中華民國 第50 屆中小學科學展覽會作品說明書

國中組 地球科學科

佳作

030506

尋找「橫山斷層」

學校名稱:臺中縣立大華國民中學

作者:

國一 黃韻玲

國一 廖芝妤

國一 賴于暄

國一 黃丞緯

指導老師:

林靜英

關鍵詞:橫山斷層、鐵砧山斷層

摘要:

「横山斷層」存在與否及其名稱迭有變更,我們採用最初(林朝榮 1957)「大甲客庄(海風缺)經清水第一公墓至沙鹿竹林」的定義。為了標示「横山斷層」的位置,我們閱讀文獻,並進行實地考察,確有發現與大肚山東側坡面平行的谷地地形,逕以 GPS 定出各勘察點座標,測量坡度,拍攝地景,並整合資訊。露頭勘察「横山斷層」段無發現,但在竹坑發現一東傾斷層露頭,尚待未來研究。紅土受力實驗中,發現在不同的水分條件下,會產生斷裂、崩落、變形且有裂縫三種情形,由「橫山斷層」的地形特徵,我們認為它很可能是大甲斷層和大肚山背斜形成時,在背斜軸附近發生的裂縫,並不是斷層,這可以解釋各種資料間的矛盾。

壹、研究動機

大雅是我們的家,最接近大雅鄉的斷層便是「橫山斷層」,它出現於八十九年經濟部中央地質調查所(以下簡稱地調所)出版的「台中」地質圖上,但是它曾一度消失在地調所的活斷層資訊網中。所以我們想以自己的力量找出斷層可能的位置,嚐試去找出證明斷層存在或是不存在的證據。今年二月「橫山斷層」歸入鐵砧山斷層,且重新清楚地標示在活斷層資訊網上,列為第一類活動斷層(但目前鐵砧山斷層只畫到清水,沒有沙鹿竹林一段具明顯地形特徵處,見圖一)。我們便轉而想探討「橫山斷層」可能的成因,希望能協助故鄉多了解它,甚至進一步學會和「橫山斷層」相處共存的方法。

圖一、地調所活斷層資訊網截圖,並標示原 「橫山斷層」未畫入鐵砧山斷層的部份

貳、研究目的

- 一、閱讀文獻,以了解「橫山斷層」的概況
- 二、實地考察,以紀錄「橫山斷層」的座標位置及其形貌
- 三、以實驗探討「橫山斷層」的可能成因

參、文獻回顧

一、「横山斷層」命名演變

林朝棨(1957)將其命名為「橫山斷層」,定義為「大甲客庄(海風缺)經清水第一公墓至沙鹿竹林一帶」,被視為清水斷層的副斷層。湯振輝(1969)將「橫山斷層」及以北的大甲東斷層合稱為鐵砧山斷層,並將「橫山斷層」視為鐵砧山斷層南段。江崇榮(1984)又將鐵砧山斷層南段命名為米粉寮坑斷層。目前地調所使用鐵砧山斷層稱呼,但鐵砧山斷層並不包含清水至竹林段。總之,在名稱及畫定上曾相當混亂 (「橫山斷層」其東的「清水斷層」亦曾畫歸為彰化斷層,目前地調所將之畫歸大甲斷層)。

我們認為鐵砧山斷層南北二段受大甲溪切割,並不連續,南段(即「橫山斷層」)主要以斷層線谷地形出現,北段斷層線谷則不明顯,兩者有很大差異。故最後決定引用最初林朝棨(臺灣地質學第一人)定義的「橫山斷層」做為研究標的,並以引號特別標名,以免造成混亂。

二、地層

據目前地調所出版「台灣中部的活動斷層」(2008),此區岩石由上而下可分為紅土礫石層、 礫石層(猜測為頭嵙山層)和黃白色砂層(猜測為香山砂岩)。礫石層和黃白色砂層間以約 3~5 公 尺的灰黑色頁岩或灰白色砂岩為分界。

三、地質

根據地調所出版「台灣中部的活動斷層」(2008)一書對鐵砧山斷層的描述,孫習之(1965) 認為鐵砧山斷層為逆斷層;江崇榮研判屬於右移斷層;李元希和石瑞銓認為鐵砧山斷層為背 衝斷層,斷層面向東傾斜 20~30 度,下磐(東側)的紅土化礫石層較厚,上盤(西側)礫石層的厚 度較薄。

「横山斷層」位於大肚山西麓,正好位於整個大肚山背斜軸及大甲斷層(昔稱清水斷層或彰化斷層)之間,整個斷層以斷層谷或斷層殘丘的形式出現,斷層走向為北北東向,平行於大肚山的坡面及稜線。但斷層沿線至今未發現露頭。

四、過去的野外調查結果

由於前人對「橫山斷層」的研究方法、結論甚至命名都不同,為求便於理解,將其簡化 為表格型式,依照研究年份排列呈現如下:

表一、歷年「橫山斷層」野外調查結論列表

作者:	方法:	結論:	註:			
林朝棨(1957)	地形判讀	存在	由客庄至清水第一公墓,以斷層線谷型式存在			
徐兆祥等(1960)	地下鑽井	不存在	地下構造可能逐漸消失			
古兆禎(1963)	航照判釋	存在	切過大平頂台地延伸至后里台地西側			
孫習之(1965)	地形判讀	存在	屬逆斷層			
Hsu and Chang(1979)	地形判讀	存在	出現於大甲至清水以東,具明顯線形特徵			
石再添(1983)	地形判讀	存在	出現於大甲至清水以東,具明顯線形特徵			
楊貴三(1986)	地形判讀	存在	清水第一公墓以南至竹林里之間具斷層線谷			
陳平護(1990)	地電阻調查	存在	淺部地層的層位落差約20公尺			
蕭瑞文(2002)	淺層反射震測	不存在	無明顯斷層活動或錯移現象			
王乾盈&郭炫佑	反射震測	不存在	認為清水斷層及鐵砧山斷層未有岩層錯動			
(2003)						
沈淑敏(2005)	地形判讀	存在	斷層截切階面			

由表一可發現,「橫山斷層」有明顯地形特徵,但近年震測和鑽井資料都無法證明它存在於地下。至此我們已經可以理解為什麼地質圖上橫山斷層「時有時無」。但是究竟地底下深埋了什麼秘密?於是我們想,除了實際定出斷層位置外,也該設計實驗探討這個問題。

另外,李元希及石瑞銓(2008)在大安溪畔找鐵砧山斷層的露頭,但我們認為它不在「橫山斷層」範圍內,且我們在大甲溪畔並未發現相似的斷層露頭,故在此處先不列入表中。(註:根據我們所讀的各項文獻資料,在「橫山斷層」段,一直都沒有找到露頭,「清水斷層」亦同)

肆、研究器材及設備

一、室外實察器材

圖二、自製簡易傾斜儀(左)、指北針(右上)、水平儀(右下)

(一)汽車:考察地點距離甚遠,需要開車

(二)GPS 衛星定位系統:標定所在地的經緯度

(三)照相機:紀錄地景地形

(四)自製簡易傾斜儀:測量坡度

(五)指北針:定坡面或谷地走向

(六)水平儀:確認羅盤水平以提高準確度

二、紅土受力實驗部份

- (一)60cm*3cm*2cm 木條,在 15 公分處沿 30 度角鋸開
- (二)白色壓克力板一片
- (三)透明壓克力板一片
- (四)紅土(來自公明里的田地)

三、軟體

(一)文書處理: Microsoft Office Word 2007

(二)影像處理: Corel Ulead PhotoImpact X3

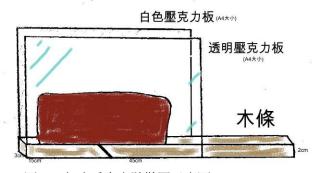
(三)等高線地形圖取得:地調所國土資訊系統

(四)地理資訊整合:Google Earth

伍、研究方法

一、室外實察部份

- (一) 由於流水會自山坡往下流,使得侵蝕溝不可能平行稜線而發育,所以野外考察時,我們 盡力尋找平行於山坡的谷地,將之視為「橫山斷層」經過所產生的地形,進行紀錄。
- (二)以GPS衛星定位裝置測知經緯度並紀錄,同時紀錄目視的地景特徵
- (三)以相機照像紀錄地形
- (四)用簡易傾斜儀測量斷層谷兩側的坡度
- 1.能夠直接測量的,將尺端置於坡面測量坡度,且取不同位置量奇數次,再求平均值
- 2.無法到達坡面時,立於谷的中央,以目測比對方法測量坡度,至少由不同的人測量二次 (五)以**指北針**測量斷層谷的走向


- 1.確認自己立於谷地中央
- 2. 將指北針上的箭頭對準遠方谷地盡頭,並以水平儀校正是否水平後讀取方位角
- 3.反身測量谷地另一端的方位角
- 4.至少由不同的人測量二次,取平均值
- (六)凡是見到明顯露頭之處,以 GPS 定位,並觀察是否有斷層出露,照像紀錄

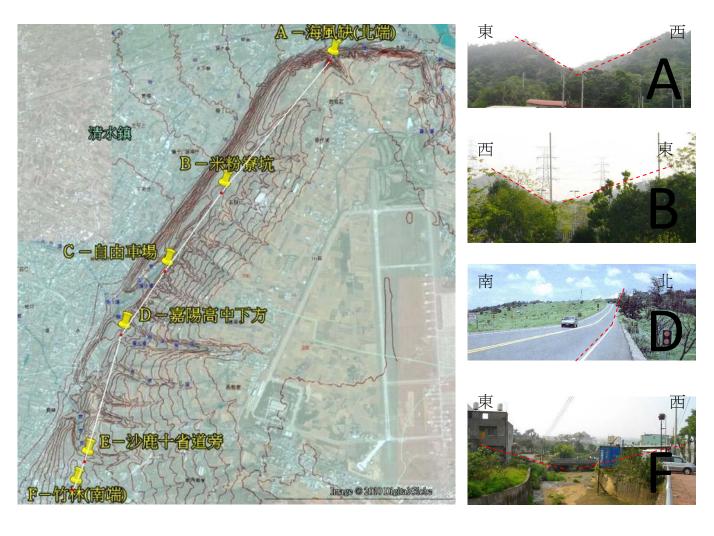
二、資料整理部份

- (一)使用 PhotoImpact 將照片縫合成大張的地景圖
- (二)使用地調所的國土資訊系統,將研究範圍的等高線地形圖取出存檔
- (三)使用 Google Earth 整合資訊
- 1.將認定為斷層的座標位置標出,並鍵入斷層谷走向和二側坡度。
- 2. 將等高線地形圖疊合,判讀研究
- 3.將照片資訊整合至該座標位置

三、紅土受力實驗部份

- 1. 組裝器材如圖三,將紅土置入兩片壓克力 板中央、兩木條的上方
- 2. 將木條沿 30 度角方向向左上抬起
- 3. 將過程錄影,並將結果紀錄及照像
- 4. 重複中濕度土、乾粉末狀土及濕土三種土 壤濕度各十次

圖三、紅土受力實驗裝置示意圖


陸、研究結果

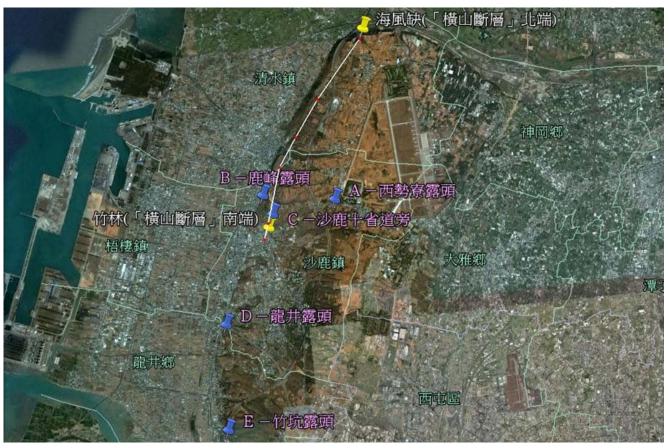
一、野外地質探查一「横山斷層」定位(下頁圖四)

實地探查發現六個地點有明顯平行於大肚山坡面的谷地,將座標輸入 Google Earth 並疊加地形圖呈現,並將測量結果整理於下表。由圖表可以發現,「橫山斷層」在嘉陽高中南方一帶偏折向西,且斷層谷兩側的坡度由北往南漸緩,谷地擴大,走向為北北東向。

表二、「横山斷層」野外實際調查點及數據列表

編號	地名	北緯	東經	坡度量測	谷地走向
A	海風缺谷底	24° 18' 1.8"	120° 36' 41.1"	東側 55°西側 50°	測量錯誤
В	米粉寮坑某水管外	24° 17' 2.2"	120° 35' 41.6"	未測量	未測量
С	自由車場	24° 17' 2.2"	120° 35' 8.8"	東側 40°,西側未量	42°北北東
D	嘉陽高中下坡方向	24° 15' 49.2"	120° 34' 41.6"	過緩,未測量	未測量
Е	沙鹿 10 省道旁	24° 14' 44.22"	120°34'23.02"	東側過緩,西側24~25°	56°東北
F	竹林(祥和社區)	24° 14' 29.3"	120° 34' 17.9"	過緩,未測量	26°北北東

圖四、「横山斷層」野外實際調查點及地景照片 A 海風缺 B 遠眺米粉寮坑 C 臺中縣自由車場山坡上鳥瞰 D 嘉陽高中下方(此張引用沙鹿鎮志橫山斷層通過處圖,非本研究所攝) E 竹林,以圖中紅色虛線表示斷層谷的兩邊坡,且每張照片拍攝方向不同,故標明方位



圖五、野外露頭調查位置(BY Google Earth)及照片,A 西勢寮 B 鹿峰 C 沙鹿 10 省道旁 D 龍井光田醫院員工宿舍對面 E 竹坑南寮古道旁,黑線表示斷層處

二、野外地質探查一尋找露頭(前頁圖五)

探查「横山斷層」的地形後,我們開始思考「横山斷層真的存在嗎?」的問題,所以想 試圖找出露頭來直接證實。所探查的露頭如圖所示,茲分述如下:

- (一) 西勢寮中山路旁: 露頭出露很淺, 位於農地之中, 無發現。
- (二) 鹿峰義聖宮: 露頭明顯, 可觀察到多個透鏡狀砂岩夾在紅土礫石層中, 但沒發現斷層。
- (三)臺十線省道旁:露頭大部份已被草被蓋,無法觀察
- (四)龍井醫院員工宿舍對面:露頭非常大,據附近居民說,臺中港工程時人工開挖取沙石造成的,已有二十年以上。礫石層序不是很明顯,無法清楚看出是否有斷層
- (五)大肚竹坑南寮古道旁:從中二高上就可以看到這裡有露頭,由於該露頭為一山凹,範圍很大(中間的腹地蓋了三間工廠),因此斷層在山凹南北側各可找到一出露。由照片上可以看出斷層線,傾向西側,且二側的岩層顏色不同,但找不到可供對位的岩層。居民表示不清楚露頭何時形成,只知十年前就是如此。

總而言之,在「橫山斷層」定義的範圍內,我們沒有找到斷層的露頭。由於中二高施工時對大肚山東麓有大規模開挖,剛好在此附近,當時的照片、紀錄中若有露頭,就能確定「橫山斷層」存在,但以我們的研究結果只能存疑。(註,這樣的開挖正好是在順向坡上挖一個凹槽,形成北上砍順向坡腳,南下在逆向坡旁,頭嵙山礫石層又非常難以固定,相當危險,需要長期護坡、監測,以保北二高崩山事件不在此重演)

三、紅土受力實驗

我們採用大肚山的紅土,以右側為東,預設斷層面向西傾斜 30 度,頂住左側,右側上磐向左上方 30 度上抬,以模擬大甲斷層及大肚山背斜。因「横山斷層」位在坡頂附近處,故該處特別觀察紀錄。

第一至第十次實驗(圖六),我們調整紅土的濕度使適中,模擬剛性地層。為符合頭嵙山層級紅土礫石層之現地地質,且加速實驗進行以免土乾掉,第二次實驗以後均以二層紅土相疊實驗。除第十次實驗外,過程中土壤均先彎曲後斷裂。實驗結果發現在近坡頂處均會出現斷裂(機率10/10)。其中第七次實驗最具代表性,可以觀察到東側(橫山斷層)斷裂露出地表,西側(清水斷層)斷裂面在地下,未露出地表。另外由第六、第十次實驗,可發現西側受力向上,可能形成向東逆衝斷層,此與鐵砧山此段之露頭發現相符合。

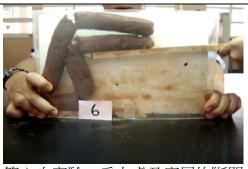
第十一至二十次實驗(圖七)使用粉狀乾鬆的紅土,故過程中有明顯崩落,在左側形成陡崖 (9/10),崖上常呈凹陷(5/10),形成谷狀。大肚山西南側麓段帶某些區域坡非常陡,且地質鬆軟,形成許多侵蝕溝,與此實驗結果相對應。

第二十一至三十次實驗(圖八)中將土壤調整至較濕軟,模擬整塊塑性地層。過程中紅土先變形,而後在坡頂(10/10)及坡底(1/10)變形最大處產成裂縫。坡頂產生大型斷裂者佔 8/10,位置在背斜軸西側佔 3/10,東側佔 4/10,產生裂縫群者則佔 4/10。此形式非常像所謂的「斷層線谷」,「橫山斷層」及所謂的「西勢線型」很可能都是這樣形成的。

整體而言,實驗中在坡頂出現谷狀地形的佔 25/30 = 83%,坡底出現斷裂或變形則佔 13/30 = 43%,我們發現過程間土壤形變為東陡西緩,很像大肚山背斜,可見這三者一起形成的可能性很高。整個實驗結果整理示意為圖九。

第一次實驗:斷出一個大裂縫

第二次實驗:受力處斷開,坡底變形


第三次實驗:受力處斷開

第四次實驗:在受力處斷開

第五次實驗:受力處及底層均斷開

第六次實驗:受力處及底層均斷開

第七次實驗:受力處及底層均斷開

第八次實驗:受力處斷開

第九次實驗:在受力處斷開

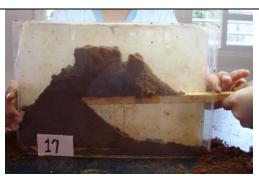
第十次實驗:上層抬高未斷

圖六、紅土受力實驗:中濕度雙層土,模擬剛性地層。過程中土先彎曲後斷裂

第十一次實驗:大量崩落,上端呈谷狀

第十二次實驗:大量崩落,上端呈谷狀

第十三次實驗:崩落後呈平滑坡


第十四次實驗:前端平臺後呈陡崖

第十五次實驗:呈三處谷狀

第十六次實驗:呈斷崖狀

第十七次實驗:出現二個谷狀斷崖

第十八次實驗:出現二個谷狀斷崖

第十九次實驗:前端崖狀,後端谷狀

第二十次實驗:呈凹陷坡

圖七:紅土受力實驗:乾粉狀土,過程中前緣崩塌

第二十一次實驗:上分及下方各裂一谷

第二十二次實驗:上端分裂一大谷,三小縫

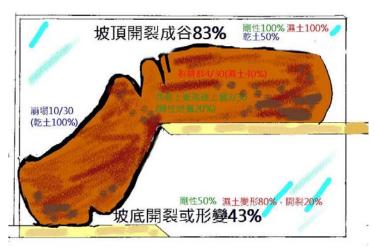
第二十三次實驗:上方裂一大谷狀裂縫

第二十四次實驗:上方裂一大谷狀裂縫

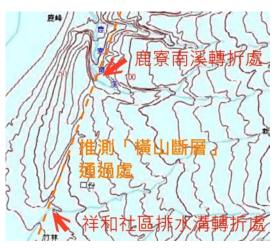
第二十五次實驗:上方裂一大谷狀裂縫

第二十六次實驗:上方出現數個小裂縫

第二十七次實驗:上方一大谷,下方一小縫 第二十八次實驗:上方出現一大谷及數個小縫



第二十九次實驗:上方出現數個小裂縫



第三十次實驗:上端後方有一大裂縫

圖八、紅土受力實驗:溼土,過程中土彎曲為主,最後產生裂縫

圖九、紅土受力實驗總合資料圖

圖十、溪流可能因斷層轉折處圖

柒、討論

一、斷層谷的走向與地形變化

由實地照像可知,自行車場以北斷層谷十分明顯,坡度亦較大,整個斷層谷非常平直,點 A 至點 D 連線幾乎呈直線。過自行車場以後,兩側山坡變矮,坡度減緩(見表二、圖四),且走向偏折往西。這些現象在地形圖上更為清楚明顯(圖四主圖),目前地調所亦僅鐵砧山斷層畫到自行車場,也就是轉折點前。觀察該轉折點,地勢十分陡峻,鹿寮南溪至此北轉,竹林祥合社區的排水溝渠則是轉南,都來個 90 度大轉彎(圖十),因此研判清水以南應有一斷層谷往南延伸,只是地形現象不若北端明顯。

二、一條嚇人的線(圖十一)

疊加水道及其它地理資訊,詳加端詳,發現若將海風缺至自行車場整個斷層連線線向南延伸,正好與沙鹿鎮與龍井鄉的交界水渠重合!該水渠重合!該水渠重合!該水渠重合!該水渠重合!該水平面,或有可能是斷層不治療層層。以表對層域與還經過應峰國小及龍澤之數,或許應該進行進一步的文史及地質調查,以免斷層潛入地下未發現,釀成悲劇。以,使用地電阻調查測線來判斷此處是否有斷層可能最有效率)

圖十一、「横山斷層」北段延長線(白線)經過區域圖。圖中經過鹿 峰國小及龍津國小處特別放大

三、竹坑發現斷層露頭

我們在大肚竹坑(南寮古道南側)找 到大型露頭,這個露頭在中二高上可見, 由於該露頭為一山凹,南北側各可找到一 斷層出露;仔細觀察其照片,可發現斷層 東傾,西側為紅土礫石層,東側下部礫石 層顏色偏黃,上部山頂處則有數層灰色砂 岩(圖十二)。根據文獻,本區地層上部為 紅土礫石層,下部為黃土礫石層,其間以 灰色砂岩為界,因此應推測可能為正斷 層。但由於從照片上無法找到明顯對應的 斷層進行對位,是否為正斷層,以及斷層 錯動量等仍需留待未來更進一步研究。

圖十二、圖 5E 南斷層露頭特徵放大近照

發現斷層的地方和「橫山斷層」一樣位於

大肚山麓,我們不知道是否它是「橫山斷層」(鐵砧山斷層)的延長(林朝棨先生曾如此判斷過),長期以來附近的斷層都找不到露頭,特別是集集大震後,大家都很想確定大甲斷層及彰化斷層的位置,如今發現這個斷層露頭,加上此處有中二高通過,施工前應有相當大量的鑽井資料,若能詳加考察,相信應能有相當的發現。

四、「横山斷層」可能不是斷層

歸結紅土受力實驗,發現會因岩層的性質產生不同結果:剛性地層產生斷裂、鬆軟地質會崩落、塑性地層會有變形附帶裂縫。由於整個大肚山臺地都是礫石層,含水的多寡很可能決定受力的結果,所以產生不同的地形。鐵砧山斷層的北段,斷層谷不明顯,且在大安溪畔發現斷層露頭,很可能該區地層剛性較強,對應到實驗一至十的情形,即形成斷層;大肚山西南側山坡坡度很大,但侵蝕溝發育良好,可見地層較為鬆軟,正好對應實驗十一至二十的情形;而「橫山斷層」,我們認為剛好對應實驗二十一至三十的情形,坡下方的裂縫正是一直找不到露頭、無法確定是否穿出地面的大甲斷層,變形之處則是大肚山背斜,「橫山斷層」只是擠壓時附帶形成的裂縫,並不是一個斷層。

也就是說,地層的含水量,可能是鐵砧山斷層南北段地形發育差異很大的原因,因為它斷開的方式都不一樣。這也能說明為何「橫山斷層」南段斷層谷漸趨平緩,因為此區地層較鬆軟,易崩塌後受侵蝕「垮掉了」。

在實驗二十一到三十的錄影過程中可以發現,坡頂產生裂隙時,上方的裂隙開裂,裂隙正下方的土卻是被擠壓。鬆散的紅土礫石層被這樣擠壓,可能會被壓得密實些,這個較密的區域就和附近的地層顯得不連續,或許它的導電度會較低,重力較強,但是卻屬於同一種岩層,所以震波反射無法測出,也由於地下根本沒有錯動,所以鑽井找不到斷層。因此,這個理論也能夠解釋為什麼地形判讀、地電阻探測和重力異常(潘玉生,1967)研判認為這附近有斷層存在,但鑽井資料和震測資料卻無法同步証實。

雖然我們認為「橫山斷層」其實不是個斷層,只是個裂縫,但由實驗的錄影結果,在持續受力狀況下,這個裂縫會繼續擴大,同時坡度也會變陡。這對附近的建築勢必造成損傷,

所以此區的開發仍需小心,不宜形成人口密集的區域。而且由我們的實驗可知,大肚山背斜持續受力的話,整個東麓都有斷層、山崩及地裂的可能,因此,中二高應注意橋墩位移,大甲、清水、沙鹿(如靜宜大學、弘光科大)、龍井、大肚在開發坡地前宜詳加調查地質狀況。

捌、結論

- 一、由野外實察及地形判讀,「橫山斷層以谷地的形式存在,十分明顯」。
- 二、在「橫山斷層」無發現露頭。
- 三、在竹坑發現一露頭,斷層面向東傾斜。是否為鐵砧山斷層延伸至此,或是為其它斷層的露頭(如彰化斷層),尚待進一步研究確認。
- 四、由紅土受力實驗,地層的抬升可能造成斷裂(斷層)、崩落(陡崖)、變形(大肚山背斜) 且坡頂有裂縫三種情形,受土壤的濕度(塑性)決定。由地形特徵,我們認為「橫山斷層」 為第三種情形,乃大肚山背斜及大甲斷層形成時,在坡頂形成的大型裂縫,再經侵蝕而 成,與鐵砧山斷層北段形成斷層的情形不同。
- 五、大膽推測「橫山斷層」大裂縫下方岩層因受力,未斷裂但受擠壓,如此即可解釋鐵砧山 斷層南段震測資料看不出地層斷裂、鑽井無發現,但地形明顯,且地電阻和重力異常資 料能發現不連續面。前人研究間的矛盾即可解開。
- 六、「横山斷層」雖可能不是斷層,但持續擠壓可能進一步開裂,同時大肚山東麓坡度會增加 甚至再度崩落,大甲斷層亦會活動。因此,大肚山麓山帶極不宜過度開發。

玖、参考資料

- 1. 何信昌、陳勉銘(2000 年 6 月)。臺中——五萬分之一台灣地質圖-- 圖幅第二十四號。經濟部中央地質調查所。
- 2. 林啟文、盧詩丁、石同生、林偉雄、劉彥求、陳柏村等人(2008 年 12 月)。台灣中部的活動斷層,二萬五千分之一活動斷層條帶圖說明書--經濟部中央地質調查所特刊第二十一號。經濟部中央地質調查所。
- 3. 張憲卿(1994年 12月)。大甲——五萬分之一台灣地質圖-- 圖幅第一十七號。經濟部中央 地質調查所。
- 4. 王乾盈、郭炫佑(2003年11月)。以反射震測法偵測鐵砧山斷層,經濟部中央地質調查所特刊,第十四號,第77-87頁。
- 5. 石再添、鄧國雄、張瑞津、石慶得、楊貴三(1986年3月)台灣活斷層的地形學研究, 師 大地理研究報告, 第12期, 第1-44頁。
- 6. 張瑞津、楊貴三(2001年11月)。 台灣中部活斷層的分布與地形特徵, 師大地理研究報告, 第35期, 第85-120頁。
- 7. 潘玉生(1967)。臺灣中西部諸重力異常與震測結果之比較研究, 台灣石油地質, 第 5 號, 第 99-115 頁。
- 8. 沙鹿鎮志 http://library.shalu.gov.tw/book-s1/
- 9. 經濟部中央地質調查所地質資料整合查詢系統 http://210.69.81.204/gwh/start2.html

【評語】030506

優點:

以簡易的材料與方法,來進行觀察與實驗,非常符合國中生可進行且了解之議題。由文書報告可見,多部分皆由學生所完成。科學概念簡單、主題與生活週遭相關。

缺點:

野外調查與紅土受力實驗的相關性不清楚,感覺是不相關的 議題。紅土受力實驗的實驗方法不清楚,科學的基礎不明確。 建議改進事項:

- 1. 數據的呈現不清楚,斷層谷的研判依據為何沒有定義。
- 2. 紅土受力實驗沒有完整的討論。
- 3. 為何橫山斷層不是一條斷層的討論與數據不明確。
- 4. 沒有討論此研究可能的失誤,未來改進方法,所要驗證之假說!