中華民國第四十八屆中小學科學展覽會作品說明書

國中組 生活與應用科學科

最佳(鄉土)教材獎

030810

誰與爭風

學校名稱:臺北市立大安國民中學

作者: 指導老師:

國二 郭信佑 張立業

溫麗玲

關鍵詞: 法拉第定律、電功率

作品名稱: 誰與爭風

摘 要

風力發電的原理是利用風力吹動風車的葉片,將風能轉變爲機械能,產生的動力可以轉動旋轉式發電機輸出電能。我們依據風速與發電電壓的關係數據,製作一個簡易的風速計,作爲各項實驗,測量風速的工具。首先,利用生活用品製作的環保可攜式風力發電機,對2個1800mAh3號鎳氫電池充電,將電能儲存起來,結果是可行的。這是我們研究設計風力發電機系統的入門。經過檢討,選用適合風力發電的軸向磁通發電機,以此做了風車葉片半徑、角度、材質對發電機轉速、輸出功率之影響的各項研究。再依研究結果製作了一組最有效率的葉片。並與發電機等組件,組裝了一台理想的小型風力發電機,連接充電控制及監測系統,對12V7AH的鉛酸電池充電。最後再測試、評估它的發電效率。

壹、研究動機

地球暖化的現象,是全世界關切的課題,而現在原油價格也不斷攀升。所以,世界各國都在尋找替代能源;希望能夠產生電力又不會排放廢氣,污染地球。而風力發電是最環保的替代能源之一。台灣具有得天獨厚的地形,氣候多風。所以,很多地方都開始設置大風車發電,像石門、澎湖台電、竹北春風造紙廠等,提供相當可觀的電力,這股風力發電的趨勢是不可擋的。所以,我們想研究風力發電,並利用一些生活中的環保素材,製作一台可隨身攜帶的小型風力發電機,運用用在生活上。

本次研究與教材相關性如下:國中自然與生活科技課本(翰林版)三上:電壓、電流 及歐姆定律、能量由功到熱,及三下:簡單電路與電解、電與磁一體兩面。

貳、研究目的

- 一、了解風力的產生、等級,及風力發電的原理。做爲本次專題研究的科學根據。
- 二、學習如何測量風速。
- 三、利用廢棄玩具車零件,自製一台環保風力發電機
- 四、依據法拉第定律,探討軸向磁通風力發電機。
- 五、探討風車葉片對發電機發電的影響,並製作效率佳的風力發電機葉片。
- 六、理想風力發電機組裝及電力輸出測試。
- 七、發電機輸出電能儲存在蓄電池之測試。

參、研究設備及器材

1.玩具小馬達 1 個	2.三用電表 1 個
3.光碟機驅動馬達1個	4. 軸向磁通馬達
5.線鋸	6.腳踏車計速器
7.鐵絲 1 捆	8.電器膠布 1 捲
9. 壓克力、飛機木、卡紙板、瓦 楞板、珍珠板	10.鉛酸蓄電池
11.電線5公尺	12.量角分度器
13.數位相機 1 台	14.電腦
15.電鑽 1 台	16.銲槍 1 把
17. HIPS 材質的圓錐形加油棒	18. 電木 1 塊
19.工業風扇、18吋立扇各1台	20.廢棄 14 吋電扇的扇葉
21.廢棄遙控汽車(取馬達、齒輪 箱)	22.閒置譜架 1 支
23.電線端子、線夾、端子台	24. 2"PVC 水管、4M 鍍鋅管
25.車用、家用鎳氫電池充電器	26.3 號鎳氫充電電池2個 1800mAh×2
27. 50W 10Ω功率電阻	28. 螺絲釘、螺絲帽、鉸鏈
29. 充電控制器、A,V 錶頭	30. 12V 散熱風扇

肆、研究過程與結果

研究一、蒐集參考資料,做爲本次研究的科學理論根據。

- (一)風的產生:風是地球上的一種自然現象,當太陽照射地表時,附近的空氣因熱而減輕重量(水分子蒸發),緩緩上升。這時候溫度低而較重的冷空氣從側面流入,造成環流現象,就產生風了。而風速和風向是風的兩個重要參數。
- (二)風力的大小:風的強弱程度,通常用風力等級來表示,而風力的等級,可由地面或海面物體被風吹動之情形加以估計之。目前國際通用之風力估計,係以<u>蒲福</u>風級(Beaufort scale)為標準。<u>蒲福</u>氏為英國海軍上將,於 1805 年首創風力分級標準。先僅用於海上,後亦用於陸上,並屢經修訂,乃成今日通用之風級。
- (三)風力發電的原理:利用風力吹動風車的槳葉,將風能轉變爲機械能,產生的動力可以轉動旋轉式發電機輸出電能。
- (四)陸上應用之蒲福風級表(資料來源:中央氣象局)如下表 1-4:

表 1-4 <u>蒲福</u>風級表

蒲福風級	風之稱謂	一般敘述	每秒公尺 m/s
0	無風 calm	煙直上	不足 0.3
1	軟風 light air	僅煙能表示風向,但不能轉動風標。	0.3-1.5
2	輕風 slight breeze	人面感覺有風,樹葉搖動,普通之風標轉動。	1.6-3.3
3	微風 gentle breeze	樹葉及小枝搖動不息,旌旗飄展。	3.4-5.4
4	和風 moderate breeze	塵土及碎紙被風吹揚,樹之分枝搖動。	5.5-7.9
5	清風 fresh breeze	有葉之小樹開始搖擺。	8.0-10.7
6	強風 strong breeze	樹之木枝搖動,電線發出呼呼嘯聲,張傘困難。	10.8-13.8
7	疾風 near gale	全樹搖動,逆風行走感困難。	13.9-17.1
8	大風 gale	小樹枝被吹折,步行不能前進。	17.2-20.7
9	烈風 strong gale	建築物有損壞,煙囪被吹倒。	20.8-24.4
10	狂風 storm	樹被風拔起,建築物有相當破壞。	24.5-28.4
11	暴風 violent storm	極少見,如出現必有重大災害。	28.5-32.6
12	颶風 hurricane		32.7-36.9

研究二、自製簡易的風速計來測量風速,並與蒲福風級表對照結合。

(一)研究二之一:製作簡易的風速計

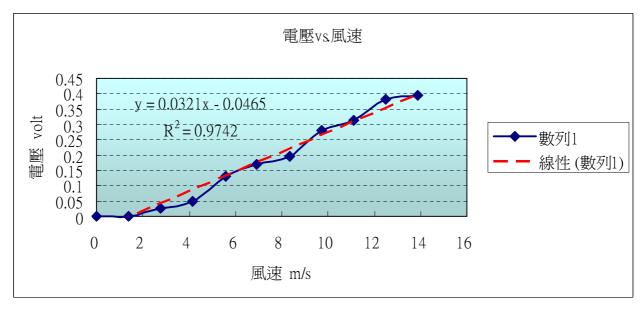
方法:1.利用廢棄光碟機托盤驅動馬達,當作發電機,後方連接三用電表

2.接上以塑膠茶匙、 洗衣球、滾珠軸承組裝而成的杯式旋轉感應器

3.有風時,感應器會旋轉而帶動發電機產生電力,用電表測量發電機電壓,

以伏特數來對照風速大小。 設計圖如下:

(二)研究二之二:利用自製簡易的風速計,測量在不同風速下產生的電壓値 方法:


- 1. 請爸爸開車,將風速計伸出窗外,車速以 5km/h、10km/h、15km/h 逐漸加速至 50km/h,車速即代表風速。測量在不同風速下產生的電壓,連續測三次並記錄,計算平均電壓
- 2. 選擇筆直無人、車測試道路: (1)河濱公園便道,長約800公尺(2) 辛亥隊道長約600公尺

結果:

- 1. 在河濱公園測試:電壓數據紊亂。因為戶外風速及風向不定,往往車子不動,風來了,風扇就動了,所以車速就不可以代表風速。因此,測到的電壓不具參考性。
- 2. 在辛亥隧道測試:凌晨 3 點鐘隧道內接近無風、無車狀況,時速 5km/h 爲一測試點,將風速計伸出車外,車速以定速功能維持定速 5 秒鐘,測 電壓三次。所記錄的電壓 ,並與蒲福風級表對照結合 。
- 3. 車速越快,風速越快,風級數越高,發電電壓越大。如表 2-1.圖 2-1.

表 2-1 風速、級數與發電機開路電壓對照表

時速 km/h	秒速	發電電壓 (V)	發電電壓 (V)	發電電壓 (V)	平均發電 電壓	對照蒲福 風級	套入趨勢 線方程式
K111/11	m/s	測試 1.	測試 2.	測試 3.	(V)		電壓値 V
5	1.39	0	0	0	0	1級-軟風	0
10	2.78	0.021	0.028	0.025	0.025	2級-輕風	0.043
15	4.17	0.042	0.053	0.048	0.048	3級-微風	0.087
20	5.56	0.138	0.123	0.129	0.131	4級-和風	0.132
25	6.94	0.186	0.151	0.167	0.168	4級-和風	0.176
30	8.33	0.19	0.202	0.196	0.196	5級-清風	0.221
35	9.72	0.279	0.285	0.282	0.282	5級-清風	0.266
40	11.11	0.292	0.334	0.311	0.312	6級-強風	0.310
45	12.5	0.384	0.380	0.381	0.382	6級-強風	0.355
50	13.89	0.385	0.395	0.405	0.395	6級-強風	0.399

說明:

- 1. 風速越快,發電電壓越大。
- 2. 經 EXCEL 分析:趨勢線方程式 y = 0.0321x 0.0465 $R^2 = 0.9742$,相關係數 |R| > 0.75 達高度相關,故風速與電壓呈線性關係。
- 4.將數值套入趨勢線方程式,得到表 2-2 風速 vs.電壓對照表。
- 5.借用學校實驗室風速計測試比對風速值非常接近,所以自製風速計是可信賴的。
- 6.本自製簡易風速計,將運用在接下來的各項實驗,作爲測量風速的工具。

表 2-2. 風速 vs.電壓對照表 (套入趨勢方程式值)

風速 m/s	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
電壓 volt	0	0.018	0.050	0.082	0.114	0.146	0.178	0.210	0.242	0.275	0.307	0.339	0.371	0.403	0.435
蒲福風級	1級	2級	2級	3級	3級	4級	4級	5級	5級	5級	6級	6級	6級	7級	7級

(三)利用自製風速計及對照表,測試家中(直徑)18吋立扇1、2、3檔產生多少風速?

方法: 風速計分別距 18 吋立扇(輸出功率 80w) 30 公分處,測量電壓

結果: 1. 測量時電表顯示伏特數字閃動不定,我們記錄最大及最小之間的電壓範圍

- 2. 檔位由 3~1 逐步切換,風速加快,電壓也提升,如下表.3
- 3. 根據 檔位/風速 對照表,我們在室內做實驗,便可將立扇作爲發電機的風源,風速一目了然。

表 3

18吋立扇檔位	發電機電壓	對照風速	對照蒲福風級
3 (強)	0.118~0.125V	6.7m/s	4級-和風
2 (中)	0.147~0.151V	6.0m/s	4級-和風
1 (弱)	0.169~0.171V	5.1m/s	4 級-和風

研究三、利用廢棄玩具車零件,自製一台環保風力發電機

- (一)研究三之一:拆解玩具車馬達,並研究其構造、原理。
 - 1. 拆解結果:如圖 3-1-1
- 2. 玩具車馬達爲直流電動機(馬達,Motor),通以電流產生動力的機械裝置。其構造如圖 3-1-2a,b
 - (1) 場磁鐵: 爲永久磁鐵,產生磁場的裝置。
 - (2) 電樞:可轉動的線圈。
 - (3)集電環:又稱換向器,線圈的兩端接至兩片半圓型集電環,集電環隨同線圈轉動。
 - (4)碳刷:藉著兩個小彈簧抵住集電環。

3.電動機基本原理:

- (1)接通直流馬達的電源,線圈由水平位置開始轉動,剛剛轉過90°後,兩個半圓型集電環恰好分別換接另一個電刷,使線圈各邊電流反向流動,仍做逆時鐘轉動。
- (2)此後,線圈每轉半圈,線圈內的方向即反轉一次;這樣線圈便可受磁場的排斥吸引作用,往同一方向繼續轉動不停。如圖 3-1-2b
- 4. 發電機基本原理:

發電機是一種將力學能轉變爲電能的機械裝置,也是電磁感應的應用裝置。發電機主要 是利用磁場快速變化而產生電流的原理製造。

(三)研究三之三:環保可攜式風力發電機,在室內測量電壓(未負載電器)

方法: 距離風源 18 吋立扇 30 公分,電表測量電壓

結果: 1. 環保風力發電機測得電壓,如下表 3-3。

2. 葉片轉動帶動齒輪,所以有「達、達」的噪音聲。

(四)研究三之四:環保風力發電機,連接到鎮氫電池充電器,檢驗電能是否儲存起來?

風源:18 吋立扇,檔位2,距離30公分,連續吹30分鐘

方法:

- 1. 取 1800mAh 3 號鎳氫電池 2個(電池容量以 Ah 表示),進行放電後,分別測電池短路電流 A;連接燈泡,看是否會亮?
- 2. 將 2 個電池置入車用充電器(直流電輸入式),再連接發電機,構成充電迴路。充電器上若有充電進行,指示 LED 燈會亮紅燈;充滿後亮綠燈。
- 3. 充電過程中, 串聯三用電表, 測量充電迴路的負載電流 A。
- 4. 風力發電機連續轉動 30 分鐘後, 測充電後電池的短路電流有無變化?連接燈泡, 看是否會亮?能持續多久?

結果:

- 1. 電池進行放電後瞬間電流變小,已經無法持續提供電能,讓小燈泡發亮。顯示放電後,電池容量已耗盡。
- 2. 發電機轉動中充電器上指示 LED 燈已亮紅燈,表示已在充電;串聯電表測得充電迴路的負載電流在 0.15~0.36A 範圍,也顯示有效充電。
- 3. 電池進行充電 20 分鐘後,拔下,測得瞬間電流已大幅提升,並已經讓小燈泡持續發亮。顯示充電後,電池能量已有增加。
- 4. 在充電的過程中,因發電機負載電池,使得風扇轉速有變慢的現象。
- 5. 環保可攜式風力發電機,確實可將電能儲存起來。

電池編號	放電後短路 電流 A	放電後燈泡亮否	充電後短路電流 A	充電後燈泡亮否
1	0.10	瞬間亮起 隨即熄滅	8.29	持續非常亮
2	0.18	瞬間亮起 隨即熄滅	8.82	持續非常亮

(五)研究三之五:環保風力發電機持續發電,將2個1800mAh3號鎳氫電池充滿需時多久?

方法: 電池先放電,室內風源:18 吋立扇檔位2,距離30公分,連續吹,至滿燈起。

結果:

發電機持續轉動發電約 90 分鐘時,發生玩具車塑膠齒輪箱崩解,而停止轉動。 檢討:

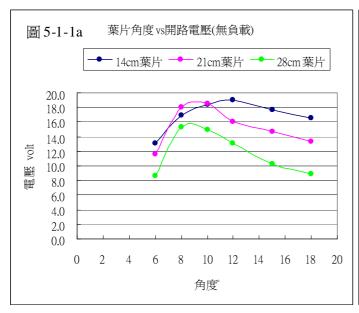
- 1.由玩具車小馬達及齒輪箱改裝的環保風力發電機,在機械傳動的設計上,磨擦力過大,持續轉動過久,產生過熱現象。因而使齒輪箱崩解。
- 2.應該購買適合風力發電的馬達來改裝,並重新設計理想的風力發電機。

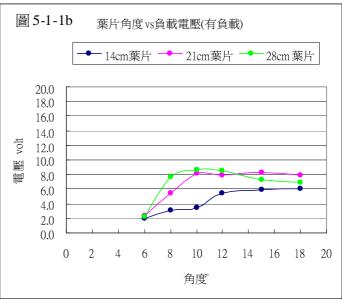
研究四、依據法拉第定律,探討軸向磁通風力發電機

(一)研究四之一:適合風力發電的軸向磁通發電機,其結構與原理。

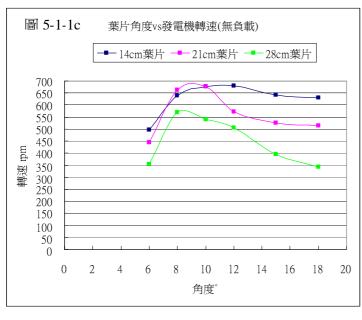
- 1.發電機來源:購自市面上,運用於電腦周邊設備的薄盤型軸向磁通馬達,加以改裝。
- 2. 規格: 輸出 30 瓦. 充 12 伏電瓶, 電流 2 安培. 轉速 650rpm.
- 3.分解圖:圖 4-1-1

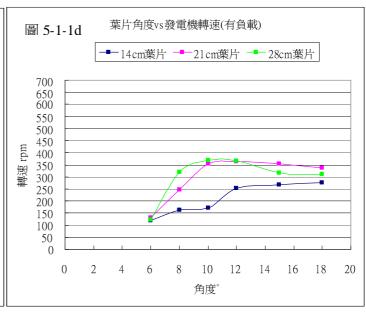
- 一個內含線圈(coils of wire)的定子(stator) 兩個永磁鐵做的轉子(magnet rotors)
- (1)定子內有6組線圈,定子是玻璃纖維樹脂灌模製成的。定子固定在固定軸芯上, 所以定子是固定死的不會轉動。由定子線圈延伸出的電線連接到整流器上,將交流電變成直 流電而對電池進行充電。
- (2)兩片磁鐵轉子固定在軸承上,使它可以在轉軸上旋轉。在定子後面的是後位轉子 (rear rotor)。前位轉子(front rotor)是在定子前方的轉子,兩個轉子透過轉軸周圍的孔洞用螺絲互相連接固定。風車翼片也是固定在轉子上。風車翼片會因爲與兩個轉子固定死了,所以風車翼片轉動時就會連帶帶動轉子轉動。當轉子轉動時,轉子上磁鐵跟著轉動而通過定子上的線圈。磁通量從一個轉子通過定子而到達另一個轉子。因此,移動的磁通量產生電流由定子的線圈中輸出。
- 4.大部分的發電機是靠內部轉子上磁鐵轉動,線圈固定在外部不動,磁通通量方向爲輻向 (radial field); 而軸向磁場發電機靠外部轉子上磁鐵轉動,線圈固定在內部不動,磁通量方 向爲軸向(axial field),與轉動軸方向平行,如圖 4-1-2。所以軸向磁通發電機的線圈接線就變的很簡單,不需要用到動態接線,很適用於風力發電。而且葉片直接鎖在外轉子上,不需要齒輪變速箱,沒有噪音問題,重量也較輕薄。如圖 4-1-3


研究五、探討風車葉片對發電機發電的影響,並製作效率佳的風力發電機葉片


(一)研究五之一:葉片與轉動面夾角度,對發電機輸出電壓與轉速的影響方法:

- 1.將厚 3mm 壓克力板,裁成梯形平板當做風車葉片,弦長分別為 14cm、21cm、28cm 三種規格。每一種規格做 3 片,風車葉片設定為三葉式。
- 2 鎖在鑽洞的發電機後位轉子上,中間夾一個鉸鏈,作爲調整角度用。
- 3.角度大小由鎖在壓克力板與鉸鏈的螺絲高低來調整,並以量角分度尺準確測量、校正。如圖 5-1-1 示意圖。設定的角度分別為 0°、6°、8°、10°、12°、15°、18°
- 4.原家用風扇葉片直徑太小(18 吋),改以300w 扇葉直徑65cm的工業風扇爲風源, 距離風力發電機120cm,測量風速爲5.6m/s。以此條件吹動風力發電機。
- 5.以弦長爲 14cm、21cm、28cm 三種規格的壓克力板,分別在 6 個角度下作發電測試。 在發電機未負載電器情況下,測量電壓(開路電壓)3次。
- 6.在發電機負載電器(12v 190mA的散熱風扇)情況下,測量電壓(負載電壓)3次。 7.將腳踏車輪幅上的計速器,改裝到轉子上,可以同時測到葉片轉速 rpm。如圖 5-1-2 結果:如表 5-1-1 圖 5-1-1a.b.c.d


	表 5-1-1		未負載	或電壓 vol	t		未負載	戏轉速 rpn	1
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速 2	轉速3	轉速平均
	14cm	12.9	13.2	13.3	13.1	494	500	496	497
	21cm	11.5	11.9	11.6	11.7	443	447	445	445
角度	28cm	8.6	8.8	8.7	8.7	350	354	356	353
6°		負載電壓 volt					負載	轉速 rpm	
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速 2	轉速3	轉速平均
	14cm	1.9	2.2	2.0	2.0	118	121	120	120
	21cm	2.2	2.3	2.6	2.4	127	133	131	130
	28cm	2.1	2.2	2.3	2.2	125	121	122	123
			1	戏電壓 vol				戏轉速 rpn	1
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速 2	轉速3	轉速平均
	14cm	16.9	16.8	17.2	17.0	639	640	642	640
	21cm	18.2	17.9	18.0	18.0	663	660	660	661
角度	28cm	15.1	15.3	15.7	15.4	568	570	573	570
8°			負載	電壓 volt			負載	轉速 rpm	
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速 2	轉速3	轉速平均
	14cm	3.0	2.7	3.5	3.1	162	158	164	161
	21cm	5.4	5.7	5.3	5.5	248	251	244	248
	28cm	7.4	7.7	8.0	7.7	319	320	322	320
				戏電壓 vol				戏轉速 rpn	
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速 2	轉速3	轉速平均
	14cm	18.2	18.7	18.4	18.4	674	681	675	677
	21cm	18.6	18.5	18.3	18.5	680	677	676	678
角度	28cm	14.9	14.8	15.2	15.0	541	537	543	540
10°			負載	電壓 volt			負載	轉速 rpm	
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速 2	轉速3	轉速平均
	14cm	3.3	3.5	3.6	3.5	171	172	172	172
	21cm	7.9	8.1	8.3	8.1	353	355	356	355
	28cm	8.5	8.4	9.1	8.7	369	369	371	370


		未負載電壓 volt						战轉速 rpn	ı
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速2	轉速 3	轉速平均
	14cm	19.3	18.8	19.0	19.0	677	684	681	681
	21cm	16.3	15.7	16.0	16.0	575	571	574	573
角度	28cm	12.9	13.2	13.0	13.03	500	509	505	505
12°			負載	電壓 volt			負載	轉速 rpm	
12	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速2	轉速3	轉速平均
	14cm	5.4	5.1	5.9	5.5	253	250	254	252
	21cm	7.9	7.7	8.2	7.9	364	360	366	363
	28cm	8.5	8.5	8.4	8.5	367	367	364	366
				戊電壓 vol				戏轉速 rpn	
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速2	轉速3	轉速平均
	14cm	17.6	17.5	17.9	17.7	642	639	645	642
	21cm	14.2	14.9	15.0	14.7	525	526	530	527
角度	28cm	10.1	10.2	10.4	10.2	393	396	397	395
15°			負載	電壓 volt			負載	轉速 rpm	
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速2	轉速 3	轉速平均
	14cm	5.9	5.7	6.3	6.0	267	266	270	268
	21cm	8.1	8.4	8.3	8.3	352	357	356	355
	28cm	7.4	7.5	7.1	7.3	315	319	313	316
				戈電壓 vol				戏轉速 rpn	
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速2	轉速 3	轉速平均
	14cm	16.7	16.7	16.4	16.6	633	633	628	631
	21cm	13.4	13.7	13.0	13.4	516	518	510	515
角度	28cm	8.8	8.6	9.2	8.9	344	341	340	342
18°				電壓 volt				轉速 rpm	
	葉片長度	電壓 1	電壓 2	電壓 3	電壓平均	轉速 1	轉速2	轉速 3	轉速平均
	14cm	5.8	6	6.2	6.0	271	274	279	275
	21cm	8.2	7.7	7.9	7.9	340	336	338	338
	28cm	6.6	7.2	6.8	6.9	307	312	310	310

- 說明:1.由圖 5-1-la 顯示:在無負載的情況下,0°時葉片不動,夾角由6°開始加大,開路電壓也隨之變大,約在8°~12°之間達到發電機最大輸出電壓。夾角由12°開始加大後,電壓便隨之變小。其中14cm 葉片電壓最高點約在12°;21cm 葉片電壓最高點約在8°~10°間;28cm 葉片電壓最高點約在8°~10°間。而三種葉片以14cm的電壓最高,21cm 次之,28cm 最低。
 - 2.由圖 5-1-1b 顯示:在有負載的情況下,夾角由 6 開始加大,開路電壓也隨之變大,約在 10°~14°之間達到發電機最大輸出電壓。夾角由 12°開始加大後,電壓便隨之趨緩。其中 14cm 葉片電壓最高點約在 15°; 21cm 葉片電壓最高點約在 10°; 28cm 葉片電壓最高點約在 10°。而三種葉片以 28cm 的電壓最高,21cm 次之,14cm 最低。
 - 3.在無負載的情況下,葉片越短,電壓輸出越高,以 14cm 12°時達 19.0 volt 最佳;在有負載的情況下,葉片越長,電壓輸出越高,以 28cm 10°時達 8.7 volt 最佳。
 - 4. 在無負載的情況下,測得開路電壓値,皆高於有負載的負載電壓値。因為,當接上電器開始使用 發電機的電能時,電能從繞線中流出,克服內部阻抗而消耗,因此發生壓降現象。

- 說 明:1.由圖 5-1-1c 顯示:在無負載時,夾角由 6°開始加大,轉速隨之變快,約在 8°~12°之 間達到發電機最快轉速。夾角由 12°開始加大後,轉速値便隨之變小。其中 14cm 葉片轉速値最高點約在 12°; 21cm 葉片轉速値最高點約在 8°~10°間;28cm 葉片轉速値最高點約在 8°~10°間。而三種葉片以 14cm 的轉速值最高,21cm 次之,28cm 最低。
 - 2.由圖 5-1-1d 顯示:在有負載時,夾角由 6°開始加大,轉速隨之變快,約在 10°~14°之間達到發電機最快轉速。夾角由 12°開始加大後,轉速便隨之趨緩。其中 14cm 葉片轉速值最高點約在 15°;21cm 葉片轉速值最高點約在 10°;28cm 葉片轉速值最高點約在 10°。而三種葉片以 28cm 的轉速值最高,21cm 次之,14cm 最低。
 - 3.在無負載時,葉片越短,轉速越快,以 14cm 12°時達 681 rpm 最佳;在有負載時,葉片越長,轉速越快,以 28cm 10°時達 370 rpm 最佳。
 - 4. 在無負載時的轉速,較有負載時的轉速爲快。
 - 5. 由圖 5-1-1a,b,c,d 比對顯示:葉片轉速越快,發電機輸出電壓越高。

(二)研究五之二:葉片材質,對發電機輸出電壓與轉速的影響

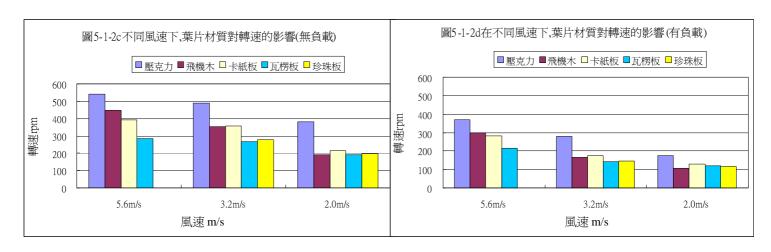
方法:

- 1.選取壓克力、飛機木、卡紙板、瓦楞板、珍珠板 5 種不同材質的平板,裁成梯形平板。 如表 5-2 圖 5-2A.B
- 2.葉片弦長 28cm,夾角 10°,選取研究五之一在有負載時,發電機最佳表現條件。
- 3.以 300w 扇葉直徑 65cm 的工業風扇爲風源,分別距離風力發電機 120cm、240cm、360cm,測量風速分別爲 5.6m/s、3.2m/s、2.0m/s。以此條件吹動葉片轉子。
- 4.以 5種不同材質的平板葉片,分別在 3種風速下作發電測試。在發電機未負載電器情況下,測量電壓 (開路電壓) 3 次。
- 5.在發電機負載電器(12v 190mA 散熱風扇)情況下,測量電壓(負載電壓)3次。

表 5-2

材質名稱	壓克力 (Acrylic)	飛機木 (balsa)	卡紙板 (cardboard)	瓦楞板	珍珠板 (foamboard)
成分	聚甲基丙烯酸甲酯 PMMA	木質	紙質	聚丙烯(PP)	聚苯乙烯(PS)發泡型
厚度	3mm	3mm	2mm	3mm	3mm
重量	53.9g	7.5g	24.4g	8.2g	2.6g


結果:如表 5-2-1 圖 5-2-1a.b.c.d

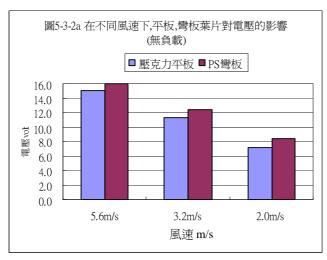

表 5-2-1

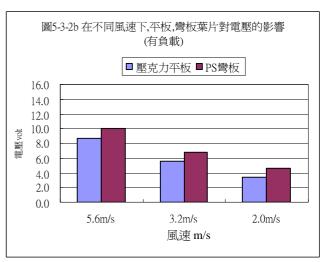
		未負載電壓 volt					未負載	戏轉速 rpm	1		
	風速	電壓 1	電壓 2	電壓 3	電壓平均	轉速1	轉速 2	轉速3	轉速平均		
	5.6m/s	14.9	14.8	15.2	15.0	541	537	543	540		
	3.2m/s	11.2	11.3	11.5	11.3	488	489	493	490		
壓克力	2.0m/s	7.1	7.2	7.3	7.2	380	380 381 383 381				
力			負載	電壓 volt			負載轉速rpm				
	風速	電壓 1	電壓 2	電壓 3	電壓平均	轉速1	轉速 2	轉速3	轉速平均		
	5.6m/s	8.5	8.4	9.1	8.7	369	369	371	370		
	3.2m/s	5.4	5.6	5.5	5.5	275	280	278	278		
	2.0m/s	3.2	3.5	3.4	3.4	174	178	176	176		
				战電壓 volt				戏轉速 rpm	1		
	風速	電壓 1	電壓 2	電壓 3	電壓平均	轉速1	轉速 2	轉速3	轉速平均		
	5.6m/s	11.8	12.2	11.9	12.0	445	450	447	447		
	3.2m/s	8.8	9.4	9.1	9.1	350	360	355	355		
飛機木	2.0m/s	5.2	4.8	4.9	5.0	195	188	190	191		
术			負載	電壓 volt			負載	轉速rpm			
	風速	電壓 1	電壓 2	電壓 3	電壓平均	轉速1	轉速 2	轉速3	轉速平均		
	5.6m/s	6.2	5.8	6.1	6.0	300	295	299	298		
	3.2m/s	2.6	2.7	3.2	2.8	160	163	170	164		
	2.0m/s	1.8	1.9	2.1	1.9	105	108	111	108		
				战電壓 volt				戏轉速 rpm			
	風速	電壓 1	電壓 2	電壓 3	電壓平均	轉速1	轉速 2	轉速 3	轉速平均		
	5.6m/s	9.8	9.9	10.2	10.0	389	390	392	390		
	3.2m/s	9.2	9.8	9.5	9.5	350	360	359	356		
卡紙板	2.0m/s	5	5.3	5.5	5.3	210	216	218	215		
板				電壓 volt				轉速rpm			
	風速	電壓 1	電壓 2	電壓 3	電壓平均	轉速1	轉速 2	轉速3	轉速平均		
	5.6m/s	5.2	5.6	5.4	5.4	276	282	285	281		
	3.2m/s	2.9	3.1	3.2	3.1	173	176	179	176		
	2.0m/s	2.0	2.3	2.4	2.2	127	129	132	129		

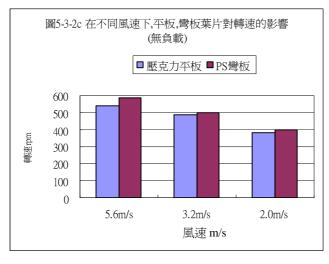
表 5-2-1

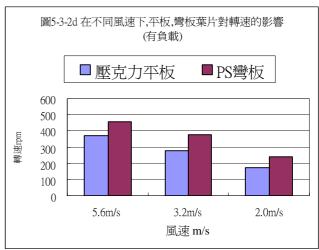
			未負載	或電壓 volt			未負載	戏轉速 rpm	l
	風速	電壓 1	電壓 2	電壓 3	電壓平均	轉速1	轉速 2	轉速3	轉速平均
	5.6m/s	7	7.4	7.2	7.2	279	289	285	284
	3.2m/s	6.4	6.6	7.0	6.7	263	266	271	267
瓦楞板	2.0m/s	4.2	4.5	4.8	4.5	186	190	192	189
板			負載	電壓 volt			負載	轉速rpm	
	風速	電壓 1	電壓 2	電壓 3	電壓平均	轉速1	轉速 2	轉速3	轉速平均
	5.6m/s	4.0	4.1	4.3	4.1	211	214	217	214
	3.2m/s	2.4	2.6	2.7	2.6	141	143	141	142
	2.0m/s	1.8	2.1	2.2	2.0	117	121	124	121
			未負載	战電壓 volt			未負載	戏轉速 rpm	1
	風速	電壓 1	電壓 2	電壓 3	電壓平均	轉速1	轉速 2	轉速3	轉速平均
	5.6m/s	0	0	0.0	0.0	0	0	0	0
	3.2m/s	6.8	6.9	7.4	7.0	273	275	280	276
珍珠板	2.0m/s	4.4	4.7	5.2	4.8	196	198	204	199
板			負載	電壓 volt			負載	轉速rpm	
	風速	電壓 1	電壓 2	電壓 3	電壓平均	轉速1	轉速 2	轉速 3	轉速平均
	5.6m/s	0	0	0.0	0.0	0	0	0.0	0
	3.2m/s	2.6	3	2.7	2.8	144	149	146	146
	2.0m/s	1.7	1.9	2.1	1.9	112	115	119	115

- 說 明:1.由圖 5-2-1a,b 顯示:在不同的風速條件下,無論是否負載,壓克力材質的葉片輸出電壓最高,珍珠板最低。
 - 2.由圖 5-2-1c,d 顯示:在不同的風速條件下,無論是否負載,壓克力材質的葉片轉速最快,珍珠板最慢。
 - 3.測試過程中,在風速 5.6m/s 4 級和風時,除了壓克力材質外,其他材質的的平板葉片皆有彎曲變形現象。珍珠板甚至變形過劇,打到機身而斷裂,所以電壓值為 0。


(三)研究五之三:平版型葉片與彎板型葉片之比較,對發電機輸出電壓與轉速的影響


方法:在研究五之二發現平板型葉片皆有變形現象,因此製作彎板型葉片,來提升強度並測試 其效果。


- 1.選取耐衝擊性聚苯乙烯 (HIPS) 材質的圓錐形加油棒,以線鋸裁成梯形彎板葉片,弦長 28cm。每片重 39g。如圖 5-2-3a,b
- 2.以 300w 扇葉直徑 65cm 的工業風扇爲風源,分別距離風力發電機 120cm、240cm、360cm,測量風速分別爲 5.6m/s、3.2m/s、2.0m/s。以此條件吹動葉片轉子。
- 3.分別在3種風速下作發電測試。在未負載電器情況下,測量電壓(開路電壓)3次。
- 4.在發電機負載電器(12v 190mA 散熱風扇)情況下,測量電壓(負載電壓)3次。
- 5.與平版型.壓克力葉片比較,(選取研究五之一在有負載時,發電機最佳表現條件。, 茲長 28cm,夾角 10°)


結果:如表 5-3-2 圖 5-3-2a.b.c.d

			未負載	電壓 volt		未負載轉	速 rpm			
	風速	電壓1	電壓 2	電壓3	電壓平均	轉速 1	轉速 2	轉速 3	轉速平均	
	5.6m/s	15.9	16	16.3	16.1	589	590	594	591	
H	3.2m/s	12.2	12.4	12.8	12.5	501	499	505	502	
IIPS彎板	2.0m/s	8.2	8.4	8.6	8.4	398	404	403	402	
彎			負載電	這壓 volt		負載轉速 rpm				
板	風速	電壓1	電壓 2	電壓 3	電壓平均	轉速 1	轉速 2	轉速3	轉速平均	
	5.6m/s	9.8	9.9	10.3	10.0	450	451	466	456	
	3.2m/s	6.6	6.7	7.2	6.8	376	378	385	380	
	2.0m/s	4.4	4.5	4.8	4.6	235	237	244	239	

說明:1.由圖 5-3.2a,b,c,d 顯示:在不同的風速條件下,無論是否負載電器,HIPS 彎板葉片輸出電壓都較壓克力平板葉片高,轉速也較快。

- 2. HIPS 彎板葉片曲度由葉片尖端逐漸向旋轉中心變大,符合空氣動力學。對發電機轉速及電壓提升是有幫助的。
- 3.接下來,我們理想的風力發電機葉片,決定採用 HIPS 彎板,弦長 28cm。

研究六、理想風力發電機組裝及電力輸出測試

- (一)研究六之一:如何使風力發電機輸出的交流電,變成直流電?
 - 1. 由於軸向磁場發電機的外轉子磁極 N→S 交互排列,及定子上的線圈以串聯接線。所以發電機輸出爲單相交流電。如圖 6-1-1
 - 2. 因爲大部份小型風力發電風車發出來的電能不是很多,所以都需要一個電池做爲能源儲存的場所,因此大部份小型風力發電機是用來對電池充電。如果風車使用的是交流發電機,就必需將交流電轉換成直流電。參考「電子學」理論:交直流轉變的元件叫做二極體(diode),它的作用是電流的單向流動控制閥。圖 6-2-1 是將 4 個二極體橋接將交流電整合成直流電。

(二)研究六之二:風力發電機輸出由交流電變成直流電,電壓是否改變?

方法:

- 1.以 5.6m/s 風速吹動風力發電機,測量整流前、後的開路電壓。
- 2.比較前、後電壓值。

結果: 如表 6-2

表 6-2		整流前	j電壓 v	olt	整流後電壓 volt			
風速	電壓 1	電壓 2	電壓 3	電壓平均	電壓 1	電壓 2	電壓3	電壓平均
5.6m/s	s 17.1	17.3	17.5	17.3	15.9	16	16.3	16.1

- 1. 交流電經整流變成直流電,電壓平均降低了約1.2 伏特
- 2. 參考「電子學」理論:電流每一次通過二極體時,使用 0.7 伏特克服二極體阻抗,整流一次需要通過二次二極體,因此總共產生約 1.4 伏持的壓降。而橋式整流器消耗掉 1.4 伏特是以熱能方式釋出。當風車的交流發電機連接一個橋式整流器,對一個 12 伏特 的電池時,因爲壓降減少了 1.4 伏特,所以要能對 12V 電池充電,則需 13.4 伏特的交流電電壓。

(三)研究六之三:自製理想風力發電機的組裝

- 1. 自製理想風力發電機設計圖,如圖 6-3-1。
- 2. 風車葉片:選用研究五中最佳表現葉片-HIPS 彎板,弦長 28cm。鎖在發電機外轉子上,總轉動直徑 65cm。而外轉子固定在滾珠軸承。因此,發電機轉動無噪音。
- 3. 機身(電木材質,防水、耐高溫):將發電機的固定軸(鋼管)鎖在機身上,線圈電纜線通 過鋼管,在機身端子台上接連橋式整流器作整流。接線如圖 6-3-2a。
- 4. 電纜線再向下通過軸承套筒及長鋼管,與充電電池連結。
- 5.尾翼:以厚鋁桿連結機身,靠軸承套筒作水平迴轉,帶動發電機葉片迅速、正面朝向迎風 面。
- 6.機身以防水布罩起來防雨。自製理想風力發電機組裝僅淨重 2kg,拆卸、組裝容易。實品圖,如圖 6-3-2b

研究七、探討發電機輸出電能儲存在蓄電池

因為大部份小型風力發電機輸出來的電能不是很多,所以都需要一個電池做為能源儲存的場所,因此大部份小型風力發電機是用來對電池充電。二次電池就是可以重複使用的電池,透過充電的過程,可以使得電池內的活性物質再度回復到原來的狀態,因而能再度提供電力。這類的電池有鉛酸電池、鎳鍋電池、鎳氫電池、鋰電池等。

(一)研究七之一:鉛酸電池(Lead Acid Battery)之研究(參考國中三下自然與生活科技課本)

1.來源:購自市面 YUASA 牌 NP7-12 規格: 12V 7AH , 廠商建議最大充電電流小於 2.1 安培。

- 2.鉛酸電池的構造:以二氧化鉛爲正極、鉛爲負極、比重 1.24 的稀硫酸爲電解液。
- 3.鉛酸電池的放電反應:兩極均生成白色的硫酸鉛沉澱,並產生水,硫酸的濃度變小。

負(陽)極: Pb+SO₄²⁻→PbSO₄↓+2e⁻

正(陰)極: $PbO_2 + H_2SO_4 + 2H^+ + 2e^- \rightarrow PbSO_4 \downarrow + 2H_2O$

全 反 應: Pb+PbO₂+2H₂SO₄→2PbSO4↓+2H₂O

4.鉛酸電池的充電反應:

負(陽)極: $PbSO_4 \downarrow + 2e^- \rightarrow Pb + SO_4^{2^-}$

正(陰)極: $PbSO_4 \downarrow + 2H_2O \rightarrow PbO_2 + H_2SO_4 + 2H^+ + 2e^-$

全反應: $2PbSO_4 \downarrow + 2H_2O \rightarrow Pb + PbO_2 + 2H_2SO_4$

(二)研究七之二: 充電控制器的運用

- 1. 由於風速忽大忽小不穩定,所以風力發電機輸出來的電能也時大時小。而過大的電壓、電流 將損及鉛酸電池。所以須加裝一個充電控制器來保護電池,防止電池過度充電、及過度放電
- 2. 購自市面的「太陽能/風力發電機充電控制器」,規格:充電電壓:12V 最大電流:風力 15A,太陽能 10A 截止電壓: 14V.。經加裝電錶等,成爲一個控制盤。接線如圖 7-2a,其功能如下:
 - (1) 充電控制器係由變壓器、電晶體、矽二極體、積體電路等組成,會控制電壓在 12-13 伏特之間,以保護電池。
 - (2) 我們在洩載端連接一個 50W 10Ω 功率電阻,當瞬間電壓超過 14 伏特,或電池充飽時,電路會跳到功率電阻,以熱能釋放掉,藉此保護電池。
 - (3) 另外我們並聯伏特計、串連安培計,可即時監測電壓、電流值。
 - (4)加接了一個短路開關,在颱風來臨前,或要將發電機降下時,可瞬間將葉片轉子停止轉動,安全的將發電機裝置收起來。

(三)研究七之三:風力發電機對鉛酸電池充電的實測

(室內實測)方法:

- 1. 以 300w 扇葉直徑 65cm 的工業風扇爲風源,逐步距離風力發電機由 120cm 至 360cm 止,測量風速逐步爲 5.6m/s 至 2.0m/s。以此條件吹動葉片轉子。
- 2. 分別在不同風速下作充電測試。測量電壓 V、電流 I、計算電功率 P=IV。

結果: 如表 7.3.1

- 1.在風速 5.6m/s 時,電壓 12.0 伏特、電流 0.24 安培、計算電功率 2.88W,風力發電機已對電池充電。逐步減小風速至 3.2m/s 時還有電功率 0.48W。
- 2. 逐步減小風速至 2.0m/s 時,葉片已不轉動。
- 3. 風力發電機對電池充電,所需的最小風速値大約在 2.0m/s ~3.2m/s 附近。

風速	電壓 Volt	電流 Amp	電功率 P=IV Watt
5.6m/s	12.0	0.24	2.88
3.7m/s	12.0	0.07	0.84
3.2m/s	12.0	0.04	0.48
2.0m/s	葉片不轉動	_	_

(室外實測)方法:爲得到較大的風速,將風速計及風力發電機一起升空,架設在 12 層大樓頂樓,以 1 吋、4 米鍍鋅管牢牢固定(如圖 7.3.a),選擇風大的日子監測瞬間風速、電壓、電流。 結果:

- 1.分別測得瞬間風速、電壓、電流,風力發電機已對電池充電。如表 7.3.2。
- 2. 測得瞬間最大風速達 11.9m/s 時電功率為 27.25W。
- 3.合倂室內、室外所得數據,經 EXCEL 分析繪圖如圖 7.3.2

風速	電壓 Volt	電流 Amp	電功率 P=IV Watt
7.1m/s	12.3	0.46	5.66
8.2m/s	12.3	0.68	8.36
10.3m/s	12.5	1.31	16.38
11.9m/s	12.5	2.18	27.25

說明:1.由圖 7.3.2顯示:風速越大,發電機的輸出功率越高

- 2. 經 EXCEL 分析:趨勢線方程式 $y = 0.0287 \, X^3 0.2579 \, X^2 + 1.468x 2.3275$ $R^2 = 0.9993$ 相關係數 |R| > 0.75,達高度相關,故輸出功率與風速成 3 次方多項式曲線關係。
- 3. 風力發電機對電池充電,所需的最小風速(切入風速)約在 2.0m/s ~3.2m/s 之間

伍、討 論

- 一、在研究二之二的製作風速計過程中,戶外的環境變數太多,包括自然風向不定、風速不定、錯車……等因素,測得數據不夠客觀。所以,選擇接近無風的隧道內進行測試。利用作用力與反作用力原理,即車速等於風速。實驗結果得知,車速越快,風速越快,測得電壓也越高。再拿學校的風速計來測試比對,表 2-1 風速對照表的風速值非常接近。所以自製風速計是可信賴的。
- 二、在研究三之二利用廢棄玩具車零件,製作的環保可攜式風力發電機,風車機身用 PVC 水管連通。並且可以拆解組裝,攜帶方便。另外機尾接上以壓克力板製成的尾翼,用來 調整機頭迎向風源,再加上指北針,環保風力發電機也具備風向計的功能。但是齒輪材質爲塑膠、馬達轉軸也較細,耐用性自然較差。最後嘗試對 12V 7AH 的鉛酸電池充電,在 5.6m/s 風速下,電壓不夠,充不進去。改成 1800mAh 3 號鎳氫電池 2 個,經研究三之四測試結果是可行的。
- 三、在研究葉片時,實驗裝置設定爲三葉片。是參考空氣動力學原理得知,二片和三片的性能表現差不多。但當二葉片風車轉成垂直狀態時,上下兩片葉片掃過的風速是不一樣的。造成這個問題的專有名詞叫做「亂流」。因爲作用在頂端葉片的作用力比底部葉片的作用力大,造成上下作用力不平衡,風車發生抖動,而產生咯咯響的聲音。這種作用力不平衡的現象,葉片上下垂直時最嚴重、葉片呈水平時沒有。而三片的沒有作用力不平衡的問題。
- 四、在研究五之一:葉片與轉動面夾角度,對發電機輸出電壓與轉速的影響。依據<u>白努力</u>定律:一個連續的流體,流速快時壓力會變小,而流速變慢時壓力會變大。由下圖三 a 可知左面風的流速比右面快,所以左面的壓力比右面小,因此造成的左右壓力差。而推動葉片轉動的是平行於轉動平面的分量。圖三 b,c 顯示推動葉片的分壓會隨葉片的夾角變大而變大。由表 5-1-1 圖 5-1-1a.b.c.d 也顯示隨著角度變大,轉速與電壓也變大。直到超過一個臨界角度卻開始往下降,圖中顯示約在 10~12°間。依「空氣動力學」稱此現象為「失速」,當攻角增加時機翼的升力也會隨著增加,氣流開始自機翼表面產生分離。這時的攻角就叫做臨界攻角,也是最大的升力點,如果攻角繼續增加,則升力會急降,相對阻力會很大即所謂的失速(stall)。推動風車葉片轉動的就是升力,另一個將葉片往回拉的叫阻力。阻力與升力比值隨攻角而變,最佳阻升比的攻角,就是風車葉片轉動最有效率的角度。所以在研究五我們得到:28cm 壓克力板以 10°夾角爲最有效率的葉片。
- 五、研究五之一結果顯示:在相同的夾角下,沒負載電器時,葉片的弦長越短,轉速、電壓值越高;有負載時,則越長越好。因爲負載時,發電機需較多的輸出功率來克服電器的阻抗,根據功率 =扭力x角速度,在相同的風力下,扭力越大,可產生較大的功率,而由槓桿原理知道,力臂越長,扭力越大。所以,有負載時,葉片的弦長越長,轉速、電壓值越高。實驗結果以 28cm 最佳。
- 六、研究五之三結果顯示:在不同的風速條件下,無論是否負載電器,HIPS 彎板葉片輸出電壓都較壓克力平板葉片高,轉速也較快。由流體力學可解釋:下圖分別爲氣流通過非流線形物體、流線形物體時之模擬圖, C、C'、F、F'稱爲分流點,其下游之流體運動,常呈現若干大型渦流,是爲尾跡區,右圖爲流線型,其尾跡區較小,流體經過時,能量損失亦較少。專業的葉片製造廠都是應用電腦程式繪圖 AUTO CAD 及 CNC 車床做出最有效率的葉片。實非我們能力所及。所以我們最後採用自製 HIPS 彎板葉片。

- 七、由研究數據顯示: 風車葉片轉速 rpm 越快,電壓值也越大。依據法拉第電磁感應定律:電路 中感應電動勢的大小,跟穿過這一電路磁通量的變化率成正比。所以,轉速越快,磁通量的 變化率越大,電壓值也越大。
- 八、(1) 根據風力發電機理論,風力發電機的輸出功率 $P = C_{p1/2} \rho AV^3$ ($\rho =$ 空氣密度 kg/m^3 , A = 葉片掃掠的面積 m^2 , V=風速 m/s, Cp=有效將風能轉換成電能的百分比,依貝兹理論(Betz' Law):理想情况下風能有效轉換成電能的極限比值為 16/27約為 59%),將我們的風力發電 機在風速 5.6m/s 時.套入公式可得輸出功率 P 的極限値爲 17.1 Watts。 V=5.6 m/s, $\rho=1.0$ kg/ m^3 R = 0.325 m >>>> A = 0.33 m^2 P = $C_p \frac{1}{2} \rho \text{ AV3} = 59\% (0.5)(1.0)(0.33)(5.6)^3 = 17.1 \text{ Watts}$ 單位 : $(kg/m^3)\times(m^2)\times(m^3/s^3)=(kg-m)/s^2\times m/s=Newton-m/s=Watt \circ$ 比較研究七之三(表 7.3.1) 實測值爲 2.88 Watts, 風能有效轉換成電能的比值約爲 10%。 討論其影響因子,應爲:葉片效率、轉速、磁通量強度、線圈圈數。所以我們的風力發電 機是一台小型風力發電機。假若當天氣候平均風速在 5.6m/s,推估發電機對放電後的 12V 7AH 鉛酸電池充電,約 29.2 小時能充滿(12V×7A÷2.88W=29.2H)。 (2) 由 $P = C_{p1/2} \rho AV^3$ 得知功率與風速 3 次方成正比,圖 7.3.2 也顯示如此趨勢。
- 九、風力發電機的研究、製作及運轉過程中,有一個必須遵守的原則,就是安全第一。電路的接 線、電纜線的選擇、避免過載、過熱、觸電,葉片轉動避免路人小孩碰觸,機組架設的穩固 及高空作業。每一個環節都應注意安全。
- 十、自製 30W 理想風力發電機組裝容易,成本僅約 1500元,與市售 30W 風力或太陽能發電商品 動輒上萬元比較起來,便宜許多。平日架設在頂樓,提供空中花園庭園 LED 燈發光;假日也 可攜帶到海邊露營使用。根據經濟部能源局統計顯示:風力發電輸出1度電,可減少0.638公 斤 CO2 的排放。目前全台計有 155 座風力發電機組運轉,年發電量 7.6 億度,可提供 21 萬戶 1年的用電量。我們的風力發電機與其相比,雖是小巫見大巫。但藉由本次的研究,充實了我 們風力發電理論與應用的知識;也爲搶救地球,略盡綿薄之力。

陸、結論

- 一、研究二自製簡易的風速計經測試、比對,所得表 2-2.風速與電壓對照表,是我們用來測量風速的工具。
- 二、研究三利用生活用品製作的環保可攜式風力發電機,攜帶方便。對 1800mAh 3 號鎮 氫電池 2 個充電是可行的。這是我們設計風力發電機系統的入門,引起我們進一步研 究理想風力發電機的興趣。
- 三、研究四選用軸向磁通發電機,線圈接線很簡單,不需要齒輪變速箱,沒有噪音問題,沒有碳刷不需保養。重量也較輕薄,固定在空中,穩固、安全。
- 四、研究五中壓克力、飛機木、卡紙板、瓦楞板、珍珠板 5 種不同材質的平板葉片,以 壓克力板表現最好。葉片弦長以最長的 28cm 扭力最大,效率最好。葉片與旋轉面夾 角以 1 0 最有效率。我們的風力發電機採用 HIPS 彎板葉片,強度增加,並符合空氣 動力學,轉速較快,輸出電壓都較壓克力平板葉片高,發電效率表現最佳。
- 五、研究六之自製理想風力發電機組裝、拆解容易,重量僅 2kg、攜帶方便、成本便 宜。加裝充電控制箱,具保護電池過充、即時監測電壓、電流、計算電功率的功能。
- 六、自製理想風力發電機屬於小型風力發電系統,其充電的切入風速約在 2.0m/s ~3.2m/s 之間。而在風速 3.2m/s~11.9m/s 範圍間,可以獲 得 0.48W~27.25W 的電功率對 12V 的鉛酸電池充電。若再並聯太陽能板,將使發電量提高,系統更廣泛,頗具未來性。
- 七、全球油價一再創新高,在能源幾乎全部仰賴進口的台灣,「新能源危機」更是一觸 即發,而傳統的火力發電靠石油運轉,發電成本也提高。火力發電又會排放二氧化 碳,造成溫室效應,使地球暖化、氣候變遷。風力取之不盡,分布廣闊,是一種永續 利用的新能源。風力發電潔淨不污染,在這場節能減碳的大作戰中,佔有重要地位, 值得我們研究、推廣。

柒、參考資料

- 一、翰林版國三上自然與生活科技課本 電壓、電流及歐姆定律、能量由功到熱。
- 二、翰林版國三下自然與生活科技課本 簡單電路與電解、電與磁一體兩面。
- 三、中央氣象局網站 http://www.cwb.gov.tw/V4/index.htm
- 四、陳文山 電子學二 全華出版社 第 225~253 頁 2002 年。
- 五、盧衍祺 流體力學 十三版 東華書局上冊第224頁;下冊,第517頁 1987年。
- 六、國立台灣師範大學物理系物理教學示範實驗教室網站 http://www.phy.ntnu.edu.tw/
- 七、Small Wind Turbine DesignNotes

http://users.aber.ac.uk/iri/WIND/TECH/WPcourse/index.html

八、張德光 直升機 五洲出版社 第47頁 1987年

【評語】030810

以回收之器材自行設計容易拆裝之風力發電機,相當不錯。 在進行一系列實驗與分析後又設計一效能更佳,實用性更高 之成品,具研究性及實用性。能應用台灣多風氣候之特性, 配合綠色能源之觀念,進行研究。

建議加強理論之建立,以及改善方式之強化。注意成本。