中華民國 第49 屆中小學科學展覽會作品說明書

國小組 數學科

最佳(鄉土)教材獎

080407

「珠」絲馬跡-串珠與數學原理之探討

學校名稱:嘉義市東區蘭潭國民小學

作者:

指導老師:

小六 黄馨儀

翁秀玉

小六 黃湘樺

李佩馨

關鍵詞:串珠、多面體、尤拉公式

壹、摘要

身邊常見美麗的串珠作品,**但卻未見有關串珠的數學研究**。我們進行二年時間來探討串 珠。結論如下:

研究一:相同大小的珠珠,以「點→線→面」的方式操作,若以某顆珠爲中心點,周圍角度和是 360°的有:四邊形+四邊形、六邊形+三角形,這二種串法可以形成平面。

研究二:五邊形組合的「二十面十二面體」(稱爲五邊形球體)只要增加**四邊形**或**六邊形**就可以擴充。而且使用六邊形較節省珠數,這也是串珠中最常見的作法。

研究三:增加六邊形擴大球體時,五邊形維持 12 面,六邊形以 5 的倍數增加。而且串珠作品只要進行名詞轉換,也符合尤拉公式:

珠珠數(稜邊數) + 2 = 三角形連接處(頂點數) + 面數。

研究四:沙發或盒子轉角處的串法,以畢氏定理檢驗證實爲直角。

貳、研究動機

有一次在義工媽媽的指導下,用珠珠串成由五邊形構成的球體,於是我們開始思考: <mark>為什麼五邊形會拱起來,可以串成一個球體</mark>? 其他的多邊形也會拱起來嗎?我們研究哪幾種正多邊形的組合會變成平面。後來,又陸續串了一些動物的造型,義工媽媽教我們使用六邊形來擴充球體,我們竟然從珠數和面數的關係中找到尤拉定理。更因爲義工媽媽教導我們沙發造型的串珠,引發研究立體三面直角中的問題。但是因爲沒有相關的參考資料,我們總是在摸索中學習,一直遇到瓶頸,不過我們也一一克服。這期間,也讓我們驚訝這個小小的串珠中竟然隱含了這麼多秘密。

*教材相關性:南一版數學科第八冊第五單元長方體與正方體

参、研究目的

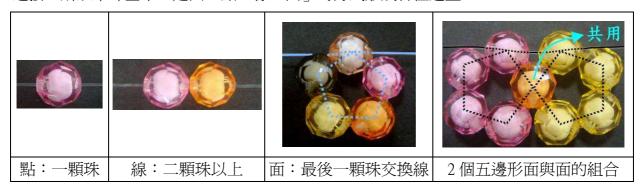
研究一:正多邊形組合的串珠與平面的關係

研究二:擴充串珠球體的設計

研究三:串珠立體造型與尤拉公式的關係

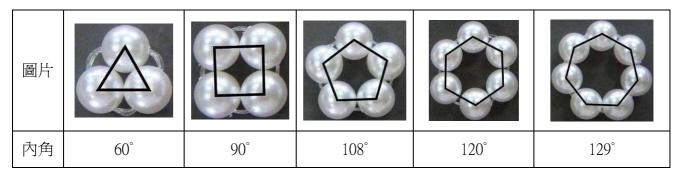
研究四:串珠產生立體三面直角

肆、器材


珠珠、釣魚線、量角器、直尺、立體模型片、電腦軟體。

伍、研究過程、結果、與討論

研究一:正多邊形組合的串珠與平面的關係


一、「點→線→面」的組合方式

實際串珠的動作中,我們發現串珠中的珠珠經由釣魚線連接,由點變成了線,只要在 最後一顆珠交換線,就可以隨意決定由幾顆珠串成一個平面,然後平面再與平面進行組合 連接,所以串珠基本上是由「點→線→面」的方式形成各種造型。

二、大小相同的珠珠串成的是正多邊形

珠珠串成的多邊形,因爲珠珠大小相同,所以串成的多邊形是正多邊形,那我們很容易推算各種多邊形串珠的內角。內角分別爲:三角形是 60°、四邊形是 90°、五邊形是 108°、六邊形是 120°、七邊形是 129°…。

三、分析正多邊形組合形成平面的條件

進行串珠時,我們會決定以幾顆珠串成一個平面,以此平面繼續做面與面的組合。 觀察串珠作品,發現大多是各種正多邊形和三角形的組合,我們**發現到一些常見的組合會** 形成平面,但某些組合卻無法形成平面,因此,我們針對此現象進行探討。

以某顆珠爲中心點,分析其周圍角度,如果角度和是 360°,就可以形成平面;如果角度和不是 360°,就會拱起。

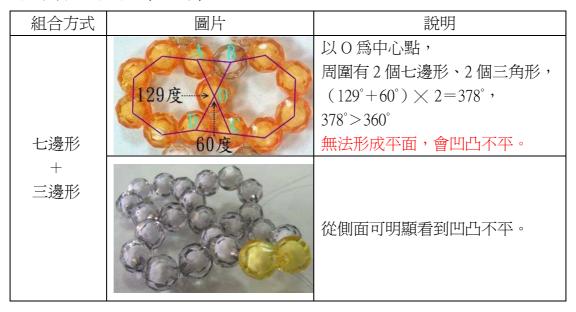
(一)以 n 顆珠爲一組,串成一個平面,再繼續面與面的組合。

1.以3顆珠串成一個平面(三角形)

組合方式	圖片	說明
		以〇爲中心點,
三角形		周圍有3個正三角形。
+	60度	其周圍的角度
三角形	C A	$60^{\circ} \times 3 = 180^{\circ} < 360^{\circ}$
	60度	180°小於 360°, 所以會拱起。

2. 以 4 顆珠串成一個平面(四邊形)

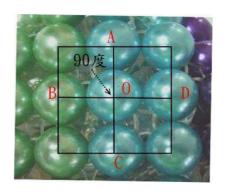
組合方式	圖片	說明
	A	以〇爲中心點,
四邊形	90度	周圍有4個正方形,
一 四邊形	6 8 0 4	$90^{\circ} \times 4 = 360^{\circ}$,
	A C /A	等於 360°,所以會形成平面。
		以〇爲中心點,
	B	周圍有2個正四邊形、
四邊形	C A 60	2 個正三角形。
三角形	D g	周圍的角度
	90度 E	$90^{\circ} \times 2 + 60^{\circ} \times 2 = 300^{\circ} < 360^{\circ}$
		300°小於 360°, 所以會拱起。

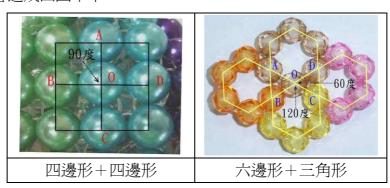

3. 以5顆珠串成一個平面(五邊形)

組合方式	圖片	說明
五邊形	108度 60度	以 O 為中心點, 周圍有 2 個五邊形、2 個正三角形, 周圍的角度 (108°+60°) ×2=336°<360° 336°小於 360°,所以會拱起。
三邊形		從側面明顯看到拱起。

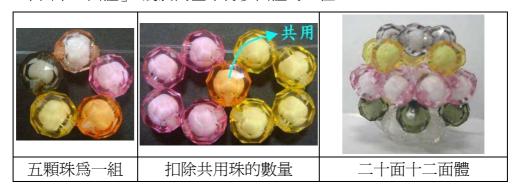
4. 以 6 顆珠串成一個平面(六邊形)

組合方式	圖片	說明
六邊形 + 三邊形	60度 120度	以 O 爲中心點, 周圍有 2 個六邊形、2 個正三角形, (120°+60°) × 2=360°, 等於 360°,所以可以形成平面。


5. 以7顆珠串成一個平面(七邊形)


(二)分析

1.當我們在進行串珠時,通常以「面與面的組合」爲主,**當三個面接連時,自然形成一個 三角形,我們稱爲「連接處」**。但是,如果刻意四邊形+四邊形的組合,就不會形成三角 形。

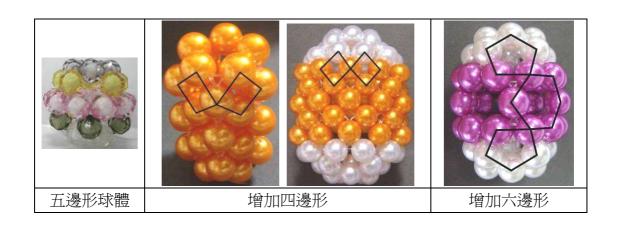

2.**以任一顆珠爲中心點,其周圍角度和是 360°,只有四邊形+四邊形、六邊形+三角形**,這二種平面的組合,**可以使串珠形成平面**;而其他的組合會使平面拱起;甚至七邊形以上的串法就會造成凹凸不平。

研究二:擴充串珠球體的設計

一、五邊形組合的「二十面十二面體」

義工媽媽教導我們串出的各種造型中,最常用的就是以五邊形為平面的串法,如果繼續串下去,就會形成一個漂亮的球體。在串法上就是讓五顆珠為一組,如果遇到面與面的組合時,必須扣除共用珠的數量,如此串出的成品就是正五邊形+三角形組合而成的「二十面十二面體」,屬於阿基米得多面體的一種。

二、增加四邊形或六邊形可以擴充五邊形球體


(一)觀察串珠成品

二十面十二面體,我們自己稱爲「五邊形球體」,是串珠最基本入門的造型,後來再繼續觀察其他造型,例:Kitty 的頭、豬的身體、沙發的扶手,發現如果要擴充變成橢圓形球體或柱體等,可以增加四邊形或六邊形。

(二)分析

1.由研究一的結論恰巧也得知,**四邊形或六邊形這二種串法的每一顆珠周圍的角度和是** 360°, 會形成平面,所以就能達到擴大拉長的效果。

2.雖然增加四邊形或六邊形都能達到擴大拉長的效果,但是,爲了符合經濟效益,使用六邊 形可以節省珠珠的使用數量,所以串珠中最常見就是**增加六邊形組合來擴大變形**。

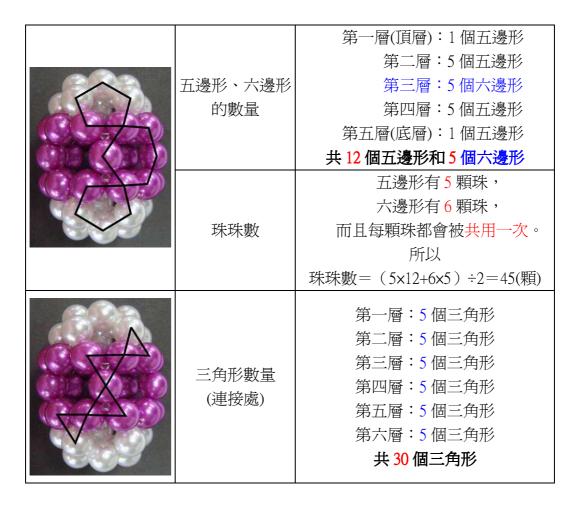
研究三: 串珠立體造型與尤拉公式的關係

一、分析以五邊形球體擴大拉長後柱體的面數與珠數

名詞解釋:

「連接處」的意思爲

<u>串珠中3顆珠的連接點形成的面(三角形)(</u>如右圖)



(一)五邊形球體

心外腹		
第二層1個五邊形	五邊形數量	第一層(頂層):1個五邊形 第二層:5個五邊形 第三層:5個五邊形 第四層(底層):1個五邊形 共12個五邊形
共用	珠珠數	每個五邊形有 5 顆珠,而且 每顆珠都是 2 個五邊形所 <mark>共用</mark> 。 所以 12×5÷2=30(顆)
	三角形數量 (連接處)	第一層:5個三角形 第二層:5個三角形 第三層:5個三角形 第四層:5個三角形 共20個三角形

(二)增加5個六邊形的球體

我們以六邊形來擴充球體,發現每次增加的六邊形必須是 5 的倍數,最後才能串成一個完整的立體造型。

(三)增加10個六邊形的球體

拼凑結構的不同,會有二種形狀的球體。

1.長球體:

五邊形、六邊形 的數量

第一層(頂層):1個五邊形 第二層:5個五邊形

第三層:5個六邊形第四層:5個六邊形

第五層:5個五邊形

第六層(底層):1個五邊形

共12個五邊形和10個六邊形

珠珠數	五邊形有 5 顆珠, 六邊形有 6 顆珠, 而且每顆珠都會被共用一次。	
	六邊形有6顆珠,	
三角形數量 (連接處)	第二層:5個三角形 第三層:5個三角形 第四層:5個三角形 第五層:5個三角形 第六層:5個三角形 第七層:5個三角形 第八層:5個三角形	

2.扁球體:

	第一層(頂層):1 個五邊形
	第二層:5個六邊形
五邊形、六邊形	第三層:10個五邊形
的數量	第四層:5個六邊形
	第五層(底層):1 個五邊形
	共 12 個五邊形和 10 個六邊形
	五邊形有5顆珠,
	六邊形有6顆珠,
珠珠數	而且每顆珠都會被 <mark>共用一次。</mark>
	所以
	珠珠數= (5×12+6×10) ÷2=60(顆)
	第一層: 5 個三角形
	第二層: 5 個三角形
三角形數量	第三層:10個三角形
一円ル <u></u> 製里 (連接處)	第四層:10個三角形
(建按處)	第五層: 5個三角形
	第六層: 5 個三角形
	共 40 個三角形

二、尤拉公式的套用

串珠造型本身也是一種多面體的組合,因此我們參考多面體的數學資料中發現「所有的多面體都會符合<u>尤拉公式</u>」,即以下:

稜邊數(E) + 2 = 頂點數(V) + 面數(F)

我們嘗試根據研究二中的各種立體造型,分析五邊形和六邊形的面數、三角形(連接處)個數、珠珠個數後,套用尤拉公式,竟然可以成立。只是一些名詞必須轉換:

尤拉公式中的稜邊數(E) = 串珠中的珠數

頂點數(V) = 串珠中的連接處(三角形)

因此公式改寫如下:

尤拉公式→ 稜邊數(E) + 2 = 頂點數(V) + 面數(F)

串 珠→ 珠 數 + 2 = 連接處 + 面數

我們將上述串珠成品整理如下表,完全符合公式。

多面體	珠珠數連接處		面數			公式:	
多四 <u>胞</u>	と小と小安人	建按处		六邊形	總面數	珠數+ 2=連接處+面數	
五邊形球體	30	20	12	0	12	30+2=20+12	
增加5個六邊形	45	30	12	5	17	45 + 2 = 30 + 17	
增加 10 個六邊形	60	40	12	10	22	60+2=40+22	

增加5個六邊形

增加10個六邊形

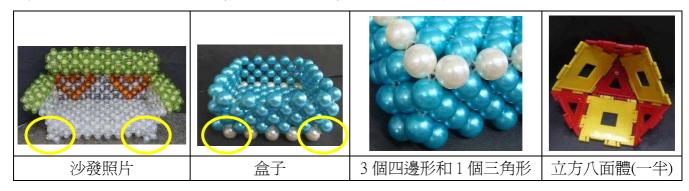
三、繼續增加六邊形的數量,球體變成柱體。

(一)觀察成品

由研究一得知,**六邊形構成的串珠會變成平面**,所以如果增加六邊形的數量, 就可以使原本的球體拉長,變成柱體。

(二)分析

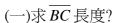
1.**擴充五邊形球體的六邊形之所以是以 5 的倍數增加**,我們觀察到是以<mark>延伸出來的連接處</mark>有幾個而定。例如下圖中,每一層會有 5 個連接處,所以每增加一層,就是增加 5 個六邊形。

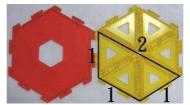

2.我們計算出珠數、連接處、面數,可以套用尤拉公式。

			面數		公式
珠珠數	連接處	五邊形	六邊形	總面數	珠數+ 2=連接處+面數
30	20	12	0	12	30+2= 20+12
45	30	12	5	17	45+2= 30+17
60	40	12	10	22	60+2= 40+22
75	50	12	15	27	75+2= 50+27
90	60	12	20	32	90+2= 60+32
105	70	12	25	37	105+2= 70+37
120	80	12	30	42	120+2= 80+42
135	90	12	35	47	135+2= 90+47
150	100	12	40	52	150+2=100+52
165	110	12	45	57	165+2=110+57
180	120	12	50	62	180+2=120+62

研究四:串珠產生立體三面直角

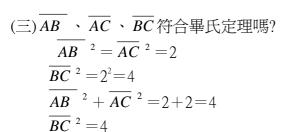
義工媽媽教導我們沙發造型的串珠,觀察到轉角處像是一個三面的直角,但真正的角度為何?要如何證明?這引發我們研究立體三面直角中的問題。

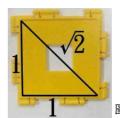

我們先串簡單的盒子造型,再仔細觀察轉角處發現,它是由3個四邊形和1個三角形構成一半的立方八面體。但是珠珠是圓球體,很難用眼睛觀察珠與珠的角度,所以改用組合立體模型片,老師教我們畢氏定理,利用畢氏定理證明出直角。


證明過程如下:

想法: 求出圖四-1 中 \triangle ABC 各邊長, 如果 $\overline{AB}^2 + \overline{AC}^2 = \overline{BC}^2$, 能符合畢氏定理,則 \angle A=90°。

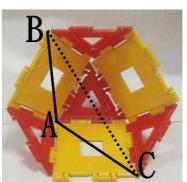
設立體模型的邊長為1




 \overline{BC} 是六邊形的對角線, 設立體模型的邊長為 1, 所以 $\overline{BC} = 2$ (圖四-2)

圖四-2

(二)求 \overline{AB} 、 \overline{AC} 長度? \overline{AB} 、 \overline{AC} 是正方形的對角線 由畢氏定理算出斜邊 $\overline{AB} = \overline{AC} = \sqrt{2}$ (圖四-3)



圖四-3

 $\overline{AB}^2 + \overline{AC}^2 = \overline{BC}^2$,符合畢氏定理,所以 $\angle A = 90^\circ$ 。

由證明得知,沙發或盒子的造型轉角處確實是直角。

圖四-1

陸、結論

我們身邊常可以看到美麗的串珠作品,甚至手工藝店、網路、書籍也教大家如何串出美麗的作品,但是卻未見有關串珠的數學研究,我們進行了二年時間的探索,從串珠作品探討其中的數學原理。結論如下:

研究一:相同大小的珠珠,由「點→線→面」的操作方式串成平面,若以某顆珠爲中心點, 其周圍角度和是 360°的有:四邊形+四邊形、六邊形+三角形,這些串法可以形 成平面;而其他的組合會使平面拱起,甚至七邊形以上的串法就會造成凹凸不平。

研究二:五邊形組合的「二十面十二面體」是最常見的造型,增加**四邊形**或**六邊形**可以擴充五邊形球體。使用六邊形比四邊形更節省珠珠的使用數量,所以串珠中最常見的就是增加六邊形組合來擴大變形。

研究三:增加六邊形擴大球體時,其中五邊形仍然維持 12 面,六邊形會以 5 的倍數增加。 而且串珠作品只要進行名詞轉換,也符合尤拉公式:

珠珠數(稜邊數) + 2 = 三角形連接處(頂點數) + 面數。

研究四:利用四邊形再加上一個三角形的串法,就可以形成一個立體的三面直角,以畢氏 定理檢驗,證實確定爲直角。

柒、參考資料

王麗芳(民 88)。串珠方程式。台北縣:民勝文化。

葉偉文譯(民 93 年)。典雅的幾何。頁 137-139。台北市:天下遠見。

萊昂哈德·尤拉 - 維基百科,自由的百科全書。民國 98 年 6 月 23 日取自 http://zh.wikipedia.org/w/index.php 。

附件

我們進行串珠的研究已經二年,其實不止只有上述的研究,還有其他的研究內容,我們 放在附件提供參考。

※串珠與「一筆畫」原理之間的關係

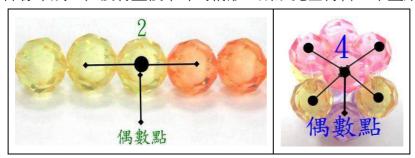
串珠的線只有一條,卻可以將珠珠連接起來,所以我們猜測這與「一筆畫」原理有關, 因此深入探討。

一、介紹「一筆畫」原理:

數學家<u>尤拉</u>提出,交於點的線如果是兩條或四條,那個點就稱爲偶數點;交於點的線如果是三條或五條,那個點就稱爲奇數點。

一個圖形包括 3 個以上的奇數點,這個圖形就無法以一筆畫完成,所以一個圖形是否能用一筆畫完成與奇數點數目有關,奇數點必定等於 2 或完全沒有。

組合情形:


- 1.圖形由偶數點組成,一定可以一筆畫完成,畫的時候可以任一偶數點爲起點,最後仍 會回到這一點。
- 2.只有二個奇數點的圖形,其餘爲偶數點,一定可以一筆畫完成,畫的時候必須以一個 奇數點爲起點,以另一個奇數點爲終點。

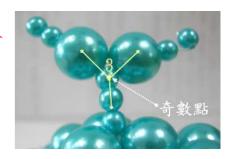
二、觀察偶數點的串珠成品:

三、分析

- 1.幾乎所有的串珠成品,交會處都是偶數點,不是2、就是4,並沒有奇數點。
- 2.串珠只由一條線串成,但沒有重複串珠的情形,所以完全符合一筆畫原理。

四、特殊情況

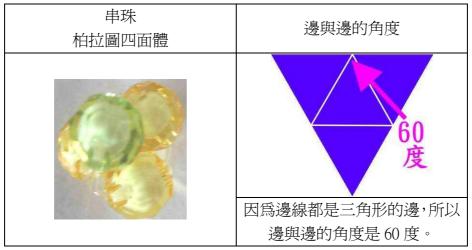
(一)以下作品是以同一條線,但是重覆穿過珠珠,不符合一筆畫「不能重覆走」的條件。


同一條線穿過下面銅色小珠後,必須繞過外側再穿回 綠珠,所以重覆穿過珠珠。

- 1.由最下面的黄珠(第 1 顆)開始串,當最後一顆是綠珠,它會連接到第 1 顆黃珠後,只是形成一個平面,所以對綠珠而言,仍是偶數點(2)。
- 2.再<mark>重覆將線穿過別的黃色珠</mark>,才能將綠色珠固定在 黃色3顆珠的上方。

(二)我們發現有些串珠作品出現奇數點,但是這些作品是採用另外 加線的方式完成的。(如右圖所示)

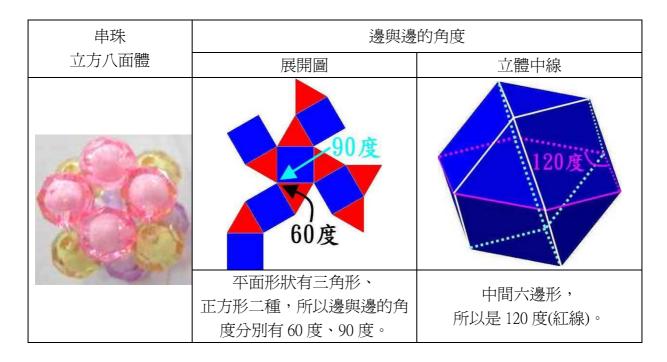
※立體串珠球體中面和邊的角度


我們發現串珠成品並非是正多面體,大多是由二種以上的正多邊形所組合而成的立體造型,而且通常含有三角形的存在。因此,我們嘗試將三角形+三角形、三角形+四方形、三角形+五邊形等組合,串成簡單的立體造型,分析邊與邊的角度、面與面之間的角度。

我們利用電腦軟體找到以下這些串珠造型在數學上的名稱,並且電腦軟體可以看到展開圖和透視圖,有助於分析角度,我們再以 Phtoimpact 加上中線或角度數據來呈現報告。

探究一:邊與邊的角度

我們發現串珠多面體的造型中,是正多邊形+三角形的組合,因此分析邊與邊的角度很簡單,只要計算多邊形的內角即可。但是,我們也發現串珠造型的中線(稱爲立體中線),也會形成一個多邊形,所以,以下針對這二種進行分析:


一、平面形狀爲三角形:三角錐體

二、平面形狀爲三角形:立體菱形

三、平面形狀爲三角形和正方形:立方八面體

四、平面形狀爲三角形和五邊形:二十面十二面體

探究二:面與面的角度

串珠多面體中大多是正多邊形+三角形的組合,所以求相鄰面與面之間的角度,先畫二 個平面的中線,測量二個平面的中線的夾角,但是,因爲都不是很特殊的角度,所以只能使 用立體模形片拼出相同的造型後,以量角器及尺測量 10次,取平均值,以得知面與面的角度。

一、平面形狀爲三角形:三角錐體 二、平面形狀爲三角形:立體菱形

串珠 (柏拉圖四面體)	面與面的角度	串珠 八面體網格球	面與面的角度
	A 面和 B 面之間面與面的角度是 70 度。		A 面和 B 面之間面與面的角度是 110 度。

三、平面形狀爲三角形和正方形:立體菱形(立方八面體)

面的形狀	串珠照片	模型圖	面與面的角度
三角形與四邊形		B 和125度	125 度

四、平面形狀爲三角形和五邊形:圓球形(二十面十二面體)

一个国心心局———————————————————————————————————						
面的形狀	串珠照片	模型圖	面與面的角度			
三角形與五邊形		B 45度	145 度			

【評語】080407

- 1、能由串珠球體中發掘出相關的幾何概念,並察覺其與尤 拉公式相關式,進而利用這個定理推算出製作各種成品造型 所需的珠數,立意頗佳,是個很道地的生活數學,惟數學的 內容方面可以再予以深化。
- 2、作者從不顯眼處察覺到立體角,並利用替代的模型片以 畢氏定理來驗證其角度,充分展現觀察的敏銳度及科學探究 的精神。