號 12-21	 石英碎屑:石英碎屑多,有時出現有結 晶的石英顆粒 生物殼體:可見貝類碎屑或完整殼體, 內含螺類、苔蘚生物殼體、有孔蟲殼體 等 頁岩碎屑:數量較少,表面可見雲母碎 片 			
中顆粒 粒徑 0.25-0.125mm	日本作用	1-1	 1.石英碎屑:多呈現裂面(貝狀斷口) 2.頁岩碎屑:多呈現片狀到筆狀 3.生物殼體碎屑:少見,有時可見有孔蟲殼 體 			
細顆粒 粒徑小於 0.125mm	五英華居 百姓帝國 百者帝國	3-21	 1.石英碎屑:多呈短柱狀,且表面反射度 低,可能為風化造成 2.頁岩碎屑:多呈現粒狀到片狀,風化產物 3.生物殼體碎屑:少見,偶而有碎片出現 			

表 5-4 顯微鏡下各粒徑沉積物

(二)特殊沉積物觀察

特殊層位可見紅土沉積物、殼體碎屑、泥質沉積物、石塊及完整貝殼殼體。如表 5-5 所示。

表 5-5(a) 特殊沉積物表

沉積物	紅土沉積物	泥質沉積物(細粒)	石塊	貝殼碎屑
編號	2-36	2-42	2-30到2-32	4-13
圖示	Titat		石塊	
說明	主要分布於第2管	主要分布於 2-41、	公本於) 20 至) 2)	各層均有。大型的碎
	2-32至2-36間	2-42;12-26至12-29	2-32 <u>+ 2-32</u>	屑,主要分布於淺層

			· · · · · · · · · · · · · · · · · · ·	
沉積物	苔蘚動物殼體	苔蘚動物殼體 螺類殼體		珊瑚碎屑
編號	12-29	12-1	12-40	12-9
圖示				
說明	較少出現,深層較常 出現,且管 11、管 12各層出現較多	較少出現,較常出 現在淺層區域	主要出現於較深層	少有出現

表 5-5(b) 特殊沉積物表

(三)特殊沉積物分布狀況

在顯微鏡下觀察(a)紅土沉積物、(b)貝殻碎屑、(c)苔蘚動物殼體、(d)螺類殼體、(e)有孔蟲 殼體、(f)泥質沉積物、(p)針狀生物殼體等特殊沉積物,並將特殊沉積物於各管分布位置,填 入表 5-6 中。其中紅土沉積物可能代表陸地帶來的沉積物;而貝殼碎屑、苔蘚動物殼體、螺 類殼體、有孔蟲殼體、針狀生物殼體應為海相沉積。發現如下:

- 紅土沉積物分布:紅土沉積物主要分布於距沙丘底部 40 公尺(第一排,第1、2、3 管)及 50 至 55 公尺(第三排、第四排,第7、8、9、10 管) 區域,各管均有。而距沙丘底部約 45 公尺(第二排,第4、5、6 管)及 60 至 65 公尺(第11、12 管),則較少紅土分布。其中比較 特殊的是第2 管底部,深度約超過 60 公分處,出現大量紅土沉積物,可能代表來自陸地 沉積物堆積。
- 泥質沉積物分布:觀察顯微鏡下第2管、第3管、第11管及第12管底層泥質層內含物, 發現第2、3管內沉積物以石英及頁岩碎屑為主;第11、12管則遍布海相沉積物,推測可 能近陸第2、3底部泥質層為陸地沉積,第11、12管底部為海洋沉積。
- 1. 貝殼碎屑的分布:幾乎每一管沉積物均有貝殼碎屑分布,可能海岸沉積區貝殼碎屑含量 多,不論海浪、風都可能帶來貝殼碎屑沉積於地層中,故分布多。
- 海相沉積物-c 苔蘚動物殼體、d 螺類殼體、e 有孔蟲殼體:以 12 管比較,除第 1、2、3、6 管分布較少外,其餘各管常見。可發現近陸9 管相較於遠陸地的第 10、11、12 管少,其 中近陸9 管較深處有出現較多海相沉積物之現象。
- 5. 針狀生物殼體:前9管分布較少,但第5、6管底部常見。但第10、11、12管則出現較多, 且底層較常出現。由其分佈狀況推斷此針狀殼體應為海洋生物殼體,但為何種類之生物, 化石圖鑑(北十條考察路線)中並無標列。

編號	第一管(註 5)	第二管	第三管	第四管	第五管	第六管
1	(a)+c+*p*(註	(a)	(a)+b	*p*+(f)	(a)+b	b
2	b	b+c+*p*	b+d	c+(f)	b	b
3	b+c	(a)+c	(a)+b	b+(f)	b+d	b
4	b	b+c+*p*	b+d	b	b+e	b+c
5	b		(a)+b+c+*p*	(a)+b	(a)+d	С
6	b	(a)+b	b+c	(a)+b	с	b+c
7	b	с	b+e	b+c	b+c	(a)+b
8	b+d	b	b+c	С		b
9	(a)+b	b+e	(a)	b+c+d+e	(a)	b
10	b+c	b+d	(a)+b	b+c	b+*p*	b+*p*
11	с	(a)+b	b	b+d	b+c	b
12	b+c	b+d	(a)+b	b+c	b+c	b+d
13	(a)+b	b	b	b+c	*p*	b+e
14	(a)+b	b+d+*p*	b+e	с	b+c	b
15		(a)	(a)+b	b	c+d	b+c
16		b	b	c+d	b+*p*	b+d
17		(a)+b	(a)+b+c	b	b+*p*	b
18		b	b	b+c	b+d	b+c+*p*
19			b	b+c+e	b+d	b+c
20		b+c+d+e	b+d	b+c+d	b+c	b+*p*
21		b	(a)+b+c+e	b+d+*p*	b	d
22		b	(a)+b	b+c	b+c+*p*	b+c
23		b	(a)+b	b	b+d+*p*	b+c
24		b	(a)+b+e	b+c	b+c+*p*	(a)+b+c+*p*
25		c+d+e	b+c+d	b	b+c+d+*p*	(a)+b+c+d
26		b+c	b	b+c	b+c+d	(a)+b+c+*p*
27		b	(a)+b	b+c	b+c	(a)+b+c+*p*
28		b+c	b+(f)	b+d	b+c+*p*	(a)+*p*
29		b+c	(a)+e	b	b+c	b+*p*
30		(a)+d+e	b+e	b+c	b+c	b+d
31		(a)+b	b+c	b	b+*p*	(a)+b
32		(a)+c+(f)	(a)+e	С	b+c+d	c+*p*
33		(a)+c+(f)	(a)+b+(f)	С	b+d	(a)+c
34		(a)+c+e+(f)	(a)+c+(f)	b+c+e	b+d	(a)+b+c+*p*
35		(a)+d+(f)	(a)+(f)		b+c+d	(a)+b+c+d
36		(a)+c+(f)	(a)+(f)		c+d	
37		(a)+d+(f)	b+(f)+*p*		b+c	
38		(a)+(f)				
39		(a)+b+c+(f)				
40		(a)+b+c+d				
41		(a)+b+(f)				
42		(a)+b+c				

表 5-6(a) 特殊沉積物分布位置表(前 6 管)

編號	第七管	第八管	第九管	第十管	第十一管	第十二管
1	(a)+b+c	(a)+b+c	b+d	(a)+b	(a)+b	b
2	(a)+c	d	b+e	(a)+c	c+d	b+c+e+*p*
3	(a)	b	b+*p*	b+c	(a)+c	b
4	(a)+(f)	(a)+b	(a)+b+*p*	b	b	b+c+d
5	(a)	(a)+b+c	(a)+b+c	b	b	(a)+b+c+d
6	(a)+b+e	b	b	b+*p*	b+*p*	b+c
7	(a)+b+e+*p*	(a)+b	b+e	b+c+d+*p*	(a)+b	(a)+b+c
8	(a)+b	(a)+b	(a)+b+c	(a)+b+c	(a)+b+c+d+*p*	b+c
9	(a)+b	(a)+b+d	(a)+b+c	(a)+b+c		b+c+e+*p*
10	b	(a)+b	b+c	b+c+d	d+*p*	b+c
11	(a)+b	(a)+b	(a)+c	b+c	b+*p*	b+c+*p*
12	b	(a)+b	b+c+d	b+c	c+*p*	b+c
13	(a)+b	e	(a)+b+c	b+c		b+c
14	b	(a)+b+c+*p*	(a)+b	(a)+c	b+c+*p*	b+c
15	(a)	b+c	(a)+c+*p*	c+e	b+c+*p*	b+c+*p*
16	b+*p*	(a)+b	b+c	(a)+*p*	b+d+*p*	b+c+d
17	b+c	b+c+d	b+c	b		
18		b+c	b+c	b+c	(a)+b+c+*p*	b+c+s
19		с	(a)	b+c	b+c+d	b+c
20		b+c	b+c+e	(a)+b+c	b+c+e	b+c+*p*
21		с	(a)+b+c	(a)+b	b+d	b+c+d
22		(a)+b	b+c	b+c	b+c+*p*	(a)+b
23		b+c+d	b+c	b+c+d+*p*	b+c+d+e+*p*	b+c
24		b+c+d	(a)+b+c+d+e	(a)+b+e	b+c+d	b+c
25		b+c	b+c+d	b+c+*p*		b+c+*p*
26		b+c+d	b+c	b+c	(a)+b+c+*p*	b+c
27		b+c	b+d+e	b+c+*p*	b+c+d	b+c
28		b+c+d+*p*		(a)+c	b+c+d+*p*	c+d
29		b+c+*p*		(a)+b+e+*p*		b+c+e
30				(a)+b+c+s		
31				b+e+*p*		

表 5-6(b) 特殊沉積物分布位置表(後 6 管)

●註 5:表格灰底為各管採樣深度區域;紅、橙、黃、綠、藍、紫為依據沉積物粒度變化趨勢訂出之各管層面位置。

●註6:

(a)-紅土沉積物;b-貝殼碎屑;c-苔蘚動物殼體;d-螺類殼體;e-有孔蟲殼體;

(f)-泥質沉積物(石英、頁岩碎屑為主);*p*-針狀生物殼體;

s-有點像石英或貝殼碎屑,裡面有一點一點的

括號(a)(f)代表來自陸上沉積物;*p*代表來自海洋沉積物

陸、討論

一、沉積物垂直剖面觀察及各層粒度分析之討論

(一)沉積物垂直剖面觀察:

沉積物中貝殼砂含量較多且集中區域,可能爲營力較大區域,代表掃浪帶(48 屆北二區科 學展覽)。分析各管貝殼砂層分布位置,可見近陸區域貝殼砂層較集中且明顯顆粒較大(第 1 管至第 6 管),距陸較遠沉積物(第 7 管至 12 管)貝殼砂碎屑較小且分散。可能代表掃浪帶區域 主要位於第 1 管至第 6 管打管位置(距沙丘底部約 40 至 45 公尺處),如圖 6-1 所示。

圖 6-1 貝殼砂層集中度比較

(二)取樣各層沉積物粒度水平與垂直方向變化及比較:

1.各管表層沉積物粗細顆粒含量變化-水平方向變化:

依據粗(粒徑大於 0.25mm)、細(粒徑小於 0.125mm)顆粒含量比較,表面 15 層樣本(30 公分內),粗顆粒含量超過 50%的樣本數量及細顆粒含量低於 1%的樣本數量,如表 6-1 所示。

假設粗顆粒含量較多、細顆粒含量較少,代表沉積時營力較大。則由此可推知沉積物表 層營力較大區域為為最接近沙丘底部的管1至管2區域(距沙丘底部約40公尺處),管7至管 8為營力最小的區域(距沙丘底部約50公尺處),而管11(距沙丘底部約60公尺處)、管12處(距 沙丘底部約65公尺處)營力又增強。故推論管1、管2區域可能為掃浪帶、管11、管12處可 能為破浪帶(請參考圖4-4)。且由粗顆粒含量超過50%數量圖(表6-1右),可發現營力大區域主 要分布於東側海灘區,可能與此區東北季風強烈有關。

管號	1	2	3	4	5	6	7	8	9	10	11	12	粗顆粒超過 50% 數量分布圖
粗顆粒 超過 50% 數量	11	9	6	8	7	2	2	3	7	4	7	7	北← 向海方向
細顆粒 低於 1% 數量	12	13	12	10	9	9	8	5	6	8	11	11	9 8 6 5 4 10-12 8-10 10-12 8-10 10-5 4 10-6 8-10 10-6 8-10 10-6 10-12 8-10 10-6 10-12 8-10 10-6 10-12 8-10 10-2 1

表 6-1 表層 15 層樣本,粗顆粒含量超過 50% 及細顆粒含量低於 1% 的樣本數量

2.各管沉積物隨深度變化比較-垂直方向變化:(1)沉積物粒度變化連續與不連續代表之意義:

比較第2管、第8管、第12管(1直線上3管)沉積物粗顆粒含量隨深度變化,可見許多 不連續現象,如圖6-2所示,可能代表侵蝕作用或突然沉積環境之改變。比較三管沉積物, 可看到較靠陸地第2管不連續狀況,明顯較第8管多,且第8管又較12管多。可能第2管位 置營力變化大所造成,與掃浪帶情況相符。而桃園海岸有下淤冬刷現象由第8管沉積物粒度 變化也可說明,如圖6-2由下而上堆積,侵蝕後沉積較粗顆粒而漸細,而後又再次侵蝕、堆 積,具週期性變化,可能代表年際間風浪營力之變化。

圖 6-2 第 2 管、第 8 管、第 12 管沉積物粒度比較

(2)粒度大小隨深度變化:

比較打管深度較深的第2管、第3管、第6管、第10管、第11管、第12管(請參見實驗 結果),均有隨深度變淺沉積物粗顆粒含量增加的趨勢,代表沉積當時營力隨時間增強。若近 岸邊沉積物粗顆粒含量的高點,代表營力較大的掃浪帶區域,沉積當時營力隨時間增強,可 能為掃浪帶區域向陸地移動,意味風浪隨時間有增強之趨勢或海面有上升的現象,海岸線也 因此可能向陸地退縮。

(3)沉積物粗顆粒含量特少、細顆粒含量特多的層:

2-41、2-42、3-35 至 37、11-24、11-25、12-26 至 29 為粗顆粒少、細顆粒多之層,由顯微 鏡下觀察這些層的沉積物,可發現第 2 管、第 3 管(距沙丘近)的粗顆粒沉積物中少見生物殼體 碎屑,多石英顆粒、頁岩碎屑(2-32 至 2-42,請參見表 5-6),甚至出現紅土(2-30 至 2-42)。而第 11 管、第 12 管(距沙丘遠)則多生物殼體碎屑(圖 6-3),代表此兩區成因不同。第 2 管-、第 3 管可能為陸上河水沖刷形成,由於泥質沉積,可能為水池沉積物。而第 11 管、第 12 管則應 為海浪堆積形成。

圖 6-3 特殊層內含物

二、沉積物分層與立體層面圖之討論:

(一)層面地形變化-流水作用:

各層層面代表著沉積當時的地形。分析五層沉積層發現較深層的第五層、第四層、第三 層,第2、3、6管位置地形明顯凹陷,達20公分,推測原因可能為採樣區原先地層中有流水 通過,形成凹陷地形,再逐漸堆積向上,形成目前狀況。

由沉積物觀察中也可發現 2-30 至 32 中可見大顆黃色礫石,與現在外灘上河流流經地區 的礫石成分一致,見圖 6-4。且顯微鏡下觀察沉積物組成粗顆粒部分以石英粒、頁岩碎屑為主, 少見海洋生物殼體碎屑,有時甚至可見陸地上紅土(見圖 6-3),可推論第 2、3、6 管位置原先 可能位於陸上流水流經或水灘區。依據先前研究也提出此區海岸線有退後之情況(楊美萍 2004),也支持此推論的可能性。加上觀察此區海灘上河道位置隨季風有變化之趨勢,增加流 水營力影響採樣區沉積環境的可能性。

圖 6-4 海灘上的流水水道

(二)底層泥質層代表意義:

第2管深度超過80公分(編號41以上)、第3管深度超68公分(編號35以上)、第11管深 度超過46公分(編號24以上)、第12管深度超過50公分(編號26以上),都出現粗顆粒含量低, 細顆粒含量特高泥質層,且與上方沉積物不連續,不連續交界可能代表原始基底沉積物受之 後海浪侵蝕形成之侵蝕面。

但依據顯微鏡下觀察結果,見討論二-(二)-2-(3)。兩區底部沉積物沉積環境也有所不同, 第2管、第3管底部可能為陸上流水堆積。第11管、第12管則為海相沉積層。

且底部泥質層以上有明顯沉積物粒度不連續,可能為侵蝕造成。以第2管為例(見表 5-1a 第2管柱狀圖),泥質層之上可見粗顆粒含量隨深度越淺粗顆粒含量有越多的情況,這可能也 代表著此區沉積環境營力逐漸增加。

三、實驗研究檢討與建議

(一)沉積物分層依據應採更多證據,使層面定位更具可信度:

本研究使用沉積物分層2公分厚度取樣,經粒度分析後,繪出各層粗顆粒沉積物(粒徑大於0.25mm)含量比例隨深度變化趨勢圖,並以細顆粒沉積物(粒徑小於0.125mm)含量比例作為輔助辨別層位的方法。礙於實驗器材之限制,僅能做此簡單之判斷分析,仍有不全之處。若要精確對出沉積物層面位置,建議應使用其他化學成分分析、沉積物組成分析等方法,作為證據,如此將較完備。

(二)採樣點應更多更密集,定位更準確,減低誤差:

本研究取樣 12 點,雖 12 管沉積物層面深度繪製層面,但因取樣間隔距離 5 公尺過大, 繪製圖形可能因一至二點層面位置誤差影響結果,建議取樣點間隔距離應儘量縮小,且增加 取樣點數量。且本研究定位方式是利用羅盤傾斜儀及皮尺,誤差大。若能使用雷射定位會更 準確,以減少誤差。

柒、結論

- 一、本研究採樣 12 管,採樣深度由 30 公分至 84 公分不等。粗顆粒(粒徑大於 0.25mm)的重量 百分比最多達 79.9%,粗顆粒(粒徑大於 0.25mm)的重量百分比最少 10.0%。
- 二、本研究區域距沙丘底部 40 至 65 公尺處,表層 30 公分沉積物,粗顆粒含量較高區域出現 在第 1、2、3 管位置(距沙丘底部約 40 公尺處),及第 11、12 管,可能分別為掃浪帶及破 浪帶位置。
- 三、由垂直沉積物粒度分析發現,較接近沙丘底部區域沉積物粒度不連續狀況明顯,且沉積物粒度較粗,顯微鏡下觀察出現較多紅土、石英、頁岩碎屑等,沉積物可能為陸地上沖刷而來;遠離沙丘底部區域粒度不連續狀況較不明顯,且沉積物粒度相對較細,顯微鏡下觀察出現較多苔蘚動物殼體、貝殼、有孔蟲殼體碎屑,沉積物可能由海流、海浪帶來。
- 四、依據沉積層面五層及顯微鏡下觀察內含物分析,此研究區域近陸位置可能有水流流經, 爲陸相沉積,而後可能因風浪侵蝕,海岸線有向內陸退縮之現象。

捌、參考資料及其他

一、圖書資料:

陳培源 野外及礦業地質學 民 83 正中書局 213-217 頁, 233-242 頁

楊美萍(民93)。桃園縣海岸地形變遷之研究·國立臺灣大學地理環境資源研究所碩士論文, 未出版,台北市。

陳汝勤、莊文星(民 76)。岩石學(175-179 頁)。臺北市: 聨經出版社。

何春蓀 (民 82 三版)。普通地質學 海岸的地質作用(371-392 頁)。臺北市:五南出版社

石再添 (民 90)。地形(30-31 頁) 國立臺灣師範大學地理學系

二、網路資料:

經濟部中央氣象局全球資訊網 <u>http://www.cwb.gov.tw/</u> 經濟部水利署網頁 http://www.wra.gov.tw

【評語】040509

題材有趣且牽涉不同面向,及分析技巧和方法,有四位同學 團隊合作,工作量大。結果並不 "意外",但能延伸學長姐 的方法,惟因此而原創性稍弱,工作紮實,邏輯清楚。若能 有時間、精力,可考慮同樣方法做其他地區沙岸的分析做為 對照,可以更有啟發,而且對台灣海岸變化得到更全面的瞭 解。