中華民國 第50 屆中小學科學展覽會作品說明書

高中組 物理科

040104

又長高了嗎?-毛細管傾斜前後液柱高度變化的討論

學校名稱:國立羅東高級中學

作者:

高二 李劭安

高二 黄玟娟

高二 黄怡萍

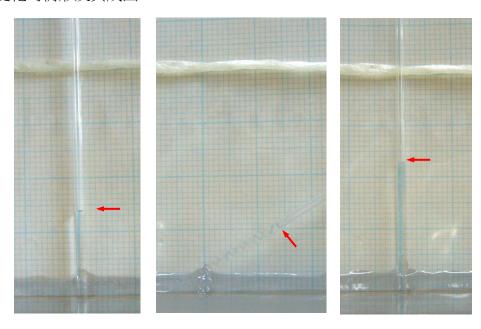
指導老師:

鍾佩玲

邱銘鴻

關鍵詞:毛細現象、接觸角

摘要


在高中教科書中,均介紹毛細管鉛直插入水中後水柱上升的高度公式為 $h=\frac{2\gamma\cos\alpha}{\rho gr}$ 。經實驗觀察,我們發現毛細管傾斜前後管內水柱高度會有改變,為了解水柱高度改變的原因,於是展開了研究。

研究結果:

- 1.經與毛細管傾斜時的管內水柱總長作比較,發現水柱的增高與管壁潤濕程度有關。
- 2.傾斜時,因管壁正向力的支撐,可使管內水柱長增加,但水柱液面處表面張力的總拉抬 力量沒有改變。
- 3.各出版社的教科書中,均指液體的表面張力為定值,因此我們原以為毛細管傾斜前後, 因管壁潤濕使接觸角減小,而使毛細管傾斜回正後的水柱高度增加。但由我們的實驗結果分析,發現接觸角幾乎不變,因此改為考慮是表面張力或水的密度值的改變。
- 4.另外,我們有個意外收穫:在許多書籍、文獻或我們參考的歷屆科展研究報告中,大家均指將毛細管壁充分潤濕可使接觸角為 0° ,但由我們的實驗結果可發現,這是不可能的

壹、研究動機:

在喝養樂多時,偶然注意到纖細的吸管一插入養樂多中,管內的液面便會上升,而在稍加搖晃、傾斜後,液面竟又上升了!我們知道這個現象是物理課中學習到的毛細現象,但課本中僅介紹當毛細管鉛直插入水中時,水柱上升的公式(原理、公式可參考附錄),而沒有提到毛細管傾斜前後,水柱會更為上升的現象,因此我們想進一步作實驗,討論毛細管傾斜前後水柱高度變化的情形及其成因。

(a)毛細管鉛直插入水中 (b)毛細管向右傾斜某一角度時 (c)毛細管再次回復鉛直

貳、研究目的:

- 一、探討不同傾斜角扶正後毛細管內水柱高度的變化,並找出其規律與成因。
- 二、討論毛細管中水的接觸角測量方法之改進。

參、研究設備及器材:

毛細管A及B(管徑1.00mm及0.95mm)

純水

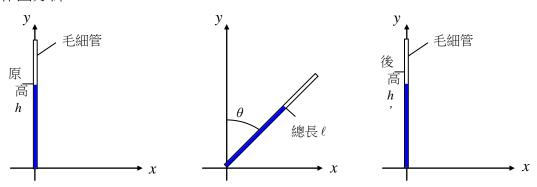
牛理食鹽水(0.9%)

方格紙

數位相機

解剖顯微鏡

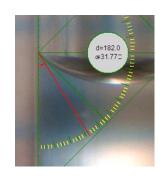
溫度計

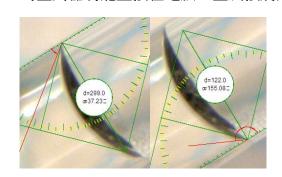

MB-Rular(角度測量軟體)

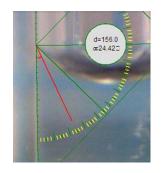
肆、研究過程或方法:

實驗一、探討不同傾斜角扶正後毛細管內水柱高度的變化,並找出其規律與成因:

因毛細管傾斜角度的微量差距難以測量,故記錄管上一點P傾斜時的座標(x,y),利用 $\tan\theta = \frac{x}{y}$ 算出毛細管的傾斜角度。

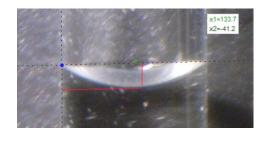

- 1. 將毛細管鉛直放入水中,待管內水面不再改變後,記錄水柱高度為h。
- 2. 將毛細管向右傾斜 θ 角,待管內水面不再改變後,記錄(x,y)值及水柱總長 ℓ 。
- 3. 扶正毛細管, 待管內水面不再改變後, 記錄傾斜扶正後水柱的高度為 h'。
- 4. 重覆上述步驟,θ 角由 1°變化至 80°左右,記錄 $h \cdot h'$ 及 ℓ 於<表一>中,並進一步 作圖分析。




實驗二、討論毛細管中水的接觸角測量方法之改進:

使用數位解剖顯微鏡拍攝不同情況之毛細管內的水面,利用角度測量軟體 MB-Rular 做下列兩種不同方法之分析,將測量所得記錄於<表二>、<表三>中。

(方法一) 利用 MB-Rular 的量角器功能直接在電腦上量測接觸角的大小,如下圖示。



(a)正插時,接觸角為 α (b)傾斜時,接觸角為 α_1 及 α_2 (左壁 α_1 、右壁 α_2) (c)回正後,接觸角為 α'

(方法二)利用 MB-Rular 的直角座標定位功能,將水面定位後,以 Excel 作圖求出彎 月面的函數式,再進一步利用微分及三角函數計算,求出接觸角的大小。

以 MB-Rular 於照片上定位後, 若經 Excel 分析得彎月面函數式為 $y=ax^2+bx+c$, 則 $\frac{dy}{dx}\bigg|_{x=0}=\cot\alpha_{\pm \frac{\mathbb{R}}{2}} \cdot \frac{dy}{dx}\bigg|_{x=500}=\cot\alpha_{\pm \frac{\mathbb{R}}{2}}$

伍、研究結果:

 $-\cdot\theta$ 由 1°~80°改變時, $h\cdot h'$ 及 ℓ 的測量結果:

(水溫 18.5℃、管徑 0.95 mm)

θ (deg)	h (mm)	h' (mm)	$\Delta h (\mathrm{mm})$	ℓ (mm)	θ (deg)	h (mm)	h' (mm)	$\Delta h (\mathrm{mm})$	ℓ (mm)
1.1	21.5	21.5	0.0	21.5	31.8	19.8	23.1	3.3	23.9
2.3	20.0	20.0	0.0	20.0	32.6	19.4	24.0	4.6	25.0
3.4	18.2	18.4	0.2	18.5	33.4	18.8	21.0	2.2	24.1
4.6	20.3	20.4	0.1	20.3	34.2	19.1	23.6	4.5	24.5
5.7	18.3	18.5	0.2	18.4	35.0	18.0	21.0	3.0	22.6
6.8	21.3	21.5	0.2	21.6	35.8	19.9	24.2	4.3	24.3
8.0	17.8	17.8	0.0	17.9	36.5	17.8	22.0	4.2	22.4
9.1	21.6	22.3	0.7	22.1	37.2	20.2	24.6	4.4	24.9
10.2	18.2	18.6	0.4	18.5	38.0	20.2	23.8	3.6	24.6
11.3	19.5	20.0	0.5	20.1	38.7	18.0	23.1	5.1	24.1
12.4	18.1	18.5	0.4	18.5	39.4	22.6	22.7	0.1	19.9
13.5	18.6	18.9	0.3	19.2	40.0	17.8	22.8	5.0	23.0
14.6	21.4	21.7	0.3	22.3	40.7	20.0	25.0	5.0	26.0
15.6	19.3	19.8	0.5	20.0	41.3	18.6	25.0	6.4	27.6
16.7	19.7	20.0	0.3	20.0	42.0	20.3	25.6	5.3	27.7
17.7	17.8	18.8	1.0	19.0	42.6	19.0	25.0	6.0	26.2
18.8	19.0	19.6	0.6	19.7	43.2	18.4	24.9	6.5	26.1
19.8	21.4	21.2	-0.2	21.3	43.8	20.0	24.7	4.7	26.7
20.8	18.5	18.8	0.3	19.4	44.4	20.0	25.1	5.1	25.3
21.8	19.0	19.5	0.5	19.9	45.0	18.0	24.1	6.1	22.7
22.8	18.2	19.6	1.4	19.7	45.6	19.8	26.0	6.2	24.8
23.7	18.2	19.4	1.2	19.8	46.1	20.8	21.8	1.0	27.5
24.7	17.9	19.1	1.2	19.6	46.7	22.0	26.8	4.8	29.7
25.6	18.5	20.6	2.1	21.2	47.2	19.1	23.6	4.5	28.4
26.6	18.4	20.7	2.3	20.9	47.7	17.0	26.9	9.9	29.0
27.5	18.0	20.0	2.0	21.0	48.7	18.0	27.2	9.2	29.1
28.4	20.0	21.2	1.2	22.4	49.2	18.5	27.0	8.5	37.7
29.2	19.9	19.2	-0.7	25.6	49.7	18.3	27.0	8.7	39.9
30.1	21.0	24.0	3.0	24.2	50.2	20.7	27.9	7.2	29.4
31.0	19.1	20.2	1.1	21.1	50.8	17.3	26.6	9.3	28.4

<表一> 毛細管以不同角度傾斜,傾斜前後的水柱高度、高度差及傾斜時的水柱總長。

(續下頁表)

(承前頁表)

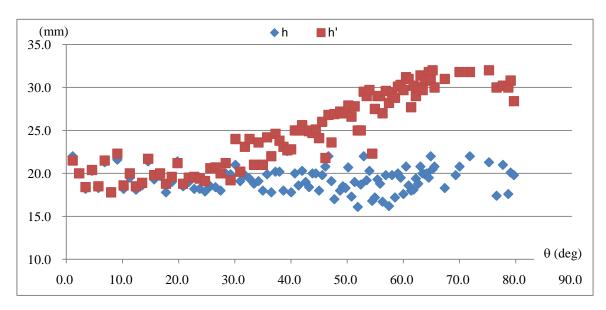
[`	予加只化
θ (deg)	h (mm)	h' (mm)	$\Delta h (\mathrm{mm})$	ℓ (mm)	θ (deg)	h (mm)	h'(mm)	$\Delta h (\text{mm})$	ℓ (mm)
51.3	19.0	27.8	8.8	30.0	65.6	20.8	30.0	9.2	29.9
51.9	16.1	25.0	8.9	28.7	67.4	18.3	31.0	12.7	51.5
52.4	18.7	25.0	6.3	26.8	69.3	19.8	35.4	15.6	51.9
53.0	22.0	29.5	7.5	32.5	70.0	20.8	31.8	11.0	59.1
53.5	19.2	29.0	9.8	33.3	71.8	22.0	31.8	9.8	48.0
54.0	20.3	29.7	9.4	33.0	75.3	21.3	32.0	10.7	75.5
54.9	17.2	27.5	10.3	29.6	76.6	17.4	30.0	12.6	73.7
55.4	19.3	29.0	9.7	33.1	77.7	21.0	30.2	9.2	95.3
55.9	18.8	29.0	10.2	35.1	78.7	17.6	30.0	12.4	93.6
56.3	16.7	27.0	10.3	31.7	79.1	20.1	30.8	10.7	85.0
56.9	19.8	29.6	9.8	37.8	79.7	19.8	28.4	8.6	91.8
57.4	16.2	28.2	12.0	34.1					
58.0	19.8	29.4	9.6	37.8					
58.5	17.2	28.8	11.6	38.3					
59.0	20.0	30.1	10.1	38.9		\		,	
59.5	19.5	30.3	10.8	39.1					
60.0	17.6	29.7	12.1	38.6					
60.5	20.8	31.2	10.4	41.2					
60.9	18.6	31.0	12.4	37.7			\ /		
61.4	18.0	27.7	9.7	39.1					
61.8	18.1	30.2	12.1	42.5			\times		
62.2	19.4	29.0	9.6	38.2					
62.7	18.8	30.0	11.2	37.7		/	/		
63.0	20.8	31.4	10.6	39.9					
63.4	20.0	29.7	9.7	53.5					
63.8	19.9	30.8	10.9	40.3					
64.2	20.0	31.0	11.0	47.3	/	/			
64.5	19.5	31.8	12.3	29.9					
64.9	22.0	30.9	8.9	30.7					
65.2	20.5	32.0	11.5	30.3					

<表一> 毛細管以不同角度傾斜,傾斜前後的水柱高度、高度差及傾斜時的水柱總長。

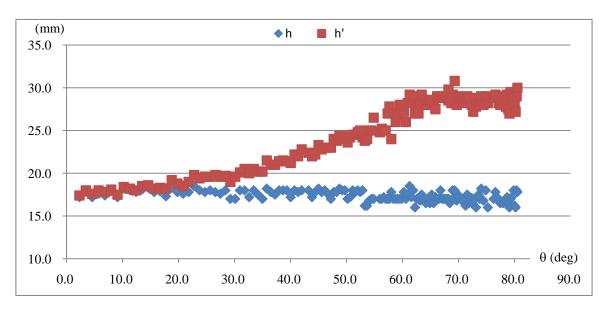
二、 θ 由 1°~80°改變時, α 、 α' 的測量值與逆推值:

θ	用量角	器測量	由 h、h'逆推		θ	用量角器測量		由 h、h'逆推	
O	α	α'	α	α'	O	α	α'	α	α'
1.1	46.2	48.0	45.4	46.6	31.8	48.4	35.3	50.8	42.5
2.3	45.6	56.0	50.3	50.3	32.6	57.7	52.5	51.7	40.0
3.4	54.1	49.7	54.5	54.0	34.2	57.0	51.0	52.4	41.1
4.6	48.8	53.1	49.6	49.4	35.0	54.3	47.4	54.9	47.9
5.7	57.1	58.9	54.2	53.8	35.8	52.0	46.4	50.5	39.4
6.8	54.6	55.9	47.1	46.6	36.5	49.1	49.1	55.4	45.4
8.0	54.7	57.4	55.4	55.4	37.2	47.9	43.2	49.8	38.2
9.1	45.9	54.9	46.4	44.6	38.0	51.1	55.0	49.8	40.5
10.2	58.0	57.5	54.5	53.6	38.7	53.6	50.1	54.9	42.5
11.3	54.2	51.2	51.5	50.3	39.4	58.3	50.5	43.8	43.5
12.4	57.6	56.8	54.7	53.8	40.0	56.9	50.2	55.4	43.3
13.5	54.6	55.3	53.6	52.9	40.7	47.3	46.0	50.3	37.0
14.6	58.6	56.1	46.9	46.1	41.3	48.8	40.4	53.6	37.0
15.6	53.8	54.0	52.0	50.8	42.0	47.6	44.3	49.6	35.2
16.7	56.6	55.2	51.0	50.3	42.6	49.8	48.9	52.6	37.0
17.7	54.7	47.2	55.4	53.1	43.2	55.5	46.9	54.0	37.3
18.8	51.9	57.0	52.6	51.3	43.8	53.8	33.0	50.3	37.9
20.8	56.8	59.4	53.8	53.1	44.4	50.7	52.7	50.3	36.7
21.8	55.4	51.2	52.6	51.5	45.0	59.3	52.3	54.9	39.7
22.8	54.4	52.6	54.5	51.3	45.6	55.4	44.4	50.8	33.9
24.7	53.5	55.2	55.1	52.4	46.1	55.5	51.8	48.4	45.9
25.6	56.7	49.4	53.8	48.9	46.7	50.8	44.3	45.4	31.2
26.6	51.9	57.7	54.0	48.6	47.2	54.8	55.7	52.4	41.1
27.5	48.0	55.5	54.9	50.3	47.7	50.1	44.3	57.1	30.8
28.4	52.0	50.4	50.3	47.4	48.7	53.8	49.3	54.9	29.7
29.2	51.5	48.8	50.5	52.2	49.2	55.5	48.8	53.8	30.4
30.1	52.1	52.5	47.9	40.0	49.7	50.4	41.7	54.2	30.4
31.0	50.7	55.7	52.4	49.8	50.2	56.6	45.1	48.6	27.0

<表二> 毛細管以不同角度傾斜,傾斜前後及傾斜時的水面與玻璃壁之接觸角測量值與逆推值。 (續下頁表)


(承前頁表)

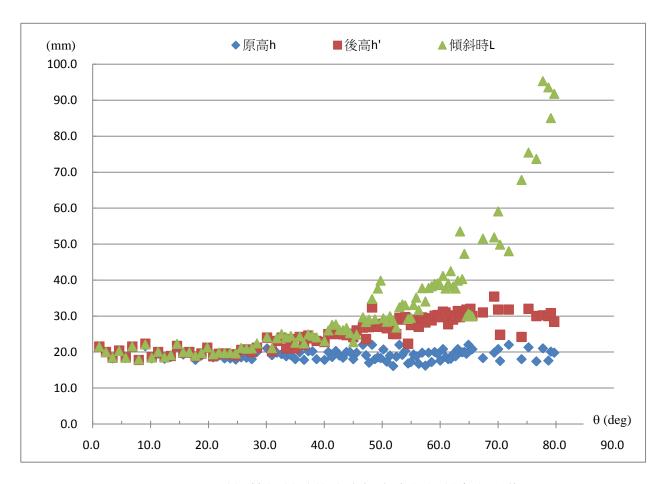
θ	用量角	器測量	由 h、h'逆推		θ	用量角器測量		由 h、h'逆推	
U	α	α'	α	α'	0	α	α'	α	α'
50.8	57.4	48.6	56.5	31.9	61.4	52.1	55.7	54.9	27.8
51.3	56.5	41.4	52.6	27.4	61.8	54.2	39.5	54.7	15.3
52.4	49.4	48.8	53.3	37.0	62.2	53.4	45.4	51.7	22.2
53.0	55.2	47.6	45.4	19.6	62.7	48.4	38.9	53.1	16.7
53.5	52.8	46.1	52.2	22.2	63.4	50.1	46.8	50.3	18.5
54.9	48.1	37.9	56.7	28.6	63.8	56.7	49.5	50.5	10.4
55.4	50.0	46.1	52.0	22.2	64.2	51.6	56.3	50.3	8.2
55.9	44.9	39.1	53.1	22.2	64.9	53.4	40.9	45.4	9.4
56.3	51.7	49.7	57.8	30.4	65.6	50.6	45.4	48.4	16.7
57.4	58.5	52.8	58.8	25.8	67.4	57.2	44.0	54.2	8.2
58.0	57.0	47.2	50.8	20.2	70.3	58.6	45.9	56.0	37.6
58.5	52.7	50.3	56.7	23.1	74.1	55.7	48.1	54.9	39.4
59.0	51.7	48.2	50.3	16.0	76.6	46.4	39.4	56.2	16.7
59.5	52.0	40.0	51.5	14.6	77.7	50.6	37.0	47.9	15.3
60.0	53.9	50.4	55.8	18.5	78.7	50.3	44.3	55.8	16.7
60.5	49.9	32.6	48.4	5.0	79.1	50.1	37.9	50.1	10.4
60.9	50.2	43.5	53.6	8.2	79.7	52.9	46.9	50.8	24.9


<表二> 毛細管以不同角度傾斜,傾斜前後及傾斜時的水面與玻璃壁之接觸角測量值與逆推值。

陸、討論:

一、不同傾斜角扶正後毛細管內液柱高度的變化與成因討論:

(圖一) 毛細管傾斜前後的水柱高度對傾斜角之關係圖



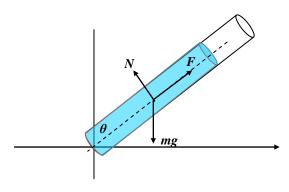
(圖二) 毛細管傾斜前後的生理食鹽水水柱高度對傾斜角之關係圖

1.不論是純水或生理食鹽水,均在小角度時無高度明顯的變化;在 20°以上時,隨傾斜角度的增加,高度明顯增加;但在大角度(約 55°以上)時,高度雖然增加,但變化量保持定值。

傾斜角 θ	0°~ 20°	20°~55°	55°~80°		
高度差 Δh	< 1 mm	1 ~ 10 mm	10 ~ 13 mm		

2.推論是因毛細管傾斜時, θ 愈大,管內水柱上升的長度愈多,致玻璃管壁潤濕層增加的比例愈多。當毛細管回復鉛直後,因為水與玻璃的交界層性質改變,使得水與玻璃的接觸角減小,因此傾斜前後的水柱高度會有差異。故進一步由圖三 $(h \cdot h' \cdot \ell)$ 對 θ 關係圖)來討論。

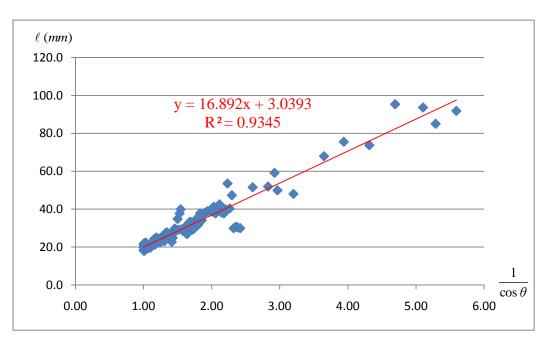
(圖三) 毛細管傾斜前後的水柱高度對傾斜角之關係圖 傾斜時的水柱總長對傾斜角之關係圖


- 3.若將毛細管傾斜時的水柱總長 *ℓ* 視為玻璃管壁被潤濕的長度,則由圖三我們可以看出:
 - (1) $\theta < 55$ °時,水柱後來的高度幾乎就是玻璃壁潤濕的長度, $h' = \ell$ 。
 - (2) $\theta > 55$ °時,水柱後來的高度小於玻璃壁潤濕的長度, $h' < \ell$,且二者的差異隨傾斜角度的增加逐漸顯著加大。

此實驗結果顯示,毛細管傾斜前後水柱高度的改變,確實是與管子傾斜時水柱總長的增加(使得玻璃壁被潤濕的程度增加)有關。

4.我們推論,毛細管傾斜再回正時,水的表面張力值不變,但管壁已潤濕,水柱液面處 因潤濕層內水分子與管壁附著力大於與水的內聚力,使得接觸角減小,而有h' > h的結果。

由圖三中, $\theta > 55$ °時的h'趨於一固定值 30mm 來計算,可知即使我們可以利用傾斜毛細管來增大潤濕層,進而使管子回正後的接觸角縮小,但接觸角也不可能為0°,在我們的實驗中, α_{\min} 應為16°。(常在一些課本或參考用書的練習題中,看到我們求毛細管中水柱的最大上升高度時,以 $\alpha = 0$ °代入 $h = \frac{2\gamma\cos\alpha}{\rho gr}$ 來計算,顯然這是不太合理的。)


5.討論傾斜時,液柱上升,管內水柱總長增加的原因:

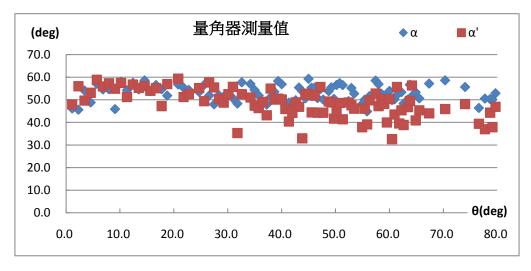
(1)如上圖所示,若假設毛細管傾斜時,水柱在液面所受的表面張力的總拉抬作用力不變(F=定值),而多出來的水柱重由管壁支撐,

$$\beta = \frac{F}{\rho \pi r^2} \cdot \ell \cdot g \cdot c \circ \theta = F \qquad \Rightarrow \ell = \frac{F}{\rho \pi r^2 g} \cdot (\frac{1}{\cos \theta})$$

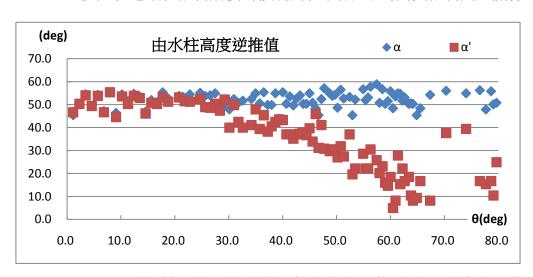
故將我們的實驗結果作 ℓ - $\frac{1}{\cos\theta}$ 關係圖,得 ℓ = 16.892 $(\frac{1}{\cos\theta})$ + 3.0393

(圖四) 毛細管傾斜時的水柱總長對傾斜角正割值之關係圖

(2)實驗誤差的討論:

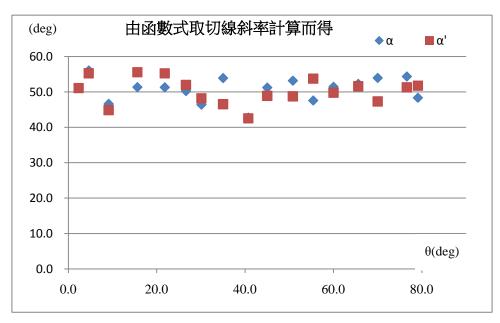

利用(式 1)計算,當 $\theta=0^\circ$ (代表毛細管鉛直插入)時的水柱高, $h_{\rm ghh}=19.93~({\rm mm})$; 而我們每次傾斜毛細管前的水柱原高平均值 $\bar{h}_{\rm fish}=19.20~({\rm mm})$,

得實驗結果的百分誤差約為 error =
$$\left| \frac{19.93-19.20}{19.20} \right| \times 100 \, (\%) = 3.80 \, (\%)$$
。


(3)因為由(式 1)計算的 $h_{g \otimes d}$ 與實驗測量的水柱高平均值 \bar{h}_{figal} 誤差僅 3.80(%),所以可以論證我們的假設— **毛細管傾斜時,水柱在液面所受的表面張力的總拉抬作用力不變(F=定值)**是可接受的。

二、毛細管中水的接觸角測量方法之改雜討論:

為了確認毛細管傾斜回正後,水柱高度的增加真的是因為接觸角縮小所致,我們進一步利用<表一>的 $\mathbf{h} \cdot \mathbf{h}$ '由公式 $\mathbf{h} = \frac{2\gamma \cos \alpha}{\rho g r}$ 逆推毛細管傾斜前後的接觸角,並與我們實際量測的接觸角做比較得(圖五)、(圖六)。



(圖五) 毛細管傾斜前後的接觸角(量角器測量)對其傾斜角之關係

(圖六) 毛細管傾斜前後的接觸角(水柱高逆推)對其傾斜角之關係

- 1.由(圖五)、(圖六)的比較,我們發現在第一部份的實驗結果推論中,推論毛細管傾斜回正後,水柱高度的增加起因於接觸角的縮小,這個推論似乎是不太合理的。
- 2.為了確認水面處的接觸角大小,避免人為量測誤差,因此我們 MB-Rular 的直角座標定位功能,將水面定位後,以 Excel 作圖求出彎月面的函數式,再進一步利用微分及三角函數計算,求出接觸角的大小,結果如下頁(圖七)。

(圖七) 毛細管傾斜前後的接觸角對其傾斜角之關係圖

由圖七可看出,毛細管傾斜前後,接觸角真的幾乎沒有變化。那我們的困惑 即是-究竟是什麼原因造成毛細管傾斜回正後水柱高度的增加?

由毛細管水柱高度公式 $h = \frac{2\gamma\cos\alpha}{\rho gr}$ 來看,既然不是接觸角的變化,那就只可能是表面張力 γ 或水的密度 ρ 的改變了。

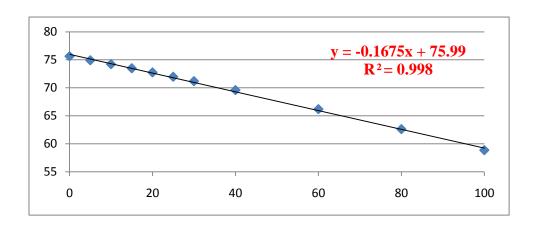
柒、結論:

- 一、毛細管傾斜角小於 20°時,傾斜前後水柱高度幾乎沒有變化;傾斜角介於 20°~55°時,傾斜前後水柱高度明顯隨傾斜角增大而增加;當傾斜角大於 55°時,傾斜前後水柱高度增加最為顯著,但保持為定值。
 - 1.經與毛細管傾斜時的管內水柱總長作比較,發現水柱的增高與管壁潤濕程度有很大的關連。
 - 2.傾斜時,因管壁正向力的支撐,可使管內水柱長增加,但水柱液面處表面張力的總拉抬力量沒有改變。
- 二、各出版社的教科書中,均指液體的表面張力為定值,因此我們原以為毛細管傾斜前後, 因管壁潤濕使接觸角減小,而使毛細管傾斜回正後的水柱高度增加。但由我們的實驗結果分析,發現接觸角幾乎不變,因此改為考慮是表面張力或水的密度值的改變。

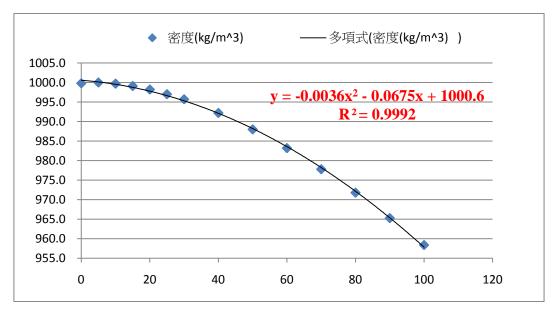
另外,我們有個意外收穫:在許多書籍、文獻或我們參考的歷屆科展研究報告中,大家均指 將毛細管壁充分潤濕可使接觸角為 0° ,但由我們的實驗結果可發現,這是不可能的。

捌、參考資料:

- 1. 林明瑞(民國 97)。普通高級中學物理下冊。臺南市:南一。
- 2. 姚珩(民國 99)。普通高級中學物理下冊。臺南市:翰林。
- 3. 林凡又、鄭雨軒、林虹君(民國94)。**毛細管內液體流速之探討及黏度測量方法之創新**。中華民國第42屆中小學科學展覽會高中組物理科第一名。臺北市立麗山高級中學。
- 4. 吳岳霖、何宗諭、張育端、吳杰鴻(民國84)。**毛細管測量液體表面張力的研究**。中華民國 第35屆中小學科學展覽會高中組物理科第一名。台灣省立嘉義高級中學。
- 5. 高頌凱(民國 95)。利用浮沉子測量液體表面張力並演示"Cheerios effect"。 美國第五十七屆國際科技展覽會大會物理科四等獎。國立嘉義高級中學。
- 6. 呂婉甄、王琦雅(民國 94)。**分散值的結構與張力**。2005 年國際科學展覽會大會獎佳作。國立嘉義女子高級中學。
- 7. 楊文昌譯。基礎流體力學。五南圖書出版股份有限公司出版。第22~39頁。2000年版。
- 8. 林清涼、戴念祖。**啟發性物理學-力學**。五南圖書出版股份有限公司出版。第 203~228 頁。 2005 年版。
- 9. 中興大學物理學系普通物理實驗室http://experiment.phys.nchu.edu.tw/EZphysics/ex_h.htm

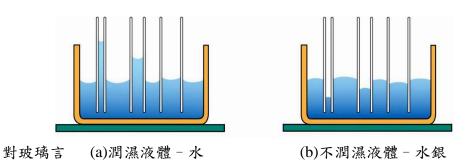

玖、附錄:

(一) 水的表面張力參考值:

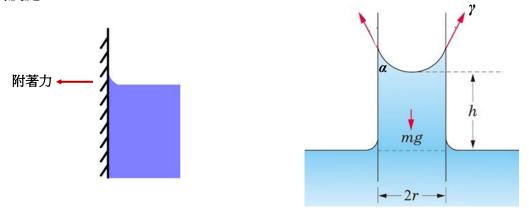

由南一版物理下冊課本及中興大學普通物理實驗室網頁中,不同溫度時水的表面張力值,得出不同水溫時表面張力的關係式為 γ ($T^{\mathbb{C}}$) = -0.1675T + 75.99(Dyne/cm)

,並由此計算我們實驗時水的表面張力參考值 $\gamma_{18.5\ ^{o}C}$ = 72.89 (Dyne/cm) 。

水溫 T(℃)	0	5	10	15	20	25	30	40	60	80	100
水-空氣表面張力 γ (Dyne/cm)	75.64	74.92	74.22	73.49	72.75	71.97	71.18	69.59	66.18	62.61	58.85


(二) 水的密度參考值:

(二)毛細現象:


1.現象:

管徑很小的細管插入液體中時,液面會沿管壁上升或下降的現象,稱之。且管徑愈小,液 柱的高度變化愈顯著。

2.成因:(以 *水 // 為例)

當毛細管插入水中時,因附著層裡的水分子受到玻璃壁的附著力大於與水柱內的內聚力, 附著層沿管壁上升,這部分液體上升引起液面彎曲,呈凹形彎月面,故水面處的表面積變 大,與此同時由於表面層的表面張力收縮作用,管內液體也隨之上升,直至表面張力向上 的拉伸作用與管內升高的液體重量平衡時,液體停止上升,故毛細管內的水會穩定在一定 的高度處。

3.公式推導:

水柱高度不變時,表面張力向上的拉伸作用=液柱重量

$$\gamma \cdot 2\pi r \cdot \cos \alpha = \rho \cdot \pi r^2 \cdot h \cdot g$$

$$\Rightarrow h = \frac{2\gamma \cos \alpha}{\rho g r}$$

 $(\gamma: 液體的表面張力、<math>\alpha: 液體與玻璃的接觸角、 \rho: 液體密度、g: 重力加速度、r: 毛細管半徑)$

【評語】040104

這是個有趣的發現。然而作品中對力的分析不夠深入,對前人結果查證的觀察尚未深入與證實,例如水的接觸角度議題。然而我們甚至鼓勵對課本的結果提出質疑。