中華民國第四十八屆中小學科學展覽會作品說明書

高職組 機械科

090904

機械手臂驅動方式之比較

學校名稱:國立東勢高級工業職業學校

作者: 指導老師:

職三 陳胤男 賴鴻州

職一 邱炳成

關鍵詞: 凸輪、伺服馬達、液壓缸

壹、摘要

現今的工業已趨向自動化的方式,自動化具有動作確實,減少人爲誤差的優點,人力 成本也可減低。如何達成自動化的需求呢?電子式控制和機械式控制都是常見的方式,電 子式控制的工作內容彈性大且容易調整,程式的寫入也十分方便;機械式控制的構造較耐 高溫,剛性高且成本低。

利用單晶片輸入程式控制其動作,這是應用較普遍的,比較用凸輪控制液壓缸動作,達成與單晶片所操控的機械臂有相同的效果。本研究將探討兩者的差異性,並著重於凸輪在自動化系統上的應用。

貳、研究動機

在高職所學的課程中,常常聽到「自動化生產」這個名詞,自動化生產 — 「產品的生產過程,以一系列的自動控制機構取代人力的使用。」,其中最重要的是如何控制機構之運動,以達成所需的加工、輸送或夾持。以「凸輪」來控制,是我們最先想到的方法,因為在機械原理課程中,曾介紹過各種不同型態的凸輪,例如:「平面凸輪、圓柱凸輪、確動凸輪…等」。其運動型態與應用場合有很多的變化,令人覺得非常有趣,更重要的是因為凸輪的型態可以依工作的內容需求而設計,達成我們所需的工作目標。

此外,爲了減少加工所需要的時間,能明確快速的驗證研究的主題,我門將引用智高公司的元件進行結構的組裝。智高公司與本科產學合作多年,成效卓著。該公司擁有許多世界專利的元件,由於在自動化系統中液壓缸是不可或缺之動力傳達元件,本研究將利用智高公司現有之液壓缸,幫助我們方便檢驗模擬出來的自動控制效果。

最後我們也希望將電子式控制的結構模擬出來,達到機電整合的目的,並與凸輪式控制的結構做一個比較,藉以增加自己的學習領域。

参、研究目的

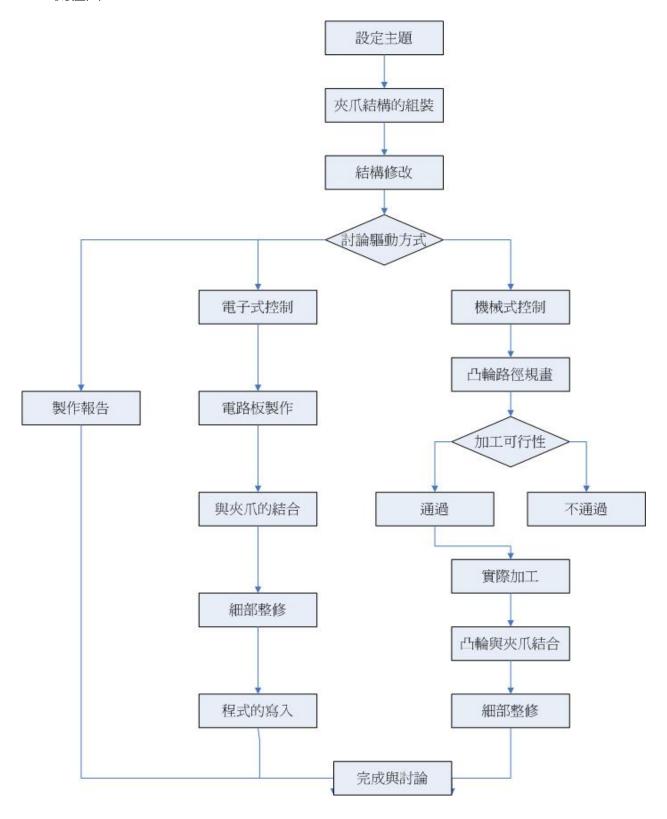
- 一、規劃凸輪的路徑且實際加工出來,並討論凸輪在自動控制範疇裡的應用。
- 二、以電子控制方式驅動伺服馬達,希望藉此,能夠學習到電子控制的相關知識,有能力 製作電路板、撰寫程式,以及能夠寫入程式的單晶片製作。
- 三、結構的組裝,了解到不同連桿的特性以及傳動方式。
- 四、了解液壓的傳動,並將液壓缸應用在結構中,組裝、配置以達傳動功能。
- 五、將兩種不同的驅動方式,放在一起探討,比較出其中的差異。

肆、研究設備及器材

一、使用的材料:

- (一) 智高實業股份有限公司零件
- (二) 鋁板 120×120×10 & 120×120×7 (mm)
- (三) 電路板及周邊電子零件
- (四) 鋼棒
- (五) 伺服馬達
- (六) 壓克力板
- (二) Ø3 mm 銷

二、使用的工具機及加工工具:

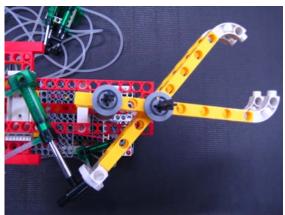

- (一) CNC 切削加工機
- (二) Ø 8mm 端銑刀
- (三) 加工夾具、夾持虎鉗
- (四) 鑽床、鑽頭

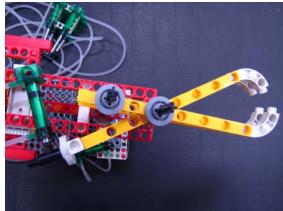
三、使用的電腦程式:

- (一) 電腦輔助繪圖程式: AutoCAD 2006
- (二) 電腦輔助設計程式: Solid Works 2007
- (三) 電腦輔助製造程式: MasterCAM 9.0
- (四) 電腦文書編輯程式: Microsoft Word 2003

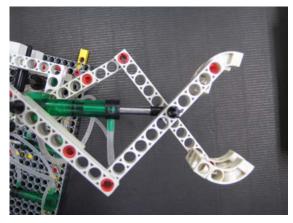
伍、研究過程與方法

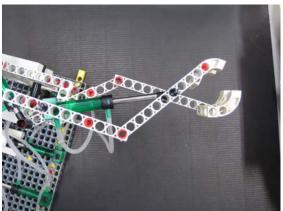
一、流程圖



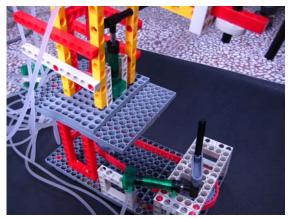

二、夾爪的連桿機構與液壓缸的結合

(一) 連桿機構說明


1.夾爪開合動作

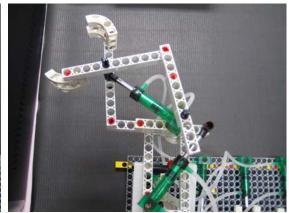

修改前:

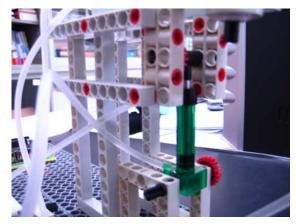
修改後:

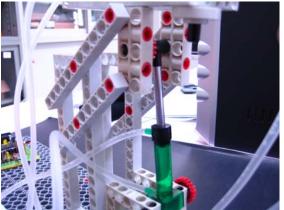


說明:修改前的夾持動作是由液壓缸推動單邊夾爪,修改後則是雙邊夾爪一起動作, 如此一來,可得較大的夾持力。

2.左右轉動動作

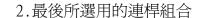

修改前:


修改後:



說明:夾爪的轉動,修改前是由液壓缸透過鏈條的撓性傳動以達到轉動效果,但是這樣的結構較不穩固,且傳動較不確實。修改後,結構更爲輕巧,且液壓所負荷的重量減輕許多。

3.上下升降動作

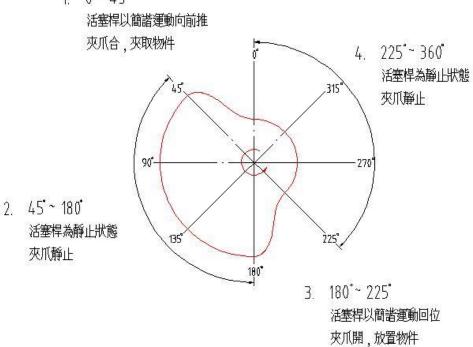




說明:利用液壓缸與平行連桿的組合,做出升降的動作。

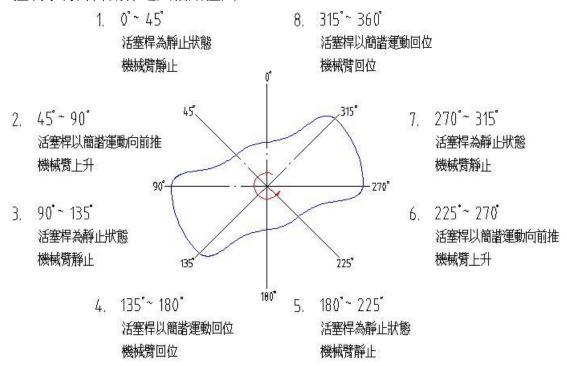
(二) 整體結構的修正:修正後使結構更輕巧,動作更確實。

1.最初所規劃的連桿組合



三、凸輪控制部分

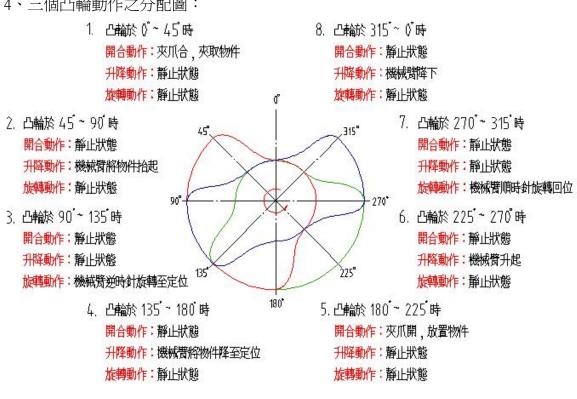
(一) 凸輪路徑規劃


1、控制夾爪開合動作之凸輪路徑圖:

1. 0°~ 45°

夾爪開合動作之理論曲線,基圓 Ø50 升程30 mm

2、控制手臂升降動作之凸輪路徑圖:


機械劈升降動作之理論曲線,基圓 o50 升程30 mm

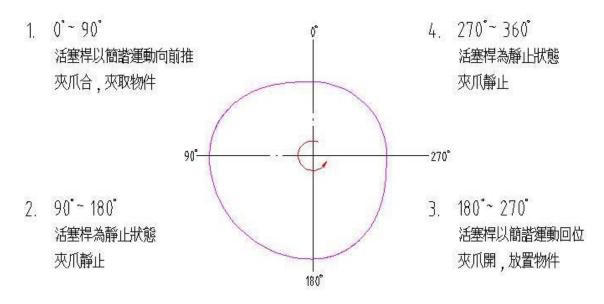
3、控制手臂旋轉動作之凸輪路徑圖:

1. 315~ 90 活塞桿為靜止狀態 機械臂靜止 4. 270°~ 315° 活塞桿以簡諧運動回位 機械簡順時針旋轉回位 2 90 ~ 135 活塞桿以簡諧運動向前推 機械劈逆時針旋轉 180* 3. 135°~ 270° 活塞桿為靜止狀態 機械赞靜止

機械劈旋轉動作之理論曲線,基圓 Ø50 升程30 mm

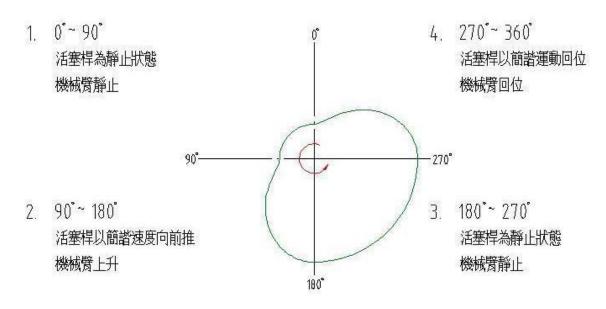
4、三個凸輪動作之分配圖:

循環動作說明: 夾取物件 $_$ 上升 $_$ 向左轉 $_$ 下降 $_$ 放開物件 $_$ 上升 $_$ 向右轉 →下降

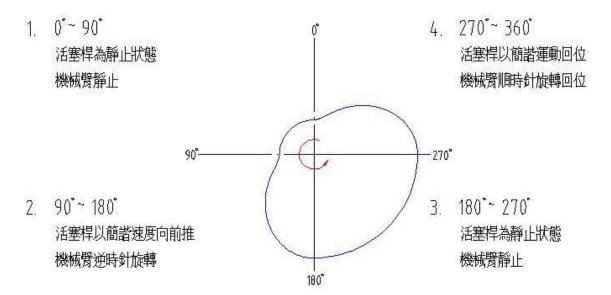

- 開合動作之理論曲線,基圓 Ø50 升程38 mm

一一 升降動作之理論曲線,基圓 Ø50 升程30 mm 旋轉動作之理論曲線,基圓 Ø50 升程30 mm

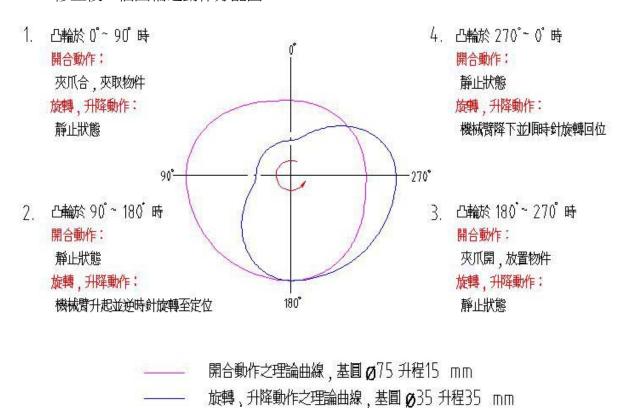
(二) 凸輪路徑修正


修改前的凸輪路徑,由於基圓太小、升程又太大,因此造成很大的壓力角,在推動液 壓缸時產很大的側向力,無法順利推動液壓缸,所以重新修正凸輪的形狀,增加基圓直徑, 縮短行程以減低壓力角,並修正機械手臂的動作,以克服因側向力太大而無法傳動的問題。

1、修正後控制夾爪開合動作之凸輪路徑圖:

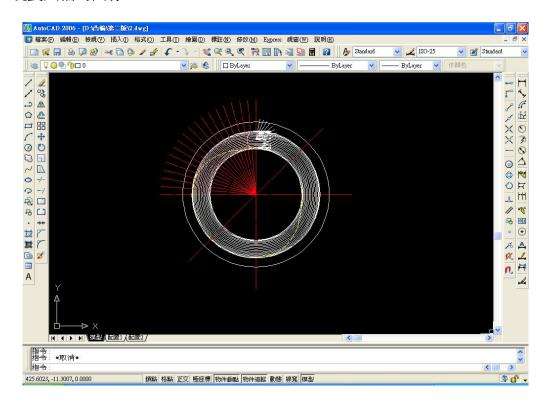

夾爪開合動作之理論曲線,基圓 g75 升程15 mm

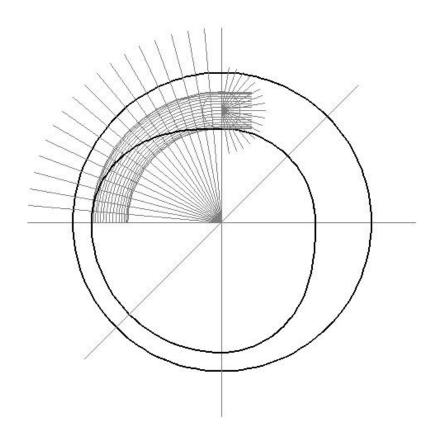
2、修正後控制手臂升降動作之凸輪路徑圖:


機械劈升降動作之理論曲線,基圓 Ø35 升程35 mm

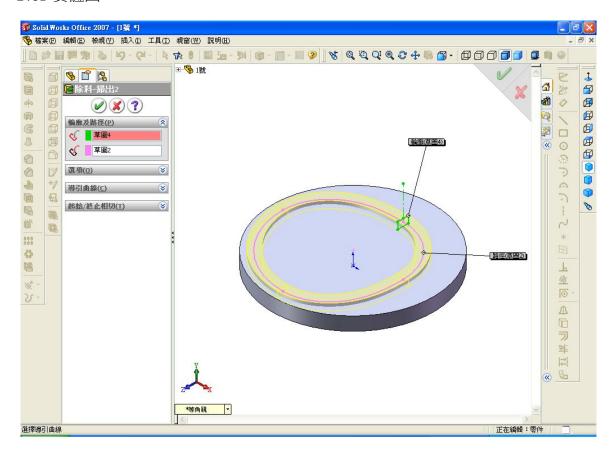
2、修正後控制手臂旋轉動作之凸輪路徑圖:

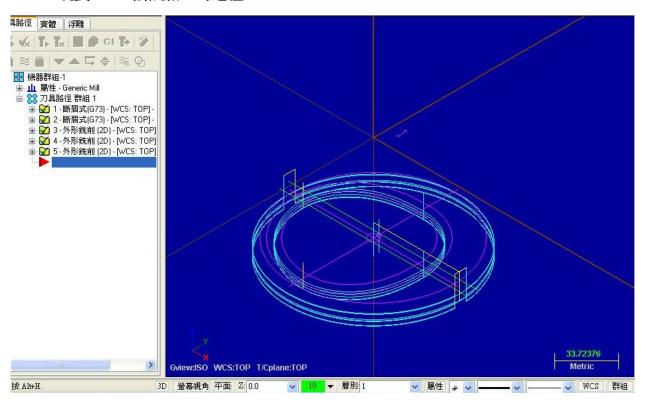
機械腎旋轉動作之理論曲線,基圓 Ø35 升程35 mm


3、修正後三個凸輪之動作分配圖:

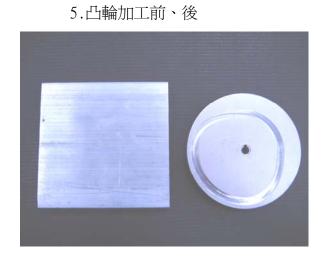

循環動作說明:夾取物件 → 左轉同時上升 → 放開物件 → 右轉同時下降

(三) 製作過程


1.規劃凸輪的曲線

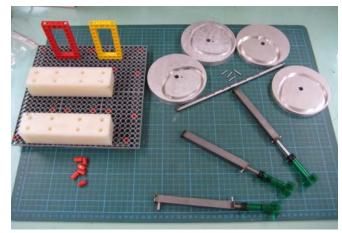

2.凸輪之理論曲線


2.3D 實體圖

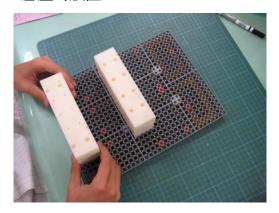


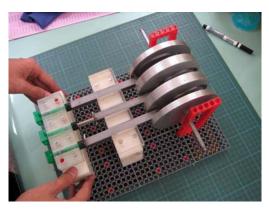
3. 規劃 CNC 機械加工的過程

4. CNC 機械實際加工



7.所有自製零件





(三) 組裝

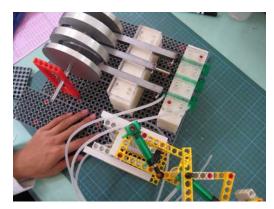
1.底座的放置

3.凸輪與液壓的配置

四、電子控制部份

(一) 電路板的製作

1.電路板曝光


3.電路板鑚孔

2.凸輪與軸的裝配

4. 管路系統的配置

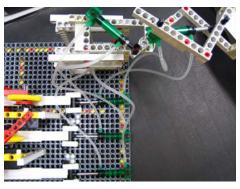
2.洗電路板

4.焊接電子零件

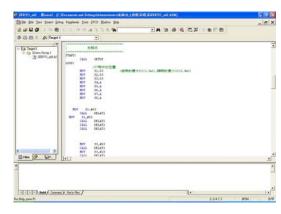
5.電路板成品

(二) 組裝

1.伺服馬達與齒輪的結合


2. 齒輪與齒條的結合

3. 齒條與液壓缸的組裝


4.主動液壓缸與從動液壓缸的系統

5.電子程式編輯

6.電子程式的寫入

五、動作的測試

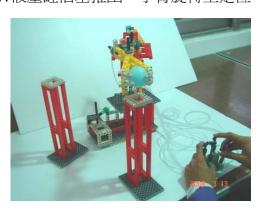
(一) 手動液壓機械手臂測試

1.液壓缸活塞推出,夾爪夾取球

3.液壓缸活塞推出,手臂旋轉

5.液壓缸活塞回位,夾爪鬆開放置球

(二) 凸輪驅動液壓機械手臂測試


1.液壓缸活塞推出,夾爪夾取球


2.液壓缸活塞推出,懸臂上升

4.液壓缸活塞推出,手臂旋轉至定位

2.液壓缸活塞推出,懸臂上升

3.液壓缸活塞推出,手臂旋轉

5.液壓缸活塞回位,夾爪鬆開放置球

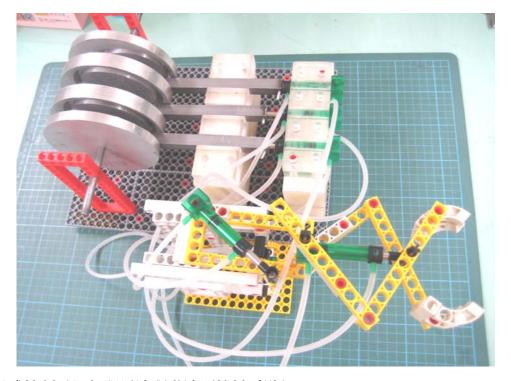
(三) 伺服馬達驅動液壓機械手臂測試

1.液壓缸活塞推出,夾爪夾取球

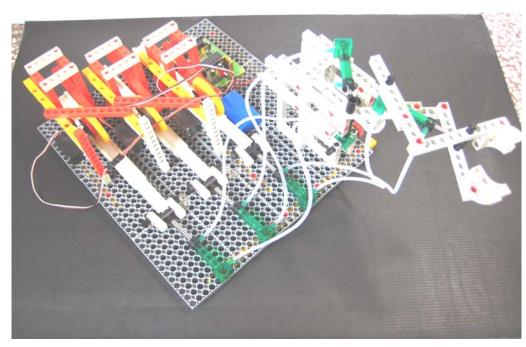
3.液壓缸活塞推出,手臂旋轉

4.液壓缸活塞推出,手臂旋轉至定位

2.液壓缸活塞推出,懸臂上升


4.液壓缸活塞回位,夾爪鬆開放置球

陸、研究結果


一、機械式控制(以凸輪驅動液壓機械手臂):

以馬達轉動凸輪,藉由凸輪的路徑變化推動液壓缸,使液壓缸的活塞桿做推與收的動作,再驅動夾爪及其他手臂的連桿進行動作。

二、電子式控制(以伺服馬達驅動液壓機械手臂):

將程式寫入晶片後,控制馬達的轉動角度,馬達轉動齒輪,以嚙合的齒條推動液壓缸, 再驅動夾爪及其他手臂的連桿進行動作。

三、控制方式的比較:

(一) 動作可變化性:

機械式:動作的變化,取決於凸輪的路徑,動作越繁瑣,路徑相對複雜許多。但凸 輪的路徑必須考量到壓力角問題,所能做的動作,被侷限在一範圍內,與 電子式的比較,動作變化較爲簡單

電子式:動作的變化,是利用程式控制馬達的迴轉角度及時間點來驅動;動作的變化,只需程式的調整,與機械式相比,工作彈性較大。

比較結果:相較之下,電子式控制可做的動作較多變化,限制及考量也較少。

(二) 製作的難易度:

機械式:以 CNC 機械加工前,實際的應用必須確定可行,凸輪的組合及周邊零件也須具足夠強度,才能開始加工、組裝。

電子式:電子式需要實際加工的部分,算是電路板的製作了。由於我們在電子電路 方面的了解不算太多,而且電路板算是比較精密的部分,製作的過程對我 來說很有挑戰性。

比較結果:兩種控制方式都有不同需要的考量,但如果就工業上的實際應用而言, 電子式的構造較爲精密,製作的過程也複雜許多。

(三) 修正動作的難易:

機械式:動作取決於凸輪的路徑,若是要改變動作則勢必要重新製作一顆新的凸輪,加工的步驟也必須從頭來一遍。

電子式:夾爪動作的變化,取決於程式的控制,所以若要修正夾爪的動作,只需將程式作修改即可。

比較結果:兩種控制方式,動作變化的調整皆有其優缺點。但相較之下,電子式的 調整較爲方便,只需利用電腦程式的修改即可因應不同的動作需求。

(四) 設備的維護:

機械式:由於是使用金屬的材質,所以剛性較高,較不易損壞,運作時只需要適當的潤滑,即可完成維護工作。

電子式:電子零件的部分都十分精密,稍有灰塵或是水的滲入,就可能造成損壞而

失去其功能,所以電子式的設備維護及保養是重要的一環。

比較結果:設備維護方面,由於材質的不同,所需的維護也有程度上的差異。電子 式需要更多的周邊維護設備,相對經費也須花費較多。

(五)成本: [智高公司零件的成本不納入討論]

機械式:此項作品所用的材料幾乎都是價格較低的塑膠材質,相對之下,鋁金屬所製成的凸輪屬於高單價的材料。

電子式:作品中所使用的電子零件及伺服馬達,花費甚鉅,尤其是伺服馬達,一顆就價值不菲了。

比較結果:兩種的製作成本相較之下,電子式周邊的零件以及馬達所花費的成本較高,且製作過程的失敗、材料的損耗也比機械式要來的多,如果將維護作業一併納入考量,兩者之間的價差會增加更多。

在一般工作場合,備有不同路徑的凸輪,將其作不同的搭配,即能因應不同需求的動作變化。對實際的應用而言,工作的內容彈性更大,自動化控制的過程中,配合度也相對提高了。

柒、討論

一、機械部份的討論

(一) 連桿機構的組合

夾爪的開合、手臂的升降、基座的轉動,各有一組連桿控制,組裝時必須考量到力量在傳達過程中的損失,經過多次的測試及修改終於找到目前這一套組合,組裝起來較簡潔,傳動的過程也更流暢,動力損耗更少。

(二)液壓缸負載問題

機構的動作全仰賴液壓缸的傳動,所以會影響到其動作的因素也必須考慮進去,如 機件間的摩擦阻力、凸輪的壓力角、以及負荷的重力,要把這些因素控制在液壓缸的負 載範圍內。

(三) 凸輪的製作

- 1.在凸輪的繪製過程,必須考慮到壓力角的問題,壓力角過大會導致傳動不良,甚至無法動作。透過基圓的修改以及動作的修整,並且多次模擬,終於將讓凸輪可以順利推動液壓鋼。
- 2.凸輪的材料原先設定爲壓克力,但有個潛在問題—壓克力材質能否承受實際運作時產生的負荷?所以後來便改爲鋁材,可得較高的強度,重量也控制在馬達可驅動的範圍內。
- 3.轉動凸輪的軸,也是因爲強度的考量,由原本的塑膠材質改爲鋼材質,也由原本的十字軸改爲圓軸與鍵的組合。

4. 使用 CNC 機械加工凸輪時,銑削凸輪圓的外型,無法以正常虎鉗夾持,所以必須 製作適當夾具夾持。 5.實際運作時,配合凸輪傳動的機件,強度須達一定程度,以抵抗凸輪傳動時所產生的側向力及有效力。

二、電子控制部份

(一) 電路板

洗電路板的時間長短要掌握得當,在酸洗液中的停留時間要抓的剛好,太快或太慢 皆會使電路不完整,同時酸洗液的濃度也是影響的因素之一,要納入考量。

(二) 焊接電子零件

電子電路的東西,算是較精密的部分,所以將電子零件焊接上電路板的過程,必須 小心翼翼,否則稍有差池就會導致短路,整個再從頭來過。

(三) 程式寫入的操作

利用電腦,將電子的程式指令輸入電路板晶片中,藉以控制馬達的驅動角度和時機。 雖然剛開始不太熟悉,但經過多次操作後便能漸入佳境了,這點與學過的 CNC 程式指令十分類似,也說明了操控方式不再只是傳統的手動控制,而是十分仰賴電腦的應用能力。

捌、結論

研究的過程,不斷蒐集、整理資料,並將課程中所學做統整的應用,將知識變成活生 生的經驗,已達學以致用之效。

研究的過程中,了解到空有構想是不足以完成作品的,實際的加工過程,還是會跟原 先所想的有所出入,必須一邊製作、一邊調整。以模擬規劃與實作方面的差異性而言,在 繪圖、模擬的過程中,也許只要利用些許的時間及電腦程式的應用,即可規劃出想像中的 作品。但實作過程就不只是需要想法而已,還需要顧慮零件的配合以及實際運作的可行 性,加工的過程也會遇到許多問題需要克服,不如想像中的簡單。

身處機械類的我們,電子控制部分對我們是非常陌生的,剛開始踏入此領域時,因為不熟悉而覺得困難重重,但經過自己動手操作及老師們的指導後,對此有更進一步的了解,也希望以後有機會能夠再接觸更多有關的應用。

經由這次機會,讓我們對規劃與加工的觀念更加清楚,不斷解決問題、尋求答案,讓 我們懂得團隊合作的精神,也深刻體驗到科學研究的意涵。最後要感謝師長們的教導與幫助,讓我們獲得一次十分寶貴的經驗。

玖、參考資料及其他

- 一、李榮華,機件原理 II, 龍騰文化事業股份有限公司
- 二、楊玉清,數值控制機械實習 I,高雄市左營區民族一路 1071 號,昱網科技
- 三、鄭凱鴻,製造與設計—六十種自動控制實驗器,完美科技有限公司
- 四、詹鎮榮、機構學《修訂版》,全華科技圖書股份有限公司

【評語】090904

- 1. 結構設計佳,已具實際應用價值,惟可朝模組化方向設計。
- 2. 凸輪控制及單晶片驅動方式差異上仍有比較改善空間。
- 3. 主題爲驅動方式之比較,但是整體系統之展示都爲介紹, 各零組件功能宜再檢討。