中華民國第四十八屆中小學科學展覽會 作品說明書

國小組 自然科

佳作

081501

來電捕手-新概念能源探究

學校名稱:臺南縣關廟鄉五甲國民小學

作者: 指導老師:

小六 柯俊廷

小六 李炘樺

小六 黃上豪

小六 高逸絢

小六 曾秀婷

小六 洪嘉欣

謝文山

劉炳告

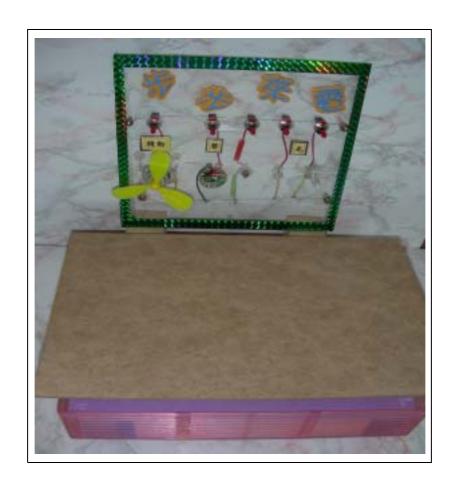
關鍵詞: 壓電效應、壓電片、替代能源

壹、摘 要

這是我們再次對新式能源進行探討一

發電原理排除:法拉第的電磁感應(發電機原理)與伏打化學電池原理。

聰明如您,猜猜我們是運用哪種發電原理…


我們探討的主題是:如何有效的運用生活周遭的"微力"來發電!

以19世紀居里兄弟所研究的"壓電效應"爲基礎。

壓電電壓對發電效能無能爲力;我們研讀資料、尋找關鍵步驟—累壓電路 ——個簡單的電路,當作電力輸出的關鍵、改良實驗,將微量電壓加以累積。

參考 2007 全國科展國小組作品:《來電傳晴》、《鼠力發電機》</u>儲能部分,使無法即時儲存的電力,充電到電池中。並推廣成"步行走路"都能發電的"來電箱",成功啟動馬達、高亮度 LED

事實上,這是一個成功的來電裝置,對於環保與永續能源深具研究開發潛力。

貳、研究動機

『高油價時代來臨!』

使得<u>替代能源的開發與永續資源利用</u>,不時的見諸媒體報導。總有人提出不同的思考,何不好好地利用生活周遭的"微力"呢!如果步行走路都能發電,這該是一件多麼美好的事[1]!沒有二氧化碳的問題,走走路居然有電力可以使用。基於這個美麗的想法,促成我們所要探索的主題—何不以"微力"來發電呢?而這個想法的可行度有多高呢?

緣起……來自耶誕鈴聲的提示

1880年法國的居里兄弟(P. Curie 和 J. Curie)無意中觀察到一個有趣的現象:如果對石英薄片施加力量,它的兩端便會產生電壓;反過來,如果給一個電壓在石英片上,那麼薄片會產生形變,這發現被稱爲壓電效應[2] (Piezoelectric Effect,圖 1)。

耶誕卡片中蜂鳴器發出悅耳鈴聲,就是壓電效應的應用(圖 2)—<u>這在說明</u> 一件事實:該效應所產生的壓電電流(電壓)是非常微弱的—所以只能用在音樂卡 片上,這也是我們在多次實驗後得到的認知。

事實上,壓電效應給我們一個重要的提示一它說明了以"敲擊、按壓"發"電"的可能性。

我們嘗試對此原理進行摸索、探究與實驗,得到一些精彩的結果。結論指出:<u>利用該效應所研發的電力與儲能方式可以成爲</u>新式樣的能源環保電池。

在康軒版六上「自然與生活科技」中:「電磁作用」、「聲音」、「水溶液的酸鹼性」等三個單元,均有介紹本次科展研究所用原理:電磁鐵、法拉第原理、發光二極體的使用、水果電池、電池串聯與發聲振動等相關課程。

參、研究目的

- 一、探討壓電效應所產生的電壓與實際應用的可行性評估。
- 二、嘗試比較市售壓電材質:如何產生電壓之研究。
- 三、研究壓電片的性質。
- 四、研究如何使壓電片產生直流電、並累積電壓。
- 五、壓電片不穩定因素探討。
- 六、探討利用壓電效應所進行的充電實驗,如何將電力有效儲存於充電電池
 - , 使成爲新樣態的儲能物件。
- 七、將此研究推廣爲具應用價值之"來電箱"。

肆、研究設備及器材

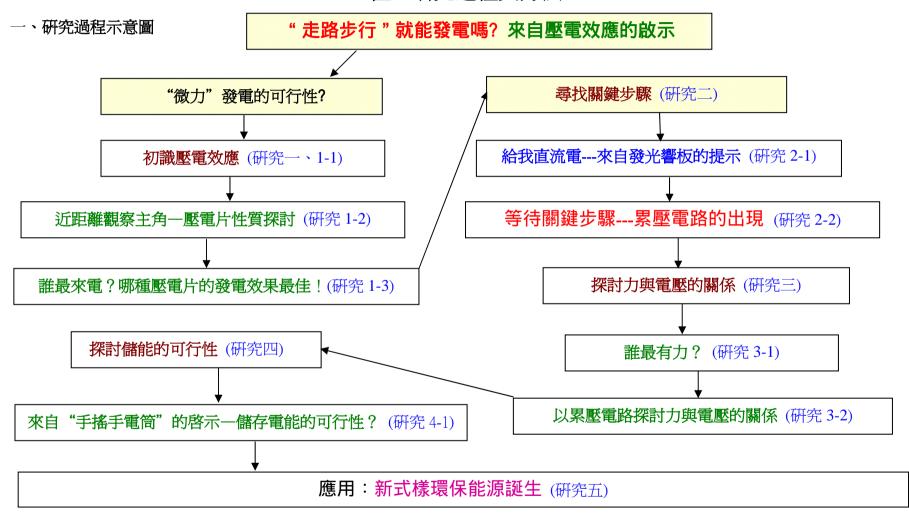

壓電片、三用電表、斜口剪、尖嘴鉗、剝線鉗、熱熔膠槍、馬達、發光二極體(LED) 、電烙鐵、銲錫、漆包線、電子零件、壓克力板、木板、彈簧、開關、手搖式手 電筒、美工刀、數位相機、相關軟體

圖 3:實驗器材圖

伍、研究過程與方法

二、研究方法

研究一、初識"壓電效應"

研究 1-1: 認識壓電效應

壓電效應最常在打火機、瓦斯點火槍中遇到。

首先拆解點火槍取得裡面的壓電素子[3](圖 4、5 紅框者),以三用電表量 測電壓大小,觀察到壓電電壓超過電表上的最大容許值(1000V), "破表"根本 無法讀到電壓大小;壓電素子會產生極高的電壓。

有一個相當安全而且有趣的小實驗,將壓電素子的引線和手心直接接觸, 壓電時,手掌會有麻麻的觸電感,眼尖的同學甚至會看到有藍色火花產生,這說 明壓電素子產生的電流是非常微小的。

壓電素子很容易觀察到壓電效應(圖 6)。但太高的壓電電壓,使我們目前 暫不考慮採用壓電素子作爲研究的媒材。

圖 4:拆解點火槍取得壓電素子

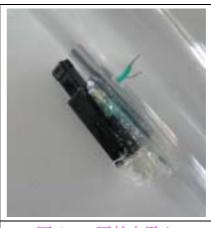


圖 5: 壓電素子

圖 6:一壓就來電!

研究 1-2: 近距離觀察主角---壓電片

當我們發現壓電素子無法加以應用時,只好購買壓電片,它原本主要應用 在蜂鳴器,以電池驅動後,造成壓電片的振動進而發出聲音;既然 "壓電效應" 告訴我們,除了"電"可以對它產生"振動"、"發出聲音"外,應該也可以以 "振動"、"按壓"來產生"電",這是對壓電片進行逆向思考,進一步探索其 可能的應用,究竟這異想天開的想法可行性有多高呢?真的會有電產生嗎?我們 迫不及待的趕快進行實驗!

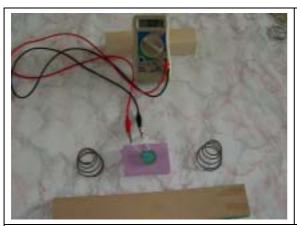

圖7:裸電片

圖 8:加鋁殼的壓電片

市售壓電片可分爲直徑 2.7、2.0 cm 兩種尺寸,每種尺寸又分:加覆鋁殼 、未加鋁殼(裸電片)2種,總的4種(圖7、8)。壓電片上方白色物質爲壓電材料 、屬於陶瓷一類的化學物質鋯鈦酸鉛(PZT),下方爲黃銅片;有的壓電片會預先 焊好紅黑 2 線,有的則須自己動手。值得提醒的是:焊接溫度太高 PZT 會熔化 ,應小心避免。

接下來進行初步的壓電實驗,使用三用電表,選擇"測量直流電壓"(圖 9),過程中觀察到:

1.輕輕按壓就有電壓產生,壓的力愈大電壓也愈大。

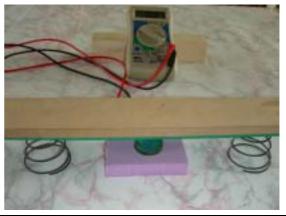


圖 9: 壓電實驗

2.按壓過程中,電壓的值是一直在跳動的,不會保持在一個固定值;最重要的一點是觀察到電壓的值有正有負交替出現,這意味著什麼呢?對電池而言,電壓一定是正值,不會出現有正有負的情形;"有正有負"在表示:壓電電壓是"交流電"而非直流電,只有交流電才會使得電壓值出現有正有負的情形。

3.我們好奇的想問,究竟在什麼情況下會產生正電壓?是在下壓的時候、 還是放開壓電片時呢? 表 1 清楚的告訴我們: 同一型的壓電片,有的下壓的時 候是正值,有的是負值,沒有固定,端由實驗決定;但進行下壓時,不會在同 一壓電片上,電壓同時出現有正有負的現象。

表 1: 同一型壓電片,何時產生正電壓?

壓電片 電壓數據(V)	裸電片(直徑 2.0 cm)						
實驗種類	編號 1	編號 2	編號 3	編號 4			
	-3.57	4.78	4.07	-8.61			
下壓	-4.13	5.73	9.12	-6.50			
	-3.20	3.96	2.89	-4.85			
	1.74	-4.70	-3.59	5.66			
放 開	2.13	-0.36	-3.73	5.07			
	2.82	-1.68	-1.61	1.67			
結論	下壓是負	下壓是正	下壓是正	下壓是負			

註:壓電片:PZT引線接電表正端,銅片引線接電表負端。

4.當壓電片受到不當的施力時,非常容易造成白色陶瓷 PZT 的破損、裂痕 (材質易脆),此時壓電效益降低,甚至根本沒有電壓輸出。基於此,必須以防震 片墊在壓電片的上下方作爲保護、減低損壞(圖 10、11)。

圖 10:壓電實驗

圖 11:實驗所用各式防震片

研究 1-3: 誰最來電? -----哪種壓電片的發電效果最佳!

我們必須找出4種壓電片中,哪種的壓電效果最好?我們對壓電片連續敲擊按壓10次,記錄電壓變化的情形;壓的時候儘量保持施力大小一致(有關力的測量見後討論)。

壓電片種類		裸電片(小)		小壓	小壓電片		裸電片(大)		大壓電片	
1	運 (V)			(力口金	呂殼)			(加鋁殼)		
實驗次數		直徑	2.0 cm	直徑	2.0 cm	直徑 2.7 cm		直徑 2.7 cm		
1	6	1.03	6.10	1.81	8.37	2.01	5.71	7.05	8.55	
2	7	2.24	2.90	2.27	4.26	3.07	3.55	9.31	6.45	
3	8	1.80	3.50	3.33	6.02	6.25	15.71	7.24	10.08	
4	9	4.12	7.73	4.75	6.47	2.75	2.28	12.01	11.93	
5	10	7.76	0.45	8.46	8.21	6.20	13.45	8.56	4.58	
平均電]駅(V)	3.7	'6V	5 4	0V	6.1	0V	8 58V		

表 2: 哪種壓電片,壓電後最來電?

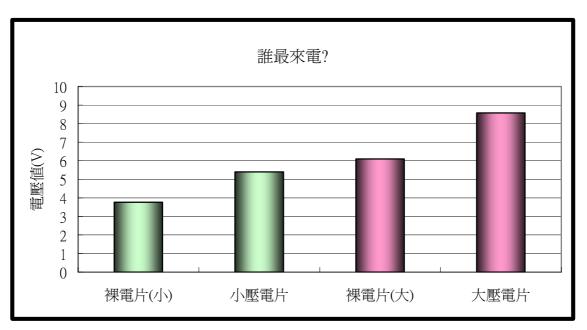


圖 12:四款壓電片,何者壓電後誰最來電?(以表 2 平均電壓値作圖)

由表 2、圖 12 可以看出:

- 1.尺寸大的(直徑 2.7 cm) 壓電片優於尺寸小的(2.0 cm),這是受力面積大,產生較大的壓電電壓。
- 2.<u>有鋁殼的電片優於裸電片</u>;這沒錯!鋁殼音箱就是爲了加強共鳴(振動)加大聲音的輸出而設計的。在壓電上,感受施力使得鋁音箱振動共鳴,增大電壓的輸出。

研究二、尋找關鍵步驟

研究 2-1: 給我直流電---來自發光響板的提示

先前實驗已經明確告訴我們:壓電後會產生交流電,這對電的應用是無能 爲力的,無法點亮 LED,我們須要直流電。

透過網路搜尋到:林宣安教師在《發電高手》一文中提到以壓電片製成發光響板的教具[4];在他的研習活動中(圖 13~15),林老師巧妙的利用四個二極體接成橋式整流器,輕鬆的將交流電轉成直流電,使 LED 發光(間歇發光)。



圖 13: 發光響板

圖 14:動手做橋式整流器

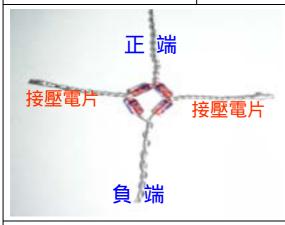


圖 15:經橋式整流器的壓電實驗

圖 16:LED 發光

發光二極體(LED)和二極體在概念上十分接近不難理解[9](圖 17~18),只是一個會發光一個不會,但都有一個特色:在接的時候都要注意正負極的接法,電流只能從正端流入(這非常重要,接錯了就沒有作用)。四個二極體接成橋式整流器聽起來似乎很複雜、高深?Don't Worry! Be Happy!!實際動手做卻十分的簡單,請您跟我這樣做(圖 13~16)。我們以 5 種不同規格的二極體製成橋式整流器後,產生壓電電壓的比較。

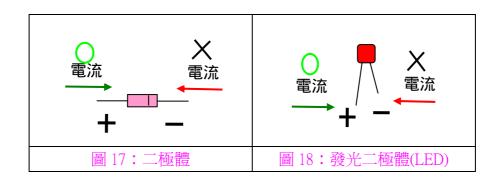


表 3:哪種二極體(製成橋式整流器)壓電後最來電?[壓電片(大、鋁)為壓電源]

二極體規格 電壓(V) 按壓次數	二極體 2V	二極體 6V	二極體 10V	二極體 16V	二極體 25V
1	0.34	3.44	7.81	11.32	12.72
2	0.32	3.47	6.34	11.62	11.85
3	0.31	3.61	8.56	12.11	13.06
4	0.35	3.61	6.38	9.96	11.08
5	0.34	3.44	8.10	12. 56	12.65
6	0.32	3.44	8.23	9.06	14.39
7	0.34	2.94	7.31	12.73	16.45
8	0.31	3.59	8.34	11.94	13.84
9	0.34	2.79	8.56	9.37	12.93
10	0.32	3.67	8.05	11. 23	15.42
平均電壓(V)	0.33	3.42	7.77	11.19	13.44

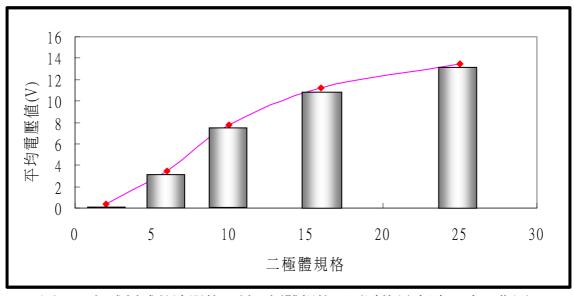
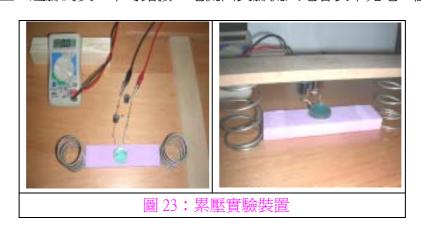


圖 19:組成橋式整流器的5種二極體規格,壓電後最來電?(表3作圖)


由實驗得知:1.橋式整流器是將壓電後產生正負的電壓,轉成只有正值的 直流電。**測量經橋式整流器後的電壓,沒錯都是正值(表 3)**;而且有敲擊按壓才 有電力輸出,沒動作就沒電,這使得 LED 發出間歇的閃光(圖 16)。

2.受限於二極體的規格,最大使用到 25V(在大一點就沒有相同的型式)。 由表 3、圖 19 可以看出:二極體的電壓規格愈大,產生的電壓也愈大。


研究 2-2:等待關鍵步驟----累壓電路的出現

電壓只有在受到敲擊按壓的刹那才發生,可不可以不**斷的敲按,就可以將** 電壓累積增加到一定的程度呢?

問題的解答,來得正是時候,深深體會出『機會只留給有準備的心靈』—那種感覺,出現在2本 DIY 的科普書籍:周鑑恆教授《輕鬆學物理的第一本書:31個有趣的物理實驗》與何堃山《趣味電氣科學實驗 DIY》[5~6],提到累壓電路的應用(圖20),最妙的是:產生電力的一端必須使用交流電,剛好和實驗主角—壓電片不謀而合,我們推測這一簡單電路應該可以用來累增、貯存電壓。

累壓電路必須使用二極體與電容的組合,在此**電容的功能就跟電池一樣, 都是用來儲存電力的**[9],但電容一放電會很快消耗電力到 0V,有正負腳的分別,長腳爲正、短腳爲負,不可錯接。電流由長腳流入電容表示充電、儲存電力;

由電容長腳流出表示放電、將電力拿出來用,這點和充電電池功能相同(圖 22)。在此,電容的使用參考何堃山一書的建議值:4.7 μ F、工作電壓 250V。

表 4: 累壓電路是否能累積電壓?

累壓電路實驗 電壓(V)	同一	電路,進行3次	實驗
按壓次數	編號 1	編號 2	編號 3
1	1.26	1.41	1.36
2	1.39	1.53	2.12
3	2.68	2.62	2.92
4	3.24	2.98	3.39
5	3.71	3.49	3.90
6	4.73	4.35	4.32
7	5.36	4.89	4.94
8	5.74	5.41	5.46
9	6.17	5.78	5.86
10	6.98	6.93	6.41

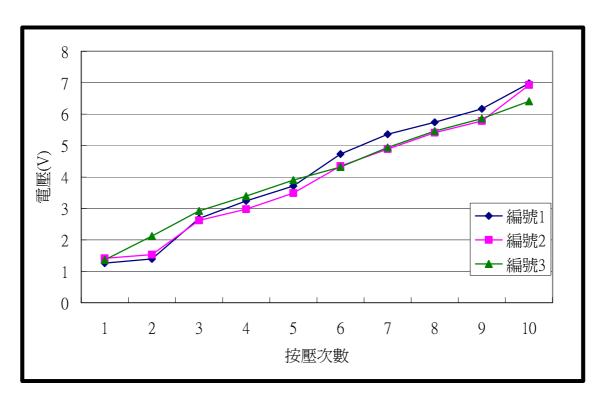


圖 24: 電壓可以被累積增加圖(表 4 作圖)

圖 24 可以看出:累壓電路的應用,使得電壓有隨著每次按壓,不斷的累積上升的趨勢;累壓電路會不會使壓電後的電壓無限上升?

表 5:累壓電路,壓電後電壓會不會無限	長5:5	罗 厭雷路	,	厭雷後雷厭會不會無限	上升?
---------------------	------	--------------	---	-------------------	-----

次數	電壓(V)	次數	電壓(V)	次數	電壓(V)	次數	電壓(V)
10	4.67	60	10.92	110	13.54	160	13.61
20	6.17	70	12.49	120	13.21	170	13.92
30	6.71	80	13.21	130	13.98	180	13.53
40	8.40	90	13.33	140	13.32	190	14.12
50	9.32	100	13.13	150	13.79	200	13.95

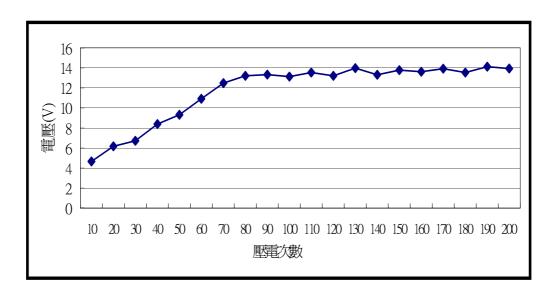


圖 25: 累壓電路的電壓不會無限上升(表 5 作圖)

圖 25 觀察到:

1.初期每次按壓,電壓會跟著累積增加,到一定程度之後電壓的値就會趨 於平穩,不會持續上升;**壓電電壓會儲存在電容中**(功能似充電電池),這提供給 我們一個訊息:**就是電壓可以透過一些方法來加以累積**。

2.實驗時體會到**累壓電路的一項優點一觀測到的電壓必為直流電,意味著** :它出來的電壓一端爲正、一端爲負,正負端固定,圖 26:紅(黑)鱷魚夾處爲正 (負)端。

研究三、探討力與電壓的關係

研究 3-1: 誰最有力?

現在我們談談力與電壓的關係。究竟多大的力量可以產生出多大的電壓? 那麼首先,要如何測量力的大小呢?

這問題本來十分的傷腦筋,其實只須使用電子磅秤,就可以輕易解決這個 煩人的問題—輕鬆讀取施力的大小(注意:操作時先歸零)。實驗進行時,壓電片 上下均須以防震片保護(研究 1- 2 結論),否則易脆破損,同時以三用電表讀取電 壓。

在此我們分成二個部份進行實驗:手壓來電、敲擊來電。

圖 27:手壓實驗

圖 28: 敲擊實驗

表 6: 手壓來電(使用單一壓電片[大,含鋁殼者])

次數	重量	電壓	次數	重量	電壓	次數	重量	電壓
	(g)	(V)		(g)	(V)		(g)	(V)
1	348.7	7.30	10	705.5	11.79	19	586.3	8.85
2	630.7	5.37	11	705.9	14.69	20	693.4	9.49
3	700.0	15.12	12	697.7	10.92	21	409.4	10.52
4	693.4	9.02	13	662.1	4.59	22	662.3	7.75
5	586.0	10.51	14	507.6	1.18	23	542.3	5.60
6	414.8	4.63	15	596.4	12.11	24	639.6	15.92
7	537.7	6.29	16	517.2	5.61	25	413.7	13.94
8	690.4	11.56	17	563.8	13.03	26	651.6	11.49
9	706.0	16.01	18	693.5	6.21	27	505.9	6.00

表 7:	<u></u> 	(使田留—	·厭雷片[大,	含鋁殼者])
101.		UX: /TI III	学用. 口 1 八 ~	

次數	重量	電壓	次數	重量	電壓	次數	重量	電壓
	(g)	(V)		(g)	(V)		(g)	(V)
1	504.6	12.91	10	711.7	15.49	19	684.2	12.53
2	461.7	6.51	11	603.1	11.48	20	715.1	8.51
3	657.7	11.44	12	497.8	2.22	21	746.0	5.31
4	596.4	9.47	13	690.5	4.37	22	749.1	14.98
5	692.9	7.23	14	706.8	8.96	23	713.1	18.05
6	693.0	10.12	15	692.9	9.14	24	633.5	11.26
7	693.0	4.67	16	692.9	11.58	25	717.9	15.43
8	574.3	6.85	17	697.3	17.46	26	658.0	13.30
9	736.4	15.61	18	714.5	12.28	27	695.9	12.68

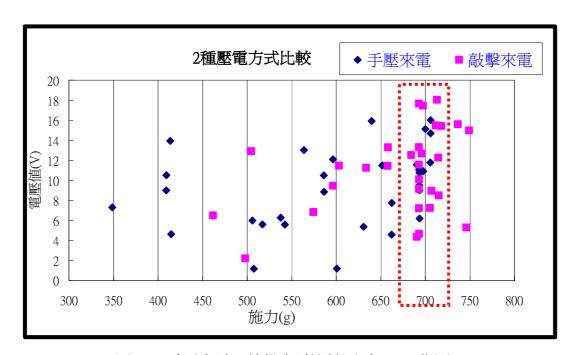


圖 29: 手壓來電、敲擊來電比較圖(表 6、7 作圖)

說明如下:

1.手壓來電:手指輕按壓電片不放,就有電壓輸出,但電子磅秤、三用電表讀值一直跳動,無法有效觀測;所以測量時"按一下"後均讀出「施力」與「電壓」的最大值。敲擊來電也如此處理。

- 2.觀察到不論"手壓來電"、"敲擊來電"兩個方法都不易了解「施力」 與「電壓」的關係,以散佈圖顯示:沒有呈現線性關係(圖 29),推敲原因在於:
 - (一)不易準確控制施力大小。(二)不容易使每次按壓、敲擊都落在壓電片相同的位置上。

(三)壓電片的受壓面積也是影響因素,按壓接觸面積愈大,電壓愈大。

不能因此就否定上述實驗, "手壓來電"—以手指輕壓就有微小的電壓發生;至於那較大的撞擊力道—"敲擊來電"則可以推廣在步行、走路的發電應用上【研究五討論】。

3.我們訝異的觀察到:圖 29 紅框處,施力在 700 g 附近,對應的電壓並不是一個固定值,而是一個範圍差值(Range),或大或小,但有施力就一定有電壓產生。這和我們原先的想法—以爲相同的施力會對應到相同的電壓值—有點不同。

附帶一提,爲了能控制施力的大小,還設計過一項實驗:利用砝碼自固定高度落下,產生的衝擊力道讓壓電片發電,實驗後發現仍無法判斷 1.「施力」與「電壓」之間有明確的關係存在、2.在同一高度落下會有相同的「施力」值。(圖 30)

研究 3-2: 以累壓電路探討力與電壓的關係

研究 3-1 透露一項事實:「施力」實驗的困難—施力不易控制,我們以彈 簧與木板改良壓力實驗裝置,使得施力可以分散在壓電片上,不會如研究 3-1 只 集中在部份的面上,結合累壓電路,再度思考力與電壓的問題!

表 8: 改良式壓電裝置之 1

	712 12	(<u>=</u> 0)						
次數	施力(g)	電壓(V)	次數	施力(g)	電壓(V)	次數	施力(g)	電壓(V)
1	692.5	1.28	4	692.4	1.24	7	692.3	1.78
2	692.3	1.47	5	692.5	1.03	8	692.4	1.12
3	692.5	1.38	6	692.3	1.04	9	692.2	1.07

註:平均施力 692.4g,平均電壓 1.27V(1.47~1.03V 爲一範圍值)。

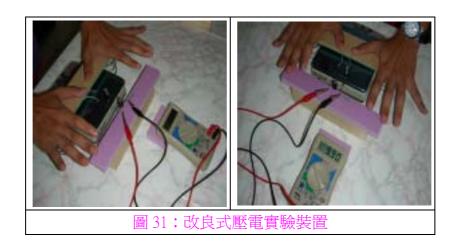


表 9: 改良式壓電裝置之 2(施力與電壓均爲平均值)

次數	施力(g)	電壓(V)	次數	施力(g)	電壓(V)	次數	施力(g)	電壓(V)
1	245.0	0.22	4	549.1	0.47	7	686.7	0.94
2	371.0	0.25	5	591.8	0.58	8	692.0	1.24
3	419.2	0.34	6	611.5	0.84	9	745.8	1.36

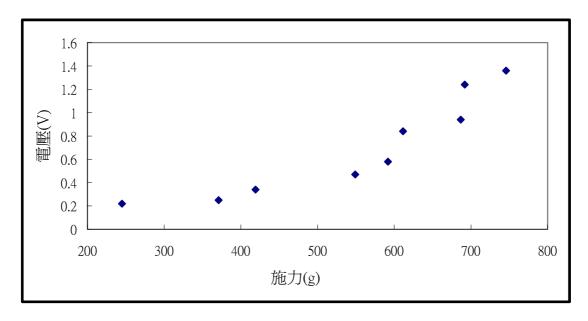


圖 32:施力與電壓的關係(表 9 製圖)

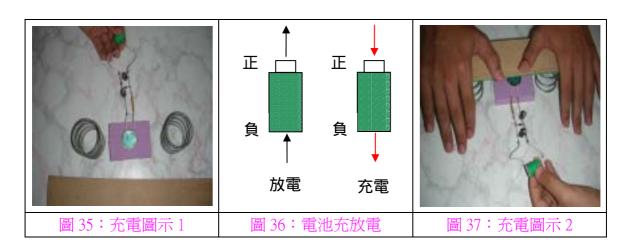
實驗觀察如下:

1.改良式壓電裝置在施力時,比較可以均勻分散在壓電片上;實驗者經過 練習後,可以較易控制施力的大小。

2.圖 32 觀察 「施力」與「電壓」的圖示有些近似線性關係,施力愈大電壓也愈大,但輸出的電壓仍爲一範圍值。無論如何,有"壓"就有"電力"的產生,是一個既定的事實。

研究四、探討儲能的可行性

研究 4-1:來自"手搖手電筒"的啓示一儲存電能的可行性?


<u>"產生電力"與"儲存電能"是不同的兩件事;壓電片搭配累壓電路,既</u>然可以輸出電壓,何不將它有效的儲存呢?

去年科展[7]我們曾研究<u>"手搖手電筒"</u>,它帶給我們莫大的想像空間(圖33),發電原理應用永久磁鐵進出漆包線圈而產生電力(法拉第原理[9~10]),它產生的電力微小,有搖才有電,必須有儲存電力裝置—充電電池(圖34綠色筒狀物),藉以蓄電與放電。這告訴我們:我們的電最終必須儲存於充電電池中。

研讀 2007 全國科展國小組第 3 名作品 "鼠力發電機"的充電實驗[8]:理解電流流出電池的正端就是放電,拿電池的電力出來用;<u>充電就是放電的逆向思考,將壓電得到的電流由電池的正端充入</u>。有此認知就著手實驗。

使用累壓電路對充電電池進行充電實驗,爲避免誤解電力是來自充電電池;因此充電時,一律先對充電電池放電,紀錄充電前的電壓才開始充電(圖35~37)。實驗紀錄與圖示如下:

我們以3組累壓電路的正、負端分別連接到充電電池的正、負端,進行 充電實驗。

表 10: 儲能試驗

壓電次數	充電量(V)	壓電次數	充電量(V)
0	0.00	800	0.42
100	0.06	900	0.51
200	0.10	1000	0.63
300	0.16	1100	0.76
400	0.19	1200	0.82
500	0.24	1300	0.86
600	0.29	1400	0.87
700	0.35	1500	0.87

(註:充電量=充入電池電壓一電池初始電壓)

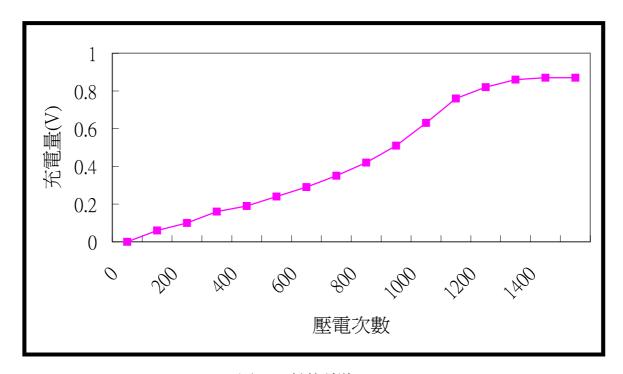


圖 38: 儲能試驗

表 10、圖 38 的數據不難看出:

- 1.充電電池經接壓充電後電壓有上升的情形,持續的接壓可以連續對電池 充電。
 - 2. 充電的電壓不會無限上升,最後會逐漸趨於平穩飽和,此時充電不易。
- 3.實驗過程觀察到更重要的一點:**電池充電後,電力不會再回到累壓電路**中消耗掉,我們無意間發現這是累壓電路的另一項優點。

研究五、應用一新式樣能源環保電池誕生

當壓電片產生的微量電壓可以儲存到充電電池後,終使電力得以持續供給應用。至此,我們思索年餘,總算到了請您發揮創意與想像力的時候,想像它可以被運用在哪些有趣的地方?以下是我們實驗的結果。

圖 39: 焊接

圖 40:組裝

圖 42: 鑽孔

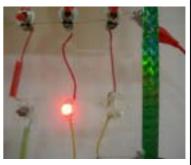


圖 43:點亮 LED

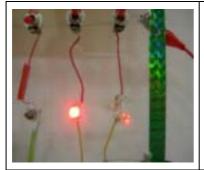


圖 44:步行發電

圖 45:轉動風扇

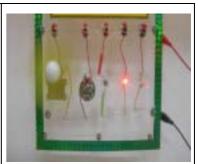


圖 46: 點亮雙 LED

陸、研究結果

- 一、(1)研究 1-1: 壓電素子容易觀察壓電效應,但產生的電壓超過三用電表的偵測極限,對研究反而造成困擾,無法達到我們冀求的電壓値。
 - (2)研究 1-2: 壓電片產生的電壓有正有負屬於交流電;同一型的壓電片,有 的下壓時是正値,有的是負値,沒有一定,端由實驗決定;壓電片白色陶瓷 PZT 材質易脆,使用時必須小心。
 - (3)研究 1-3 可知:壓電效益以尺寸大的壓電片優於尺寸小的;加鋁殼的電片優於裸電片,主要是有鋁殼的壓電片多了一個共鳴音箱,發電時,感受到壓力使得鋁殼音箱振動共鳴,進而加大電壓的輸出。
- 二、研究二:研究內容參考林宣安《發電高手》、周鑑恆《輕鬆學物理的第一本書:31個有趣的物理實驗》與何堃山《趣味電氣科學實驗 DIY》。由這些文章的指引,適時的擺脫困境,並注入新的研究方向。

三、研究 2-1:

- (1)**壓電後產生交流電,對電的應用毫無幫助**,無法點亮 LED,我們須要直流電,透過橋式整流器將交流電轉成直流電,有壓才有電,沒動作就沒電, LED 發出間歇的閃光。
- (2)橋式整流器由四個二極體組成,二極體的概念與發光二極體(LED)相當, 連接時須注意正負極(長短腳);實驗中發現:二極體的電壓規格愈大,壓電 後電壓也愈大。

四、研究 2-2:

- (1)電容規格參考何堃山一書的建議: 4.7 μF、工作電壓 250V。
- (2)透過累壓電路的使用,在不斷的敲按過程中逐漸將電壓累積增加到一定的程度,該電路最妙的地方是:產生電力的一端必須使用交流電,剛好與壓電片性質不謀而合。
- (3)實驗中體會到<mark>累壓電路的一項優點</mark>:經累壓電路處理後的**電壓必爲直流**電,此意味著:它出來的電壓一端必爲正、一端爲負,正負端固定。
- 五、(1)在**研究 3-1** 中:以"手壓來電"、"敲擊來電"討論「施力」與「電壓」的關係,**散佈圖顯示:沒有呈現線性關係**(圖 29),推敲原因在於:
 - (一)這2種方式不易準確控制施力大小。
 - (二)不容易使每次按壓、敲擊都落在壓電片相同的位置上。

- (三)壓電片的受壓面積,按壓接觸面積愈大,電壓愈大。
- (2)研究 3-1 中我們訝異的觀察到:施力所對應的電壓不是一個固定值,而是一個範圍差值(Range)。這和我們原先的想法—以爲相同的施力會對應到相同的電壓值—不同。

六、研究 3-2 中:

- (1)我們以彈簧及木板改良施壓的方式,使得施力比較可以均勻分散在壓電 片上;實驗者經過練習後,可以較易控制施力的大小。
- (2)觀察圖 32 可知<u>「施力」與「電壓」的圖示有些近似線性關係</u>,施力愈大電壓也愈大,但輸出的電壓仍爲一範圍值。無論如何,有 "壓" 就有 "電" ,是一個既定的事實。

七、研究 4-1 中:

- (1)充電電池經按壓充電後電壓有上升的情形,持續的按壓可以連續對電池 充電。在充電的電壓不會無限上升,最後會趨於平穩飽和。
- (2)實驗過程觀察到最重要的一點:**電池充電後,電力不會再回到累壓電路**中消耗掉,我們無異是累壓電路的另一項優點。
- 八、**研究五中**:經過我們一系列的研究之後,大大提昇壓電後的電壓並將之儲存 於充電電池後,可啓動 1.5~3V 馬達、振動馬達、高亮度 LED 燈、5V 之冷陰 極管等。相信日後必有更多應用。
- 九、整個壓電效應實驗,幾乎沒有什麼耗材,輸出的只有電力,絕對的環保與永 續資源利用。

柒、討 論

我們對累壓電路進行基礎瞭解,圖47中電容的極性以白色表示。

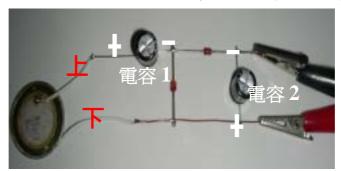


圖 47: 累壓電路圖示

壓電片受壓後的電壓有正有負,當電流往上流到電容1會將電力暫存於此;當電流往下流到電容2時,原先暫存於電容1的電力也會跟著流進電容2一起貯存,**這就是爲什麼累壓電路可以累積電壓的秘密,它不管原先電流往哪裡走**,最終都被累積在電容2。

原本有正有負的交流電電壓,最後都因電容2而轉成直流電沒有浪費掉,這 就是本研究命名「來電捕手」的用意。妙得是:電容2的正負極恰好是該累壓電 路的正負極【見研究2-2】。

捌、結 論

- 一、大部分的發電原理是運用「<u>法拉第(</u>發電機)原理」或是「<u>伏特</u>的化學電池」;本研究是繼 2007 年以"熱電效應"進行永續能源的探究後,再度以新式樣能源做爲研究課題—以"壓電效應"思索"微力發電"的可行性,這是一個美麗的想法,它給了我們無限的想像空間,實驗—開始並不如預期的順利,直到判斷出適當的觀測材料、累壓電路與壓電片,才免除更換題目的窘境,從中發覺科學真正迷人的所在。
- 二、本實驗最具戲劇化的創意在於:原本只用在耶誕卡片的小零件,當它結合累壓電路後,發揮進一步的功能一竟然可以發電,而且發電的本領還不小。
- 三、近年來,油價飛漲、能源需求迫切,引發世人頗多的關注。藉由本實驗 能提供一些有趣的想法:利用壓電效應與簡單的電子裝置,隨手 DIY 就能儲存 那些微弱的電力,相信在應用上有很大的創意空間。

細心的觀察生活周遭,那些人多、人群聚集的地方,就是"來電"的好地方:車站、夜市、百貨公司、高速公路車流量多的地方 族繁不及備載。相信有那麼一天逛街走在馬路上,手機的電也慢慢充飽了 期待中

四、探索的歷程總是歡欣與苦痛交織而成的,時時激發研究團隊的想像與創造力,同學透過實驗的觀察、分析與歸納,領略研究的旨趣、一窺科學的神妙。指導者從中習得教學相長、開拓新視野。

每年的科展活動,總有一個問題縈繞我心: "這個研究有什麼用呢?", 今年我們相信:這是一個值得深究粉有潛力、前(錢)景的應用開發。

五、本研究無涉抄襲與未放棄著作權聲明。

玖、參考資料及其他

- 1. 發電地板 東京妙點子(民 95 年 10 月 18 日)。自由時報, A5 版。
- 2.林芬如(民 96)。壓電效應。民 96 年 11 月 7 日,取自: http://www.ideastorming.tw/ideas/234
- 3. 陳偉民(民 96)。 氫氣水火箭。 發現月刊, 132。 民 96 年 8 月。
- 4.林官安。發電高手。取自:

http://enjoy.phy.ntnu.edu.tw/mod/resource/view.php?id=8310

- 5.周鑑恆:輕鬆學物理的第一本書:31 個有趣的物理實驗,初版,台北,如何, 頁 155-160,民 94。
- 6.何堃山:趣味電氣科學實驗 DIY,初版,台北,文笙,頁 44-45,民 93。
- 7.謝文山(民 97)。來電傳晴-新式樣能源環保電池初探。中華民國第 47 屆中小學 科學展覽會。
- 8.徐鳳(民 97)。鼠力發電機。中華民國第 47 屆中小學科學展覽會。
- 9.自然與生活科技(六上)-水溶液的酸鹼性、電磁作用。康軒。
- 10.柯富陽:輕鬆瞭解電氣,初版,台北,大展,頁62-77,民95。

一項失敗的嘗試:"坐著"也能發電 但充電效果差

累壓至 6.31V

手搖手電筒拆解

【評語】081501

爲呈現壓電現象,成員製作多組電子線路來說明。應增加自己的創意。對於壓電現象應多描述,觀察的物理非只呈現功能。