中華民國 第50 屆中小學科學展覽會作品說明書

國中組 物理科

佳作

030106

搖滾的秘密-讓音樂進入電的世界

學校名稱:桃園縣立中壢國民中學

作者:

指導老師:

國二 吳明倫


國二 黃昱維

國二 胡寬程

蘇柏元

關鍵詞:電吉他、拾音器、法拉第電磁感應定律

《高家的秘密——蒙音崇逢入意的世界

壹、摘要:

拾音器是一般電吉他重要的零件,它利用弦在其上方振動,而產生微量的信號給喇叭,產生電吉他獨特的聲音。首先,我們製作簡易的單弦樂器來模擬電吉他,接著著手研究把有可能影響電吉他發出信號頻率(音調)、振幅(音量)的變因一一找出各變因中對電吉他最有利的狀態,做一把單弦簡易電吉他。

貳、研究動機:

演唱會開始了,臺下興奮的發狂,臺上的表演者也為了回應如此熱情的歌迷,奮力的彈奏手上的"電吉他",那聲音透過會場的超大喇叭讓聲音更有嘶喊的感覺,搖滾味十足。

然而,有一些藍調吉他卻不是如此,那孤單的弦音,一個個落在心的深處, 溫和且帶了幾分孤單、憂愁,讓人無緣無故的悲傷起來.....。

我一直猜不透,為什麼同樣是六根弦的琴,而有極大的差異?我試著問對吉他有研究的人,他們都說是因為電吉他裡比一般吉他多了一些小電子零件,像音箱擴大機(Amp)和效果器(EFF.)…但最重要的就是那一塊小小拾音器(Pick-ups)。

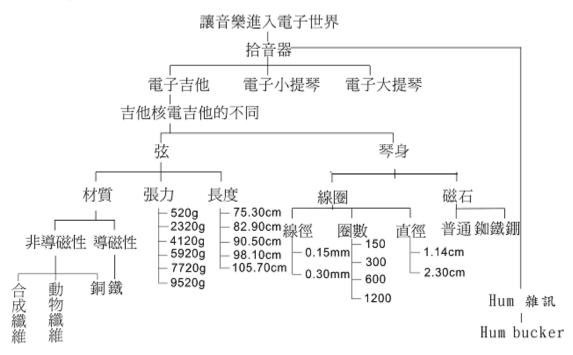
雖然那零件有一個叫"<mark>拾音器</mark>"的名字,但它那扁扁的小盒子裡又有什麼乾坤? 為什麼會讓吉他有這麼大的不同呢?

參、研究目的:

- 一、 瞭解分析電吉他與木吉他的原理
- 二、 製做簡易拾音器與電吉他
- 三、 探討弦的材質與拾音器的影響
- 四、 探討弦的長度與頻率的關係
- 五、 探討弦的張力與頻率的關係
- 六、 探討磁力大小的影響
- 七、 探討線圈的影響
 - 1. <線圈粗細> 2. <線圈數>3. <線圈直徑>
- 八、 製做可以杜絕雜訊的簡易電吉他

肆、研究設備及材料:

	三用電表	老虎鉗	游標卡尺	檢流計 (正負)	扳手	頻率計數 器
設備						
	微安計	數位相機	電腦	音頻功率 放大器	麵包板	尖嘴鉗
	焊槍	剪刀	示波器	喇叭	調音器	捲尺
	C型夾	大、小銼刀	線鋸	彈簧秤	塑膠桶	廢棄寶特
	(2英吋)			(1kg)	(520g)	瓶(600ml)
	細鋼繩	釣魚繩	銅線	膠帶	螺絲	螺絲帽
	(0.40mm)	(0.40mm)	(0.60mm)			
器材	鐵絲	棉線	漆包線	 	墊片	砂紙
	(0.60mm)	(0.45mm)	(0.150mm)	(12顆)		
			(0.300mm)	(直徑		
				1.10cm)		
				(高 0.65cm)		
	充電電池	金手指	吸管(大)	普通磁鐵	拖把桿	角鐵
			(直徑	(高 4.10cm)	(直徑	(114.0cm)
			1.14cm)		2.30cm)	(15.0cm)
						(10.0cm)
	泡綿膠					


圖【前-1】示波器

圖【前-2】拆下網子的喇叭

圖【前-3】音頻功率放大器(雙聲道,但實驗只使用到單聲道)

伍、研究內容:

圖【前-4】本研究內容的結構

一、文獻探討:瞭解分析電吉他與木吉他的原理

我們原本就對木吉他有一些瞭解,平常也有彈吉他的興趣,但對電吉他一點 也不瞭解,於是我們參考了很多網站和書籍,比較了木吉他和電吉他的差異性與 相同處。

圖【一-1】古典木吉他 (空心)

圖【一-2】電吉他 (實心)

<表一-1>木吉他和電吉他的比較:

	琴身	琴弦	發音方式
木吉他	有一個空心的木 製共鳴箱和一個 音箱孔		利用音箱產生共鳴,再從音箱 孔發出共鳴後的聲音
電吉他	沒有音箱,是封閉的,有音量和音色的控制旋鈕與導線孔、拾音器	/	利用拾音器將聲音轉換成電子 訊號給電子音箱

而拾音器是利用弦在線圈中磁鐵的磁場中切割,改變磁通量,讓線圈產生 微量的電流(電子信號)給電子音箱,達到聲音音量和音色的不同表現。

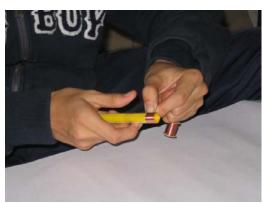
註:拾音器的種類有許多種,像麥克風式拾音器、撿波器型拾音器、電磁學線

圈拾音器,每一種的拾音器發聲原理和用途不盡相同,如撿波器型拾音器適用於 有尼龍弦的靜音吉他,而不適用於鋼弦的點電吉他。這次我們所要探討的是電吉 他的電磁學線圈拾音器。

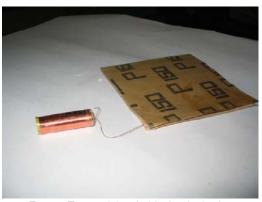
二、研究準備:製做簡易拾音器與電吉他

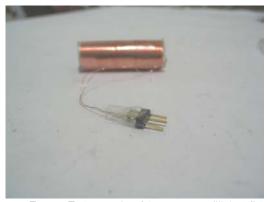
過程與方法:

(一) 線圈的製作:


圖【二-1】繞拾音器中線圈的材料

圖【二-2】先將吸管外反貼一圈膠帶, 以利漆包線固定


圖【二-3】將線圈的高度先標記好


圖【二-4】開始纏上漆包線(順時針)

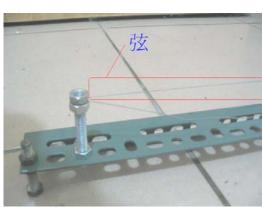
二層,要再重復【二-2】)

圖【二-5】貼上膠帶固定(如需繞第 圖【二-6】用砂紙磨掉末端的漆,再用 三用電表歐姆檔測試是否正常

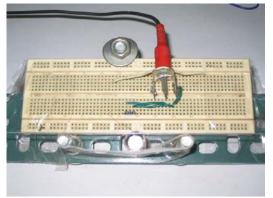
圖【二-7】焊上金手指且用膠帶保護焊接的地方

(二) 拾音器的組裝:

圖【二-8】疊成柱狀的磁鐵與線圈


圖【二-9】將線圈套在磁鐵的外緣

(三) 簡易電吉他的製作:


- 1.利用角鐵上的孔鎖螺絲。先鎖上兩枝支腳,以利 "L"形角鐵站立。
- 2.同第一步的方法,再鎖上琴鈕(一枝螺絲和兩個螺絲帽)。
- 3.栓緊琴鈕,使琴弦緊繃。
- 4.在琴身中央裝上一個拾音器,且連到麵包板上以利實驗。

圖【二-10】簡易琴身與琴弦

圖【二-11】弦與弦鈕的關係

圖【二-12】線圈連接到喇叭 (接到 RCA 接頭)

圖【二-13】簡易電吉他

- 1.不能以火燒的方式去漆包線上的漆,這樣會讓漆包線快速氧化,而不利漆包線 的導通。
- 2.漆包線下反貼的膠帶不能有皺褶,以免纏繞時的零亂與速度較慢。
- 3.小心易斷的線圈末稍,尤其是焊接的地方。
- 4.角鐵是一個方便的實驗材料,上面有許多的孔,且不同的孔都有規律性。

三、探討弦的材質與拾音器的影響

過程與方法:

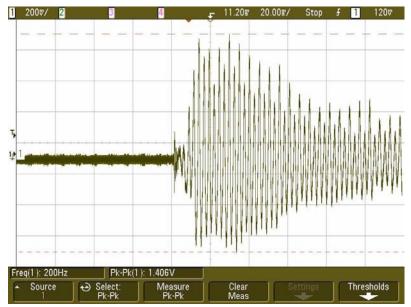
- 1.各把不同材質的弦(鐵絲、釣魚繩、細鋼繩、棉線、銅線五種)綁上琴鈕。
- 2.將拾音器連上喇叭。
- 3.用調音器將弦調成一樣的音階。
- 4. 觀察並記錄不同的弦對放大後輸出音頻信號的影響。
- 5.控制變因:1200 圈的線徑 0.15mm 直徑 1.14cm 的線圈、強磁力磁鐵、75.30cm 的弦長

操縱變因:弦的材質

圖【三-1】線圈位置與弦位置 關係的側拍

圖【三-2】各種不同材質的弦

但是經過第一次的實驗,我們發現用微安計測量不到信號電流,但是部份的弦接上喇叭是有聲音的,因為信號實在太微弱了,不管哪一種弦指針都一動也不動。於是追加使用一個音響使用的音頻功率放大器來讓信號更為強大,且借來示波器測量波的頻率(Hz)與振幅(V)。


<表三-1>是第一次電表測量的結果,而 <表三-2>是利用示波器測量的結果。

<表三-1>不同材質的弦與音頻信號的影響:

不同材質	固定的	地方彈擦	§ 2cm 的作	言號電量	(uA)	平均
的弦	1st	2nd	3rd	4th	5th	
鐵絲弦	0uA	0uA	0uA	0uA	0uA	0uA
釣魚繩弦	0uA	0uA	0uA	0uA	0uA	0uA
細鋼繩弦	0uA	0uA	0uA	0uA	0uA	0uA
棉線弦	0uA	0uA	0uA	0uA	0uA	0uA
銅線	0uA	0uA	0uA	0uA	0uA	0uA

<表三-2>不同材質的弦與放大後輸出音頻信號的影響 (平均值):

不同長度	固定的地方彈撥 2 號電壓		
的弦	電壓(V)	頻率(Hz)	比較
鐵絲弦	2.46	360	有信號
釣魚繩弦	0	0	無信號
細鋼繩弦	2.14	355	有信號
棉線弦	0	0	無信號
銅線	0	0	無信號

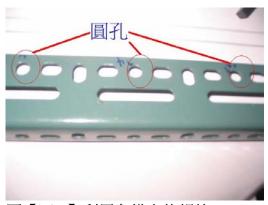
圖【三-3】示波器顯現的波形

- 1. 鐵絲弦與細鋼繩弦發出的音色不盡相同。但因為音色很難做數據的比較,所以 我們不加以探討。
- 2.電吉他剛連上喇叭時,手不小心觸摸到 RCA 的信號端,我們意外的在喇叭收聽到微弱的 AM 廣播電台。

四、探討弦的長度與頻率的關係

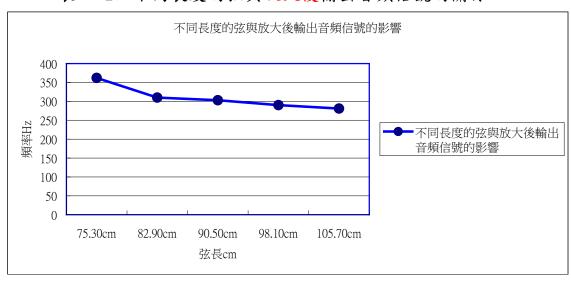
過程與方法:

- 1.在琴身上鎖上螺絲,當做活動琴衍。
- 2.利用活動琴衍來調整彈撥的弦長,因而調整音調高低。
- 3.觀察、記錄弦的長度與頻率的關係。
- 4.控制變因:1200 圈的線徑 0.15 mm 直徑 1.14 cm 的線圈、強磁力磁鐵、鋼弦


操縱變因:弦的長度

圖【四-1】琴身上的螺絲琴衍

圖【四-2】按壓琴衍使弦的長度縮短



圖【四-3】利用角鐵上的規律 正圓孔來鎖琴衍

< 表四-1>不同長度的弦與放大後輸出音頻信號的影響 (平均值):

一					
不同長度的弦	固定的地方彈撥 2cm 的放大後信號電壓與 頻率				
	電壓 (V)	頻率(Hz)			
75.30cm	2.25	362			
82.90cm	2.28	310			
90.50cm	2.16	303			
98.10cm	2.21	290			
105.70cm	2.14	281			

<表四-2>不同長度的弦與放大後輸出音頻信號的關係:

1.每根弦彈撥它們所發出的頻率和駐波有很大的關係,根據書籍上解釋,駐波的 產生前提是要有兩點固定端點的繩子(相當於短距離游泳池的兩岸),波在兩端 的空間來回彈來彈去,彈回的波與剛形成的波疊加,波形無法前進,因此無法傳 播能量而形成駐波。

2. 這次的實驗更加證實了國中學到的 $\mathbf{v} = \mathbf{f} \mathbf{x} \lambda$, \mathbf{f} 與 λ 成反比。 $\mathbf{L} = \mathbf{0.5} \lambda \mathbf{x} \mathbf{n}$, \mathbf{L} 是弦長,n 是整數(泛音),可以導出公式:

$$f=\frac{v}{\lambda}=\frac{nv}{2L}$$

五、探討弦的張力與頻率的關係

過程與方法:

- 1.在琴身上鎖上其他有刻「V」字型溝槽的特殊琴鈕。
- 2.將弦沿著溝槽延長至琴身外,並安裝上秤盤。
- 3.利用法碼把張力量化,因而調整張力大小。
- 4.觀察、記錄弦的張力與頻率的關係。

5.控制變因: 1200 圈的線徑 0.15mm 直徑 1.14cm 的線圈、強磁力磁鐵、105.70cm

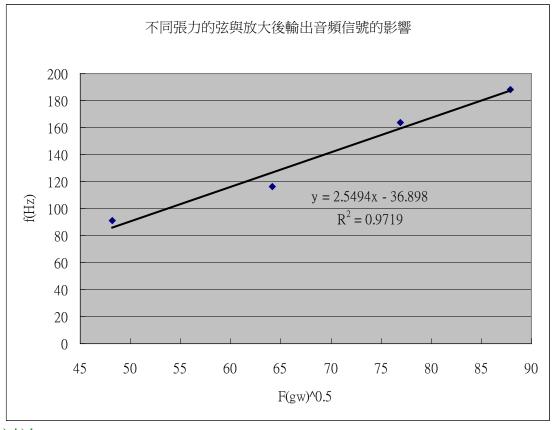
的鐵絲弦

操縱變因:弦的張力

圖【五-1】伍 -2】伍 -3】磨製有刻「V」字型溝槽的特殊琴鈕。

圖【五-4】有刻「V」字型溝槽的特殊 圖【五-5】寶特瓶法碼與塑膠水桶的 琴鈕溝槽的特殊琴鈕

重量


圖【五-6】弦與的特殊琴鈕關係

<表四-1>不同張力的弦與放大兩次後輸出音頻信號的影響 (平均值):

不同張力的弦	固定的地方彈撥 2cm 電壓與頻率 電壓(V)	的 <mark>放大兩次後</mark> 信號 頻率(Hz)
520.0g (1 個水桶)	?(因張力太小而弦 被磁鐵吸住)	?(因張力太小而弦 被磁鐵吸住)
2320.0g (1 個水桶+3 瓶水瓶)	14.8	91
4120.0g (1 個水桶+6 瓶水瓶)	13.5	116
5920.0g (1 個水桶+9 瓶水瓶)	11.8	164
7720.0g (1 個水桶+12 瓶水瓶)	15.7	188
9520.0g (1 個水桶+15 瓶水瓶)	?弦斷裂	?弦斷裂

※因示波器更換成不同的機型,所以為了示波器與實驗的準確性與方便性,放大的次數變更成兩次。

<表四-1>不同張力的弦與放大後輸出音頻信號的關係

討論:

- 1.特殊琴鈕上的 V 字型溝槽須筆直且工整,才能盡可能的減少弦與特殊琴鈕之間的摩擦力。
- 2.弦如果只是靠單單一根特殊琴鈕(弦呈 90 度)會有斷裂的危險,且會摩擦到 琴身,影響到數據。
- 3.利用目的四、探討弦的長度與頻率的關係所導出的公式可以延伸為:

$$f = \frac{v}{\lambda} = \frac{nv}{2L} = \frac{n}{2L} \sqrt{\frac{F}{\mu}}$$

u 為弦的密度,在本次的實驗為 17.9g/cm³ (Fe), F 為弦的張力 (gw)。

六、探討磁力大小的影響

過程與方法:

- 1.更替拾音器中的磁鐵(六顆釹鐵錋磁鐵吸成柱狀和普通矩形磁鐵兩種),高約 同為 4cm。
- 2.將拾音器連上喇叭。
- 3.用調音器將弦調成一樣的音階。
- 4. 觀察並記錄不同的磁力大小對放大後輸出音頻信號的影響。
- 5.控制變因: 1200 圈的線徑 0.15mm 直徑 1.14cm 的線圈、75.30cm 的鋼弦 操縱變因:磁力大小

圖【六-1】不同磁力的磁鐵 (左是六顆釹鐵錋磁鐵吸成柱狀,右是普通矩形磁鐵)

<表六-1>磁力大小不同的磁鐵與放大後輸出音頻信號的影響 (平均值):

• /			
磁力大小 不同的磁 鐵	固定的地方彈撥 20 號電壓與頻率 電壓(V)	em 的 <mark>放大後</mark> 信 頻率 (Hz)	比較
六顆釹鐵 錋磁鐵吸 成柱狀	2.59	357	信號強
普通矩形磁鐵	0.06	太微小而無法測量	信號弱

討論:

- 1.實驗時必須避免磁鐵吸到附近的鐵製品,以免線圈斷裂。
- 2.普通的發電方式(線圈與磁鐵的相對運動)使用一般磁鐵是可以發出電的,但是以導磁性金屬材料切割磁場這種方式,一般磁鐵的磁場是沒有辦法的。

七、探討線圈的影響

七-(一) <線圏粗細>

過程與方法:

- 1.更替拾音器中圈數同為 150 圈的線圈(<mark>線徑 0.30mm、0.15mm</mark> 兩種)各電阻為 16.2Ω 、 4.6Ω 。
- 2.將拾音器連上喇叭。
- 3.用調音器將弦調成一樣的音階。
- 4.觀察並記錄不同的線圈粗細對放大後輸出音頻信號的影響。

5..控制變因: 150 圈直徑 1.14cm 的線圈、98.10cm 的鋼弦、強磁力磁鐵

操縱變因:線圈粗細

圖【七_1_1】不同粗細的線圈 (左是線徑 0.30mm 右是線徑 0.15mm 的線圈)

結果:

<表七-1-1>不同粗細的線圈與放大後輸出音頻信號的影響:

	品 的 派 国 5、 人	一人			
不同粗细的	固定的地方彈撥 2cm 的 <mark>放大後</mark> 信				
、1、1点1小豆公田11.1	號電壓與頻率				
線圈	電壓 (V)	頻率(Hz)			
1 st	1.30	296			
2^{nd}	1.28	287			
3^{rd}	1.32	284			
4 th	1.27	293			
5 th	1.26	294			
0.15mm 的漆	1.28	290			
包線					
(平均值)					
1 st	1.24	294			
2 nd	1.20	289			
3 rd	1.23	295			
4 th	1.28	292			
5 th	1.21	287			
0.30mm的漆	1.23	292			
包線					
(平均值)					

- 1.實驗結果發現兩者沒什麼差異,只有電阻值呈平方倍,因為 πr^2
- ,r 為線徑÷2,漆包線的截面積與電阻值有關。 但 0.30mm 的漆包線較佔空間,圖【七 1 1】可以很明顯看得出。

七-(二)<線圏數>

過程與方法:

- 1.更替拾音器中線徑同為 0.15mm 但圈數不同的線圈(圈數 150 圈、300 圈、600 圈、1200 圈四種)各電阻為 4.6Ω 、 8.4Ω 、 16.2Ω 、 33.7Ω 。
- 2.將拾音器連上喇叭。
- 3.用調音器將弦調成一樣的音階。
- 4.觀察並記錄不同的線圈數對放大後輸出音頻信號的影響。
- 5.控制變因:線徑 0.15mm 直徑 1.14cm 的線圈、98.10cm 的鋼弦、強磁力磁鐵操縱變因:線圈圈數

圖【七_2_1】不同線圈數的線圈 (由左而右為 150、300、600、1200 圈 。

結果:

<表七-2-1>不同圈數的線圈與放大後輸出音頻信號的影響 (平均值):

不同圈數的線	3/11-21/22/27/27		
圈	電壓 (V)	頻率(Hz)	比較
1 st	1.30	298	
2^{nd}	1.25	289	
$3^{\rm rd}$	1.27	295	
4 th	1.31	297	
5^{th}	1.26	294	

150 圏	1.27	294	振幅最小
電阻 4.6Ω			
(平均值)			
1 st	1.44	290	
2^{nd}	1.46	284	
3^{rd}	1.41	296	
4 th	1.46	293	
5 th	1.48	291	
300 圏	1.45	291	振幅次小
電阻 8.4Ω			
(平均值)			
1 st	1.86	285	
2 nd	1.90	289	
3^{rd}	1.86	294	
4 th	1.85	286	
5 th	1.87	291	
600 圏	1.86	289	振幅次大
電阻 16.2Ω			
(平均值)			
1 st	2.08	289	
2^{nd}	2.16	296	
3^{rd}	2.15	286	
4 th	2.08	291	
5 th	2.21	294	
1200 圏	2.14	291	振幅最大
電阻 33.7Ω			
(平均值)			

- 1.線圈加倍,振幅卻只有增加一點。
- 2.線圈纏繞方向不一致的線圈在這個實驗被發現會有抵消的情況。

七-(三)<線圏直徑>

過程與方法:

- 1.更替拾音器中線徑同為 0.15mm 但線圈直徑不同的線圈($2.30cm \times 1.14cm$ 兩種)各電阻為 $8.05\Omega \times 4.6\Omega$ 。
- 2.將拾音器連上喇叭。
- 3.用調音器將弦調成一樣的音階。
- 4. 觀察並記錄不同的線圈直徑對放大後輸出音頻信號的影響。
- 5.控制變因:150 圈線徑 0.15mm 的線圈、98.10cm 的鋼弦、強磁力磁鐵操縱變因:線圈直徑

圖【七_3_1】不同直徑的線圈 (左是直徑 2.30cm,右是直徑 1.14cm)

<表七-3-1>不同直徑的線圈與放大後輸出音頻信號的影響:

	固定的地方彈撥 2cm 的放大後信號電壓			
不同直徑的	與頻率			
線圏	電壓 (V)	頻率 (Hz)		
1^{st}	1.26	302		
2^{nd}	1.31	295		
3^{rd}	1.27	300		
4 th	1.27	297		
5 th	1.29	299		
直徑 2.30cm 電阻 8.05Ω	1.28	298		
(平均值)				
1 st	1.28	299		
2 nd	1.25	298		
3 rd	1.19	305		
4 th	1.23	298		
5 th	1.27	301		
直徑 1.14cm 電阻 4.6Ω (平均值)	1.24	300		

討論:

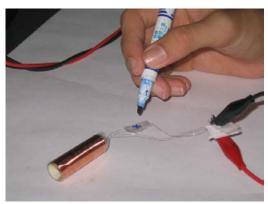
1.實驗結果發現兩者沒什麼差異,但電阻值與線圈直徑成倍數關係,因為 $2\pi rx$ 圈數=線圈總線長,兩者的線圈總線長大約是兩倍。但直徑 2.30cm 的線圈線較佔空間,圖【七_3_1】可以很明顯看得出。

八、 製做可以杜絕雜訊的簡易電吉他

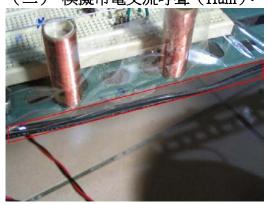
過程與方法:

(一) 測試線圈內感應電流方向與磁場強度變化方向的關係:

圖【八-1】線圈與電表


圖【八-2】鱷魚夾易接觸的地方用絕緣體 隔開,確保不會短路

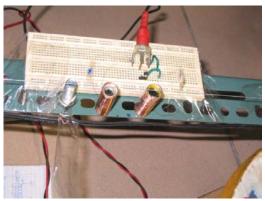
圖【八-3】用頭為 S 極的磁鐵進入線圈瞬間產生的電流為正



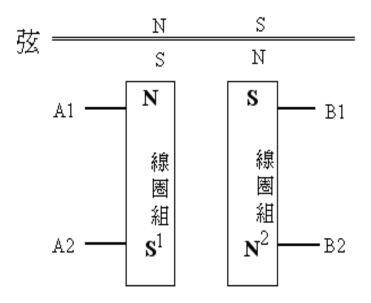
圖【八-4】用頭為 S 極的磁鐵抽出線圈瞬間產生的電流為負

圖【八-5】為線圈標記好磁鐵進入線圈時哪一端流出電流

(二) 模擬市電交流哼聲 (Hum):



圖【八-6】用檯燈的電線模擬電吉他以外的其他磁力通過而產生的雜訊(Hum)


(三) 線圈內磁鐵的磁極放置與哼聲(Hum)的關係:

- 1. 更替拾音器中磁鐵與連接方式組合方式不同的線圈組。
- 2. 將拾音器連上喇叭。
- 3. 觀察並記錄不同的組合方式對放大後輸出音頻信號的影響。
- 4. 控制變因: 1200 圈線徑 0.15mm 直徑 1.14cm 的線圈、105.70cm 的鋼弦、 強磁力磁鐵

操縱變因:線圈與另一線圈的組合方式

圖【八-7】兩組線圈

圖【八-8】兩組線圈組與弦的意示圖 (線圈組1、2都是以順時針纏繞)

<表八-1>固定的地方彈撥 2cm 的放大後信號是否有聲音與 Hum (雜訊):

組合方式 (兩線圈組的磁 極方向)	固定的地方彈撥 2cm 的 <mark>放大後</mark> 信號是否有 Hum(雜訊)		
(兩線圈組相連 的方式)	是否有 Hum(雜訊)	是否有聲音	
單一線圈	有	有	
正極與正極	有	有	
A2 連 B1	(比單一線圈大聲)	(比單一線圈大聲)	
正極與負極	有	微弱	
A2 連 B1	(比單一線圈大聲)		
正極與正極	微弱	微弱	
A2 連 B2	(比單一線圈小聲)		
正極與負極	微弱	有	
A2 連 B2	(比單一線圈小聲)	(比單一線圈大聲)	

- 1.雜訊沒有完全被杜絕,因為兩個線圈組不全然相同,手工製的線圈有時會誤差 幾圈。
- 2.用安培右手定則可以模擬出電流的走向。

陸、結論:

- 一、(一)電吉他的優點是沒有大而佔空間的音箱,適合大型演唱會的高移動性, 但聲音音色是不如真正的木吉他,且線圈和導線一定多多少少會產生一 些雜訊,影響其音質。
 - (二) 拾音器產生電流的方式很特別,是利用<mark>線圈和磁鐵以外的金屬切割磁場</mark>,但畢竟切割的能力有限,產生的電流很微小。但喇叭須要的是交流電的波型,強弱倒是較容易解決。
- 二、 我們因為實驗時觸摸 RCA 信號端子喇叭聽到 AM 廣播電台這個現象感到特別好奇,所以請教師長和書籍,原因是線圈成了超大電感器,人體成了電容器,兩者成了濾波器,加上音頻功率放大器裡的電晶體,它們便不小心成了古早收音機。
- 三、(一)可以產生信號電流的弦都有一個共通點:它們的材料都是<mark>導磁性金屬材料</mark>,只有導磁性金屬材料靠近磁場時會變成有磁性的小磁鐵,彈撥時才會擾動拾音器的磁鐵磁場,進而產生信號。
 - (二)導磁性金屬材料不只是我們實驗中的鐵和鋼,還有專業電吉他弦的主要材料,就是鎳,但是專業電吉他弦的各個廠牌鎳的含量都不一樣。
 - (三)實驗時發現雖都是導磁性金屬材料,但音色不盡相同。因為主要是線 密度的不同,造成音色的不同。
- $\mathbf{U} \cdot (\mathbf{U})$ 给音器發出的音頻信號也是符合 $\mathbf{v} = \mathbf{f} \times \lambda$ 這個公式。
 - (二)雖說我們弦長與拾音器發出音頻信號的關係實驗數據是有<mark>反比</mark>的趨勢,但繪製出來的折線圖並不工整,因為我們並沒有把弦的張力控制好,只有使用一般的調音器校正。
 - (三)發現彈撥不同長的弦以<mark>弦長的中心最能測出其弦長的聲音</mark>,不宜實驗 時都在同一個地方彈撥弦。
- 五、(一)弦的張力愈緊(砝碼放越多),彈撥出的頻率會愈高。
 - (二)弦的頻率不只是國中所教的張力、弦長所影響,弦的<mark>密度</mark>也會影響弦 所發出的頻率。
- 六、 實驗發現以導磁性金屬材料切割磁場這種方式,一般磁鐵的磁場實在太

微弱,是沒有辦法產生夠大的音頻信號讓放大器放大。

- 七、(一)漆包線的<mark>線徑粗細其實不太影響發出的電流</mark>,但是須要減少拾音器的 體積,選擇 0.15mm 線徑的漆包線纏繞線圈。
 - (二)線圈不能以不同的方向纏繞,這會讓電流相互抵消。不管是不同層或不同段都會相互抵消。
 - (三)線圈的圈數確實會影響發出的訊號強弱(振幅),<mark>越多圈數訊號就越強大</mark>,但不會影響音調(頻率)。
 - (四)<mark>線圈的直徑其實不太影響發出的電流</mark>,但是須要減少拾音器的體積, 選擇直徑 1.14cm 的線圈。
- 八、(一)不管是有電通過的電線,還是一般的插座,都會產生磁場干擾拾音器 的運作(雜訊)。
 - (二)雙線圈拾音器(Hum bucker) 是利用外來磁力的同方向性使兩線圈組 產生不同方向的雜訊讓兩雜訊相互抵消。

柒、 參考資料及其他:

- 一、曾偉碩 電吉他拾音器專題(電氣篇)。取自:吉他電子網 http://www.diyplayer.com/
- 二、尼爾·艾勒等◎著 徐淑真◎譯(1989年)。音樂之旅 桂冠圖書出版
- 三、弦小樂 電吉他結構認識。取自:樂團達人 http://hi.twbbs.net.tw/616086/
- 四、國中自然與生活科技 康軒版 第3章 波動與聲音
- 五、羅傑.布立基曼會◎著(民國94年)。電子世界 漢聲出版社
- 六、臺中市 科學博物館 駐波實驗
- 七、Samson Sir (2001年6月) Guitar Pick Up 拾音器。取自: http://www.rocksquare.net/guitarpickup.html
- 八、Wikipedia 百科 http://www.wikipedia.org/
- 九、電吉他硬體常識~拾音器(PICKUP)術語 吉他手小潘的音樂世界 取自:http://tw.myblog.yahoo.com/guitar-pan
- 十、吳明倫 劉又綺 劉家威 桃園縣中壢市第48屆 中小學科學展覽會作品 國小組 摩登紙風車發電
- +- · Young, Hugh D. (1982) UNIVERSITY PHYSICS SIXTH EDITION Addison-Wesley Publishing Co., Inc.

【評語】030106

- 1.實驗設計有創意,實驗態度積極,值得鼓勵!
- 2.實驗方法不夠嚴謹,建議可嘗試利用更簡單的方式量聲音頻率!
- 3. 數據的分析與實驗結果的呈現有待加強!