中華民國第四十八屆中小學科學展覽會作品說明書

國中組 數學科

第三名

030406

弧弧相切一多邊形內相切弧的探討

學校名稱:南投縣立竹山國民中學

作者: 指導老師:

國二 陳冠安 顔名宏

國二 陳宇亭 錢威印

國二 陳芝云

國二 陳佑任

關鍵詞: 半徑、數列、相切弧

摘 要

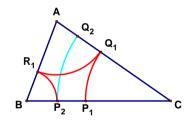
在△ABC中,以C點爲圓心,C至BC邊上一點P1的長爲半徑畫弧,交CA邊上的Q1點,接著以A點爲圓心, $\overline{AQ_1}$ 爲半徑畫弧到達 \overline{AB} 邊上的R1點,然後以B點爲圓心, $\overline{BR_1}$ 爲 半徑的畫弧達到 \overline{BC} 邊上的P2點,依這樣的規律進行下去,在 \overline{BC} 邊上會產生點P1,P2,P3,…。本文探討上述圖形中起始半徑 $\overline{CP_1}$ 、數列P(由 $\overline{CP_1}$ 、 $\overline{CP_2}$ 、 $\overline{CP_3}$ 、…、 $\overline{CP_n}$ 的長度組成)及弧弧相切的關係,並類推至多邊形,結果顯示:雖然數列P在奇數多邊形及偶數多邊形中,皆有形成公差爲零之等差數列的狀況,但是發生條件相當不同,在奇數多邊形中,與「起始半徑 $\overline{CP_1}$ 值」有關,但在偶數多邊形中,僅與「邊長」有關;弧弧相切的況狀在奇數多邊形中,一定會發生,而在偶數多邊形時,只有當『奇數邊的和=偶數的和』時,才會有弧弧相切的現象產生。

壹、研究動機:

老師教完等差數列及級數之後,在課堂上分享了一題「動手玩數學」一書中的題目,讓 有興趣的同學研究,題目內容如下:

在 \overline{AB} =13, \overline{BC} =15, \overline{AC} =14的三角形上,一隻螞蟻做圓弧形的運動,如圖所示,螞蟻從 \overline{BC} 邊上

的一點 P_1 出發,繞著以 C 點爲圓心, $\overline{CP_1}$ 爲半徑的圓弧到達 \overline{CA} 邊上的


 Q_1 點,接著從 Q_1 點出發,繞著以 A 點爲圓心, $\overline{AQ_1}$ 爲半徑的圓弧到達 \overline{AB}

邊上的 R_1 點,然後從 R_1 點出發,繞著以 B 點爲圓心, $\overline{BR_1}$ 爲半徑的圓

弧達到 \overline{BC} 邊上的 P_2 點,依這樣的規律進行下去,在 \overline{BC} 邊上會產生點 P_1 , P_2 , P_3 , \cdots 。

(1) 若起始點 P_1 滿足 $\overline{CP_1}$ =7,描述 P_2 , P_3 ,…點所在的位置。

(2) 若起始點 P_1 滿足 $\overline{CP_1}$ =12,描述 P_2 , P_3 ,…點所在的位置。

於是,平時就喜歡挑戰難題的我們,就找了幾個志同道合的伙伴,一起動手玩起了這道 數學題。

貳、研究目的:

- 一、探討起始半徑 $\overline{CP_1}$ 與三角形中 P_1 , P_2 , P_3 ,…, P_n 數列的關係及弧弧相切的狀況。
- 二、探討起始半徑 $\overline{\mathbf{CP_1}}$ 與多邊形中 $P_1, P_2, P_3, \dots, P_n$ 數列的關係及弧弧相切的狀況。

參、研究設備、器材及名詞釋義

一、研究設備及器材:

筆、紙、直尺、圓規、電腦、EXCELL 軟體、GSP 軟體

二、名 詞 釋 義:

爲使研究結果一致、易於比較及討論,我們統一幾個名詞。

「底 邊」: 不論幾邊形皆以 BC 爲底邊。

「起始半徑」:以C點爲圓心畫的第一個弧,其半徑稱爲起始半徑,以CP. 表示。

「數 列 P_{\perp} :以 $\overline{CP_n}$ 的長度做爲數列中第 n 項(Pn)之値。例: $\overline{CP_n}$ = 7 時, P_{1} = 7。

「奇偶數邊」:以底邊 \overline{BC} 爲第一段邊長,沿逆時針方向依序命名其他邊長。例如:四

邊形 ABCD 中,奇數邊指的是: \overline{BC} 、 \overline{DA} ,偶數邊指的是 \overline{CD} 、 \overline{AB} 。

「邊 長」:第一段邊,邊長爲 a_1 ,第二段邊長爲 a_2 ,依序類推。

「弧弧相切」:是指圖形中每個弧與其相互緊鄰的兩個弧,有兩兩相切的情況。

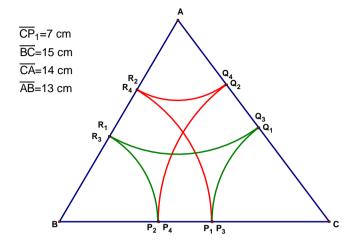
肆、研究過程

一、針對三角形的討論

(一)尺規作圖(快速推測規律)

爲大致、快速地看出 P_1 , P_2 , P_3 ,…數列的規律性,我們依題意直接用直尺重新畫了一個符合題意的三角形,並用圓規直接在圖上畫弧,結果從圖形上看來,我們發現:不管起始半徑 $\overline{CP_1}$ =7 或是 $\overline{CP_1}$ =12 時,都有一個規律:畫第二個循環結束後, P_1 、

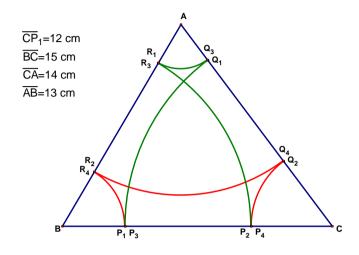
 P_3 、 P_5 等奇數點開始重疊, P_2 、 P_4 、 P_6 等偶數點也開始重疊,此時的圖形中皆有六個 $\mathfrak M$,且有弧弧相切的現象。


(二)畫表格列舉及 GSP 軟體繪圖(詳細計算,求出精確數據)

尺規作圖雖然可快速看出趨勢及規律性,但爲避免作圖及測量時所產生的誤差, 我們接下來畫出表格實際運算出各點坐標,再用 GSP 軟體繪圖,方法如下:

- 1.依序在各邊畫弧的結果,會在各邊上畫出許多交點,爲避免混淆,我們統一稱 \overline{BC} 上的交點爲 P 點, \overline{CA} 上的交點爲 Q 點, \overline{AB} 上的交點爲 R 點,每邊上的交點依出現的先後順序標上 $1 \cdot 2 \cdot 3$ …的下標以作區分,例: \overline{BC} 邊上的第三個出現的交點以 P_3 表示。
- 2.以 C 點爲圓心, $\overline{CP_1}=7$ (起始半徑,可更改)爲半徑畫弧, \overline{c} 及 邊於 $\overline{Q_1}$ 點,故 $\overline{AQ_1}$ $=\overline{CA}-\overline{CP_1}=14-7=7$ 。
- 3.以 A 點爲圓心, $\overline{AQ_1}$ 爲半徑畫弧, \overline{Q} 屬於 $\overline{R_1}$ 點,因此 $\overline{BR_1} = \overline{AB} \overline{AQ_1} = 13 7 = 6$ 。
- 4.以 B 點爲圓心, $\overline{BR_1}$ 爲半徑畫弧,交 \overline{BC} 邊於 P_2 ,故 $\overline{CP_2} = \overline{BC} \overline{BR_1} = 15 6 = 9$ 。
- 5.仿照上面步驟依序運算,其結果如表一、表二所示。
- 6.用 GSP 軟體將表一、表二的數據繪圖,結果如圖一、圖二所示。

邊長半	BC =15	<u>CA</u> =14	AB =13
徑 n	$\overline{\mathit{CP}_n}$	$\overline{AQ_n}$	$\overline{BR_{_{n}}}$
1	7	7	6
2	9	5	8
3	7	7	6
4	9	5	8
5	7	7	6
6	9	5	8
	•	•	•
	•	•	
·	•	•	•

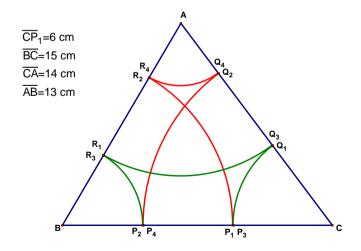

表一、起始半徑 $\overline{CP_1}$ =7的數據

圖一、起始半徑 $\overline{CP_1}$ =7的圖形

邊長半	BC =15	<u>CA</u> =14	AB =13
徑 n	$\overline{CP_n}$	$\overline{AQ_n}$	$\overline{BR_{n}}$
1	12	2	11
2	4	10	3
3	12	2	11
4	4	10	3
5	12	2	11
6	4	10	3
	•	•	
•	•	•	
	•	•	•

表二、起始半徑 $\overline{\mathrm{CP_{I}}}$ =12 的數據

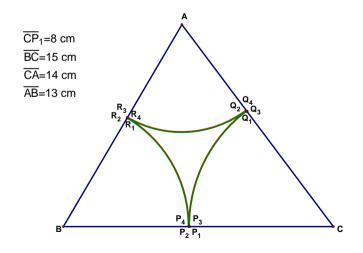
圖二、起始半徑 $\overline{CP_1} = 12$ 的圖形


由上面兩組表格及圖形所得到的資料,可看出 P 數列分別為 7,9,7,9,7,9... 及 12,4,12,4,12,4...,且圖形中皆有六個弧且弧弧相切,這樣的結果和尺規作 圖時所得到的結果是一致的。

(三)利用 EXCEL 公式及 GSP 軟體繪圖(運用程式縮短運算時間)

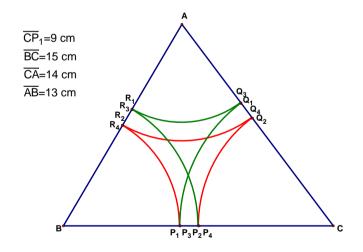
利用畫表格列舉所得到的結果,讓我們相當高興,在和老師討論這樣的方法及結果之後,他教我們使用 EXCEL 的運算功能,將表格做進一步的改良,目的是讓我們能夠利用 EXCEL 的運算功能,簡單的輸入三角形的邊長及起始半徑 $\overline{CP_l}$ 值,便能快速得到 P_1 , P_2 , P_3 ,…的數列(詳細的表格設定,如附錄一所示),於是我們又嘗試做了下面幾組實驗,結果如表三、表四、表五所示,再利用 GSP 軟體將資料繪圖成圖三、圖四、圖五。

$\overline{CP_n}$	三角形三邊長	$\overline{\mathrm{BC}}$	$\overline{\overline{\text{CA}}}$	$\overline{\mathrm{AB}}$
	<u> 一</u> 円ル一度以	15	14	13
是否等於	n 半徑	$\overline{CP_n}$	$\overline{AQ_n}$	$\overline{BR_{n}}$
CP_1	1	6	8	5
不相等	2	10	4	9
相等	3	6	8	5
不相等	4	10	4	9
相等	5	6	8	5
不相等	6	10	4	9
相等	7	6	8	5
不相等	8	10	4	9
相等	9	6	8	5
不相等	10	10	4	9
相等	11	6	8	5


表三、起始半徑 $\overline{\mathrm{CP_{l}}}$ =6的數據

圖三、起始半徑 $\overline{CP_1}$ =6的圖形

$\overline{CP_n}$	三角形三邊長	$\overline{\mathrm{BC}}$	$\overline{\text{CA}}$	$\overline{\mathrm{AB}}$
		15	14	13
是否等於	n 半徑	$\overline{CP_n}$	$\overline{AQ_n}$	$\overline{BR_n}$
$\overline{CP_1}$	1	8	6	7
相等	2	8	6	7
相等	3	8	6	7
相等	4	8	6	7
相等	5	8	6	7
相等	6	8	6	7
相等	7	8	6	7
相等	8	8	6	7
相等	9	8	6	7
相等	10	8	6	7
相等	11	8	6	7


表四、起始半徑 $\overline{\operatorname{CP_1}}$ =8的數據

圖四、起始半徑 $\overline{CP_1}$ =8的圖形

$\overline{CP_n}$	三角形三邊長	BC	\overline{CA}	\overline{AB}
	<u> 一</u> 円ル一度以	15	14	13
是否等於	n 半徑	$\overline{CP_n}$	$\overline{AQ_n}$	$\overline{BR_n}$
$\overline{CP_1}$	1	9	5	8
不相等	2	7	7	6
相等	3	9	5	8
不相等	4	7	7	6
相等	5	9	5	8
不相等	6	7	7	6
相等	7	9	5	8
不相等	8	7	7	6
相等	9	9	5	8
不相等	10	7	7	6
相等	11	9	5	8

表五、起始半徑 $\overline{CP_1}$ =9的數據

圖五、起始半徑 $\overline{CP_1}$ =9 的圖形

由上面的結果,我們除了看到不論起始半徑 $\overline{CP_1}$ 之值爲何,畫兩個循環,數列就會開始重復,且畫出的六個弧有弧弧相切外,更讓我們發現當 $\overline{CP_1}$ =8 時,畫一個循環

結束就會重復, 且 P. 皆等於 8, 且畫出的三個弧也有弧弧相切的現象。

(四)代數法推導(導出一般性)

至此,我們發現規律好像可以說就要呼之欲出了,但因爲我們嘗試的起始半徑 $\overline{\mathbf{CP_1}}$ 都是整數,並未論及其他狀況,這樣的結果,可能只是特例,而且對於當 $\overline{\mathbf{CP_1}}$ =8 時,只要畫一個循環,就會重復的結果,仍無法解釋,所以,我們決定使用代數法,令△ ABC 的邊長 $\overline{\mathbf{BC}}$ = a_1 , $\overline{\mathbf{CA}}$ = a_2 , $\overline{\mathbf{AB}}$ = a_3 ,且起始半徑 $\overline{\mathbf{CP_1}}$ =x,用畫表格列舉的運算方法再重新列表來探討、比較 $\overline{\mathbf{CP_1}}$ 的值對於數列循環的影響,結果如表六所示:

邊長半	$\overline{BC} = a_1$	$\overline{AC} = a_2$	$\overline{AB} = a_3$
徑 n	$\overline{CP_n}$	$\overline{AQ_n}$	$\overline{BR_n}$
1	X	a_2-x	$-a_2+a_3+x$
2	$a_1 + a_2 - a_3 - x$	$-a_1+a_3+x$	a_1-x
3	X	a_2-x	$-a_2+a_3+x$
4	$a_1 + a_2 - a_3 - x$	$-a_1+a_3+x$	a_1-x
5	X	a_2-x	$-a_2+a_3+x$
6	$a_1 + a_2 - a_3 - x$	$-a_1+a_3+x$	a_1-x
•	•	•	•
	•	•	•
	•	•	•
2n-1	х	a_2-x	$-a_2+a_3+x$
2n	$a_1 + a_2 - a_3 - x$	$-a_1+a_3+x$	a_1-x

表六、用代數法推導三邊形之結果

從表六中的數據,我們可以得到下列結果:

- (1)不管起始半徑 $\overline{CP_1}$ 值爲何,都會造成數列 P 有: $P_1 = P_3 = P_5 = \cdots = P_{2n-1}$ 及 $P_2 = P_4 = P_6$ $= \cdots = P_{2n}$ 的現象,且 $P_{2n} P_{2n-1} = (a_1 + a_2 a_3 2x$ 起始半徑),而此時畫出的圖形是 六個弧弧相切的弧,這樣的推導結果合理解釋了我們前面的實驗數據。
- (2) 爲了探討 $\overline{CP_1}$ =8 時的特殊狀況,我們令起始半徑 $\overline{CP_1}$ = $\overline{CP_2}$,得到方程式:

$$x=a_1-a_3+a_2-x$$

整理**→** $2x=a_1-a_3+a_2$

$$\Rightarrow$$
 $x = \frac{a_1 + a_2 - a_3}{2}$

也就是當起始半徑值 $\overline{CP_1} = \frac{a_1 + a_2 - a_3}{2}$,會使數列 P 成爲一公差爲零的等差數列,即 $P_1 = P_2 = P_3 = \cdots = P_n$,此時所得的圖形是三個弧弧相切的弧,而當 $a_1 = 15$, $a_2 = 14$, $a_3 = 13$ 時, $\overline{CP_1} = x = \frac{15 + 14 - 13}{2} = 8$,這和我們之前所得的結果是一樣的。

二、針對多邊形討論

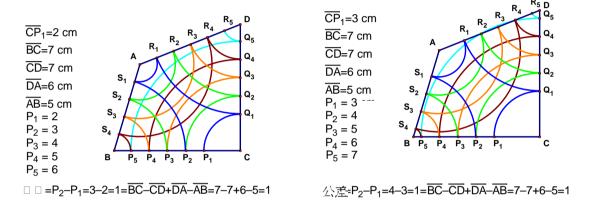
(一)四邊形

用代數法推導的結果,和我們之前幾個方法所得到的結果一致且更具一般性,這樣的推導結果除了讓我們感到高興之外,更讓我們好奇是否能用這樣的方法,推導出四邊形的情況,於是我們令四邊形 ABCD 之邊長, $\overline{BC}=a_1$, $\overline{CD}=a_2$, $\overline{DA}=a_3$, $\overline{AB}=a_4$,且 $\overline{CP_1}=x$,用畫表格列舉的方法來探討,結果如表七所示:

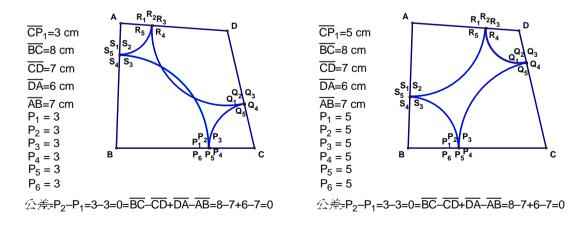
邊長半	$\overline{BC} = a_1$	$\overline{\text{CD}} = a_2$	$\overline{DA} = a_3$	$\overline{AB} = a_4$
徑 n	$\overline{CP_n}$	$\overline{DQ_n}$	$\overline{AR_n}$	BS _n
1	x	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$
2	$a_1 - a_2 + a_3 - a_4 + x$	$-a_1+2a_2-a_3+a_4-x$	$a_1 - 2a_2 + 2a_3 - a_4 + x$	$-a_1+2a_2-2a_3+2a_4-x$
3	$2a_1 - 2a_2 + 2a_3 - 2a_4 + x$	$-2a_1+3a_2-2a_3+2a_4-x$	$2a_1 - 3a_2 + 3a_3 - 2a_4 + x$	$-2a_1+3a_2-3a_3+3a_4-x$
4	$3a_1 - 3a_2 + 3a_3 - 3a_4 + x$	$-3a_1+4a_2-3a_3+3a_4-x$	$3a_1 - 4a_2 + 4a_3 - 3a_4 + x$	$-3a_1+4a_2-4a_3+4a_4-x$
5	$4a_1 - 4a_2 + 4a_3 - 4a_4 + x$	$-4a_1+5a_2-4a_3+4a_4-x$	$4a_1 - 5a_2 + 5a_3 - 4a_4 + x$	$-4a_1+5a_2-5a_3+5a_4-x$
6	$5a_1 - 5a_2 + 5a_3 - 5a_4 + x$	$-5a_1+6a_2-5a_3+5a_4-x$	$5a_1 - 6a_2 + 6a_3 - 5a_4 + x$	$-5a_1+6a_2-6a_3+6a_4-x$
		•	•	•
•			•	
•		•	•	
n	$(n-1)a_1-(n-1)a_2+$	$-(n-1)a_1+na_2-(n-$	$(n-1)a_1-na_2+na_3-(n$	$-(n-1)a_1+na_2-na_3+$
''	$(n-1)a_3-(n-1)a_4+x$	$1)a_3+(n-1)a_4-x$	$-1)a_4+x$	na_4-x

表七、用代數法推導四邊形之結果

由表七的數據,我們可以得到下列結果:


(1)四邊形不像三邊形從數據中一眼就可看出不管起始半徑 $\overline{CP_1}$ 值為何,都會造成數列 $P_1 = P_2 = P_3 = P_5 = \cdots = P_{2n-1}$ 及 $P_2 = P_4 = P_6 = \cdots = P_{2n}$ 的結果,但是不論起始半徑 $\overline{CP_1}$ 值

爲何,都會使 P 數列形成一公差爲 $a_1-a_2+a_3-a_4$ 的等差數列,其例圖如圖六,此時的圖形並無法完全弧弧相切。


(2)仿照三邊形的推導結果,我們令起始半徑 $\overline{CP_1} = \overline{CP_2}$ 時,我們得到方程式:

$$x=a_1-a_2+a_3-a_4+x$$

整理 $> 0 = a_1-a_2+a_3-a_4$
移項 $> a_1+a_3=a_2+a_4$

由上面的結果,我們發現,不管起始半徑 $\overline{CP_1}$ 之值爲何,只要四邊形邊長有 a_1+a_3 $= a_2 + a_4$ 的關係,就會使 P 數列形成一公差爲零的等差數列,其例圖如圖七,此時的圖形是四個弧弧相切的弧。

圖六、在四邊形中,不管 $\overline{\mathrm{CP_l}}$ 值爲何,數列 P 皆會形成 公差爲 $a_1-a_2+a_3-a_4$ 的等差數列,但圖形中的弧無法完全弧弧相切

圖七、在四邊形中,若 \overline{BC} + \overline{DA} = \overline{CD} + \overline{AB} 時,不管 $\overline{CP_1}$ 值爲何,數列 P 皆會形成 公差爲零的等差數列,且圖形中的弧會弧弧相切

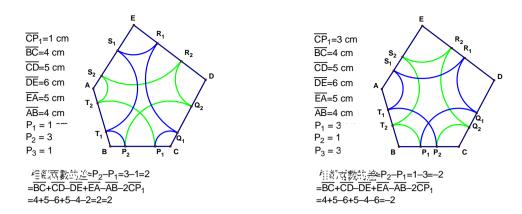
(二)五邊形

推導出四邊形的特性之後,我們更想試著推導出五邊形時,是否也有相似的情況, 於是我們令五邊形 ABCDE 之邊長, $\overline{BC}=a_1$, $\overline{CD}=a_2$, $\overline{DE}=a_3$, $\overline{EA}=a_4$, $\overline{AB}=a_5$,

且 $\overline{CP_1} = x$,用畫表格列舉的方法來探討,結果如表八所示:

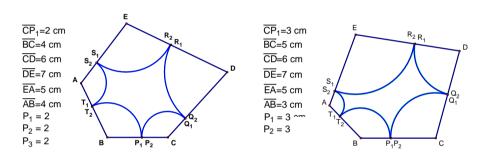
邊長半	$\overline{BC} = a_1$	$\overline{\text{CD}} = a_2$	$\overline{\text{DE}} = a_3$	$\overline{\text{EA}} = a_4$	$\overline{AB} = a_5$
徑 n	$\overline{CP_n}$	$\overline{DQ_n}$	$\overline{\mathit{ER}_n}$	$\overline{\mathrm{AS}_{\mathrm{n}}}$	$\overline{\mathrm{BT}_{_{\mathrm{n}}}}$
1	x	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$	$-a_2+a_3-a_4+a_5+x$
2	$a_1 + a_2 - a_3 + a_4 - a_5 - x$	$-a_1+a_3-a_4+a_5+x$	$a_1 + a_4 - a_5 - x$	$-a_1+a_5+x$	a_1-x
3	x	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$	$-a_2+a_3-a_4+a_5+x$
4	$a_1 + a_2 - a_3 + a_4 - a_5 - x$	$-a_1+a_3-a_4+a_5+x$	$a_1 + a_4 - a_5 - x$	$-a_1+a_5+x$	a_1-x
5	X	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$	$-a_2+a_3-a_4+a_5+x$
6	$a_1 + a_2 - a_3 + a_4 - a_5 - x$	$-a_1+a_3-a_4+a_5+x$	$a_1 + a_4 - a_5 - x$	$-a_1+a_5+x$	a_1-x
	•	•	•	•	•
			•	•	
	•	•	•	•	
2n-1	x	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$	$-a_2+a_3-a_4+a_5+x$
2n	$a_1 + a_2 - a_3 + a_4 - a_5 - x$	$-a_1+a_3-a_4+a_5+x$	$a_1 + a_4 - a_5 - x$	$-a_1+a_5+x$	a_1-x

表八、用代數法推導五邊形之結果


由表八的數據,我們可以得到下列結果:

- (1)五邊形與三邊形一樣,從數據中一眼就可看出不管起始半徑 $\overline{CP_1}$ 值為何,都會造成數列 P 有: $P_1=P_3=P_5=\cdots=P_{2n-1}$ 及 $P_2=P_4=P_6=\cdots=P_{2n}$ 的結果,且相鄰兩項的差 $P_{2n}-P_{2n-1}=(a_1+a_2-a_3+a_4-a_5-2\times$ 起始半徑),其例圖如圖八,此時所得到的圖形是十個弧弧相切的弧。
- (2)當我們令起始半徑 $\overline{CP_1} = \overline{CP_2}$, 得到方程式:

$$x = a_1 + a_2 - a_3 + a_4 - a_5 - x$$
整理→
$$2x = a_1 + a_2 - a_3 + a_4 - a_5$$


$$x = \frac{a_1 + a_2 - a_3 + a_4 - a_5}{2}$$

亦即當始半徑 $\overline{CP_1} = \frac{a_1 + a_2 - a_3 + a_4 - a_5}{2}$ 時,會使數列 P 成爲一公差爲零的等差數列,即 $P_1 = P_2 = P_3 = \cdots = P_n$,其例圖如圖九,此時所得到的圖形是五個弧弧相切的弧。

圖八、在五邊形中,不管 $\overline{CP_1}$ 值爲何,數列 P 形成一相鄰兩項差爲 $\overline{BC} + \overline{CD} - \overline{DE} + \overline{EA} - \overline{AB}$

 $-2\overline{CP_{i}}$ 的數列,且圖中的弧會弧弧相切

起始半徑
$$\overline{CP}_1 = \frac{\overline{BC} + \overline{CD} - \overline{DE} + \overline{EA} - \overline{AB}}{2} = \frac{4 + 6 - 7 + 5 - 4}{2} = 2$$
 起始半徑 $\overline{CP}_1 = \frac{\overline{BC} + \overline{CD} - \overline{DE} + \overline{EA} - \overline{AB}}{2} = \frac{5 + 6 - 7 + 5 - 3}{2} = 3$

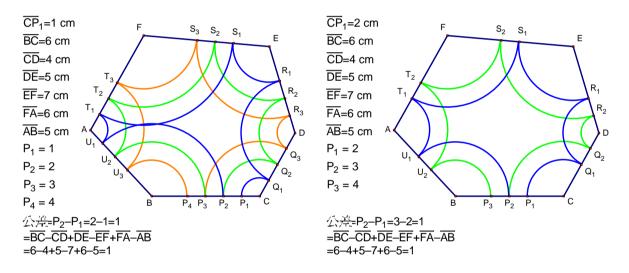
圖九、在五邊形中 , 若
$$\overline{\text{CP}_1} = \frac{\overline{BC} + \overline{CD} - \overline{DE} + \overline{EA} - \overline{AB}}{2}$$
 ,數列 P 形成

公差爲零之等差數列,且圖形中的弧會弧弧相切

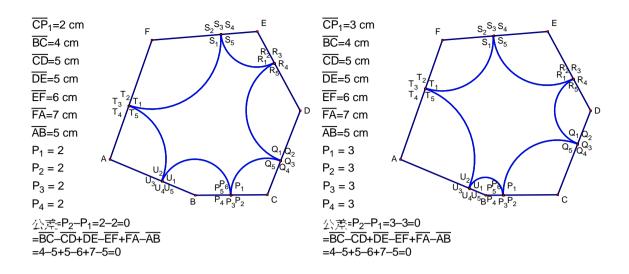
(三)六邊形

仔細觀查三邊形和五邊形的數據 ,可以看出兩者有相同的規律 ,但卻和四邊形的特性有些不同,故我們也想知道是不是六邊形和四邊形也有相同的規律 ,於是我們令 六邊形 ABCDE 之邊長 , $\overline{BC}=a_1$, $\overline{CD}=a_2$, $\overline{DE}=a_3$, $\overline{EF}=a_4$, $\overline{FA}=a_5$, $\overline{AB}=a_6$,且 $\overline{CP}_1=x$,用畫表格列舉的方法來探討 ,結果如表九所示。

邊長半	$\overline{BC} = a_1$	$\overline{\text{CD}} = a_2$	$\overline{\text{DE}} = a_3$	$\overline{\text{EF}} = a_4$	$\overline{\text{FA}} = a_5$	$\overline{AB} = a_6$
徑 n	$\overline{\mathit{CP}_n}$	$\overline{DQ_n}$	$\overline{ER_n}$	FS _n	$\overline{\mathrm{AT}_{\mathrm{n}}}$	$\overline{\mathrm{BU}_{_{\mathrm{n}}}}$
1	х	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$	$-a_2+a_3-a_4+a_5+x$	$a_2-a_3+a_4-a_5+a_6-x$
2	$a_1 - a_2 + a_3 - a_4 + a_5 - a_6$	$-a_1+2a_2-a_3+a_4-a_5$	$a_1 - 2a_2 + 2a_3 - a_4 + a_5$	$-a_1+2a_2-2a_3+2a_4-$	$a_1 - 2a_2 + 2a_3 - 2a_4 +$	$-a_1+2a_2-2a_3+2a_4-2a_5+$
	+x	$+a_6-x$	$-a_6+x$	$a_5 + a_6 - x$	$2a_5-a_6+x$	$2a_6-x$
3	$2a_1 - 2a_2 + 2a_3 - 2a_4 +$	$-2a_1+3a_2-2a_3+2a_4$	$2a_1 - 3a_2 + 3a_3 - 2a_4 +$	$-2a_1+3a_2-3a_3+3a_4$	$2a_1 - 3a_2 + 3a_3 - 3a_4 +$	$-2a_1+3a_2-3a_3+3a_4-3a_5$
3	$2a_5-2a_6+x$	$-2a_5+2a_6-x$	$2a_5-2a_6+x$	$-2a_5+2a_6-x$	$3a_5-2a_6+x$	$+3a_{6}-x$
4	$3a_1 - 3a_2 + 3a_3 - 3a_4 +$	$-3a_1+4a_2-3a_3+3a_4$	$3a_1 - 4a_2 + 4a_3 - 3a_4 +$	$-3a_1+4a_2-4a_3+4a_4$	$3a_1 - 4a_2 + 4a_3 - 4a_4 +$	$-3a_1+4a_2-4a_3+4a_4-4a_5$
	$3a_5 - 3a_6 + x$	$-3a_5+3a_6-x$	$3a_5 - 3a_6 + x$	$-3a_5+3a_6-x$	$4a_5 - 3a_6 + x$	$+4a_{6}-x$
5	$4a_1 - 4a_2 + 4a_3 - 4a_4 +$	$-4a_1+5a_2-4a_3+4a_4$	$4a_1 - 5a_2 + 5a_3 - 4a_4 +$	$-4a_1+5a_2-5a_3+5a_4$	$4a_1 - 5a_2 + 5a_3 - 5a_4 +$	$-4a_1+5a_2-5a_3+5a_4-5a_5$
J	$4a_5 - 4a_6 + x$	$-4a_5+4a_6-x$	$4a_5 - 4a_6 + x$	$-4a_5+4a_6-x$	$5a_5-4a_6+x$	$+5a_{6}-x$
6	$5a_1 - 5a_2 + 5a_3 - 5a_4 +$	$-5a_1+6a_2-5a_3+5a_4$	$5a_1 - 6a_2 + 6a_3 - 5a_4 +$	$-5a_1+6a_2-6a_3+6a_4$	$5a_1 - 6a_2 + 6a_3 - 6a_4 +$	$-5a_1+6a_2-6a_3+6a_4-6a_5$
0	$5a_5 - 5a_6 + x$	$-5a_5+5a_6-x$	$5a_5 - 5a_6 + x$	$-5a_5+5a_6-x$	$6a_5 - 5a_6 + x$	$+6a_{6}-x$
•	•	•	•	•	•	
•	•	•	•	•	•	
•	•	•	•	•	•	
	$(n-1)a_1-(n-1)a_2+(n-1)a_2$	$-(n-1)a_1+na_2-(n-1)a_1+na_2$	$(n-1)a_1-na_2+na_3-(n$	$-(n-1)a_1+na_2-na_3$	$(n-1)a_1-na_2+na_3-$	$-(n-1)a_1+na_2-na_3+na_4$
n	$-1)a_3-(n-1)a_4+(n-1)a_4$	$1)a_3 + (n-1)a_4 - (n-1)a_5 - ($	$-1)a_4+(n-1)a_5-(n-1)a_5$	$+ na_4 - (n-1)a_5 + $	$na_4 + na_5 - (n-1)a_6 + x$	$-na_5+na_6-x$
	$1)a_5-(n-1)a_6+x$	$1)a_5 + (n-1)a_6 - x$	1) a_6+x	1) a_6-x		


表九、用代數法推導六邊形之結果

由表九的數據,我們可以得到下列結果:


- (1)六邊形與四邊形有一樣的規律,不論起始半徑 $\overline{CP_1}$ 值爲何,都會使 P 數列形成一公 差爲 $a_1-a_2+a_3-a_4+a_5-a_6$ 的等差數列,其例圖如圖十,此時所畫的弧無法完全弧 弧相切。
- (2)當我們令起始半徑 $\overline{CP_1} = \overline{CP_2}$ 時,藉由解方程式:

$$x=a_1-a_2+a_3-a_4+a_5-a_6+x$$

整理**→** $0=a_1-a_2+a_3-a_4+a_5-a_6$
移項**→** $a_1+a_3+a_5=a_2+a_4+a_6$

只要六邊形邊長有 $a_1+a_3+a_5=a_2+a_4+a_6$ 的關係,不管起始半徑 $\overline{\mathbf{CP_1}}$ 之值爲何,P 數列皆會形成一公差爲零的等差數列,其例圖如圖十一。

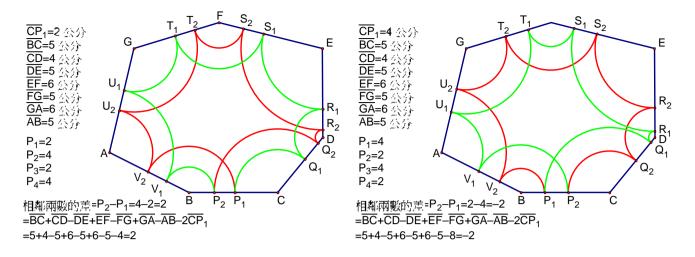
圖十、在六邊形中,不管 $\overline{CP_1}$ 值爲何,數列 P 皆會形成公差爲 $\overline{BC} - \overline{CD} + \overline{DE} - \overline{EF} + \overline{FA} - \overline{AB}$ 的等差數列,且圖形中的弧無法完全弧弧相切

圖十一、在六邊形中,若 \overline{BC} + \overline{DE} + \overline{FA} = \overline{CD} + \overline{EF} + \overline{AB} 時,數列P會形成公差爲零的等差數列,且圖形中的弧會弧弧相切

(四)七邊形

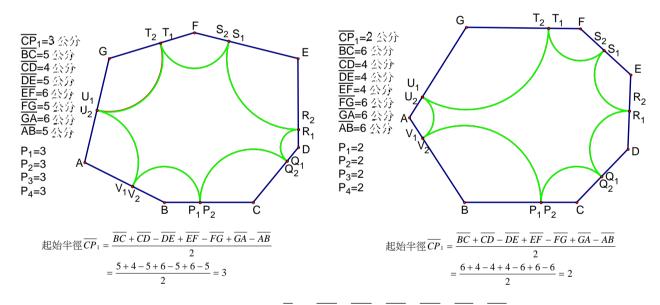
比較前面幾項討論的結果,我們得知三邊形和五邊形的規律一致,但爲更加確認 奇數多邊形是否有相同的規律,所以我們利用同樣方法,續繼研究七邊形,令七邊形 ABCDEFG 之邊長 $\overline{BC} = a_1$, $\overline{CD} = a_2$, $\overline{DE} = a_3$, $\overline{EF} = a_4$, $\overline{FG} = a_5$, $\overline{GA} = a_6$, $\overline{AB} = a_7$, 且 $\overline{CP_1} = x$,用畫表格列舉的方法來探討,結果如表十所示。

由表十的數據,我們可發現七邊形的數據和五邊形、三邊形一致,其結果如下: (1)從數據中就可明顯看出不管起始半徑 $\overline{CP_1}$ 值為何,都會造成數列 P 有: $P_1=P_3=P_5$ $=\cdots=P_{2n-1}$ 及 $P_2=P_4=P_6=\cdots=P_{2n}$ 的結果,且相鄰兩項的差 $P_{2n}-P_{2n-1}=(a_1+a_2-a_3+a_4-a_5+a_6-a_7-2$ x起始半徑),其例圖如圖十二,此時所得到的圖形是十四個弧弧相切的弧。


(2)當我們令起始半徑 $\overline{CP_1} = \overline{CP_2}$,得到方程式:

亦即當始半徑 $\overline{CP_1} = \frac{a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7}{2}$ 時,會使數列 P 成爲一公差爲零的 等差數列,即 $P_1 = P_2 = P_3 = \cdots = P$,其例圖加圖十三,此時所得到的圖形是七個加

等差數列,即 $P_1=P_2=P_3=\cdots=P_n$,其例圖如圖十三,此時所得到的圖形是七個弧弧相切的弧。


邊長	$\overline{BC} = a_1$	$\overline{\text{CD}} = a_2$	$\overline{\text{DE}} = a_3$	$\overline{\text{EF}} = a_4$	$\overline{\text{FG}} = a_5$	$\overline{\mathrm{GA}} = a_6$	$\overline{\mathrm{AB}} = a_7$
n徑	$\overline{CP_n}$	$\overline{DQ_n}$	$\overline{ER_n}$	$\overline{\mathrm{FS}_{_{\mathrm{n}}}}$	$\overline{\mathrm{GT}_{\scriptscriptstyle\mathrm{n}}}$	AU _n	$\overline{\mathrm{B}V_{_{\mathrm{n}}}}$
1	x	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$	$-a_2 + a_3 - a_4 + a_5 + x$	$a_2 - a_3 + a_4 - a_5 + a_6$ $-x$	$-a_2+a_3-a_4+a_5$ $-a_6+a_7+x$
2	$a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7 - x$	$-a_1 + a_3 - a_4 + a_5$ $-a_6 + a_7 + x$	$a_1 + a_4 - a_5 + a_6 - a_7 - x$	$-a_1 + a_5 - a_6 + a_7 + x$	$a_1 + a_6 - a_7 - x$	$-a_1+a_7+x$	a_1-x
3	х	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$	$-a_2+a_3-a_4+a_5 + x$	$a_2 - a_3 + a_4 - a_5 + a_6$ $-x$	$-a_2+a_3-a_4+a_5$ $-a_6+a_7+x$
4	$a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7 - x$	$-a_1+a_3-a_4+a_5$ $-a_6+a_7+x$	$a_1 + a_4 - a_5 + a_6 - a_7 - x$	$-a_1+a_5-a_6+a_7 + x$	$a_1 + a_6 - a_7 - x$	$-a_1+a_7+x$	a_1-x
5	х	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$	$-a_2+a_3-a_4+a_5 + x$	$a_2 - a_3 + a_4 - a_5 + a_6$ $-x$	$-a_2+a_3-a_4+a_5$ $-a_6+a_7+x$
6	$a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7 - x$	$-a_1+a_3-a_4+a_5$ $-a_6+a_7+x$	$a_1 + a_4 - a_5 + a_6 - a_7 - x$	$-a_1+a_5-a_6+a_7 + x$	$a_1 + a_6 - a_7 - x$	$-a_1+a_7+x$	a_1-x
		•	•	•	•	•	•
2n-1	х	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$	$-a_2+a_3-a_4+a_5 + x$	$a_2 - a_3 + a_4 - a_5 + a_6$ $-x$	$-a_2+a_3-a_4+a_5$ $-a_6+a_7+x$
2n	$a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7 - x$	$-a_1+a_3-a_4+a_5$ $-a_6+a_7+x$	$a_1 + a_4 - a_5 + a_6 - a_7 - x$	$-a_1+a_5-a_6+a_7 + x$	$a_1 + a_6 - a_7 - x$	$-a_1+a_7+x$	a_1-x

表十、用代數法推導七邊形之結果

圖十二、在七邊形中,不管 CP, 值爲何,數列 P 形成相鄰兩項差爲

$$\overline{BC} + \overline{CD} - \overline{DE} + \overline{EF} - \overline{FG} + \overline{GA} - \overline{AB} - 2\overline{CP}_{1}$$
的數列,且圖中的弧會弧弧相切

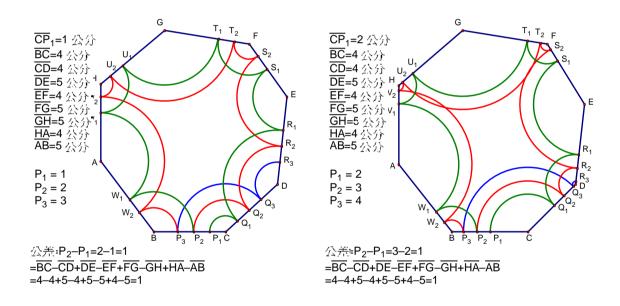
圖十三、在七邊形中 , 若
$$\overline{\text{CP}}_1 = \frac{\overline{BC} + \overline{CD} - \overline{DE} + \overline{EF} - \overline{FG} + \overline{GA} - \overline{AB}}{2}$$
 ,數列 P 形成

公差爲零之等差數列,且圖形中的弧會弧弧相切

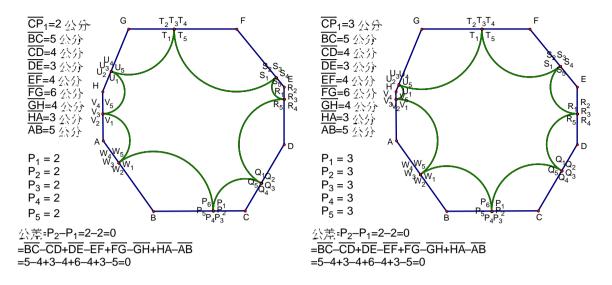
(五)八邊形

由三邊形、五邊形及七邊形的討論結果發現這三種奇數多邊形有相同的特性,於是我們再以相同的方法探討八邊形,令八邊形 ABCDEFGH 之邊長 $\overline{BC} = a_1$, $\overline{CD} = a_2$, $\overline{DE} = a_3$, $\overline{EF} = a_4$, $\overline{FG} = a_5$, $\overline{GH} = a_6$, $\overline{HA} = a_7$, $\overline{AB} = a_8$,且 $\overline{CP_1} = x$,用畫表格列舉的運算方法再重新列表來探討,結果如表十一所示。

邊長 半	$\overline{BC} = a_1$	$\overline{\text{CD}} = a_2$	$\overline{\text{DE}} = a_3$	$\overline{\text{EF}} = a_4$	$\overline{\text{FG}} = a_5$	$\overline{\text{GH}} = a_6$	$\overline{\text{HA}} = a_7$	$\overline{\mathrm{AB}} = a_8$
n徑	$\overline{CP_n}$	$\overline{DQ_n}$	$\overline{ER_n}$	FS _n	$\overline{\mathrm{GT_{n}}}$	$\overline{\mathrm{HU}_{\mathrm{n}}}$	$\overline{\mathrm{AU}_{\mathrm{n}}}$	$\overline{\mathrm{BV}_{\mathrm{n}}}$
1	x	a_2-x	$-a_2+a_3+x$	$a_2 - a_3 + a_4 - x$	$-a_2+a_3-a_4+a_5+x$	$a_2 - a_3 + a_4 - a_5 + a_6 - x$	$-a_2+a_3-a_4+a_5-a_6 +a_7+x$	$a_2 - a_3 + a_4 - a_5 + a_6 - a_7 + a_8 - x$
2	$a_1 - a_2 + a_3 - a_4 + a_5$ $-a_6 + a_7 - a_8 + x$	$-a_1 + 2a_2 - a_3 + a_4$ $-a_5 + a_6 - a_7 + a_8$ $-x$	$a_1 - 2a_2 + 2a_3 - a_4 + a_5 - a_6 + a_7 - a_8 + x$	$-a_1 + 2a_2 - 2a_3 + 2a_4$ $-a_5 + a_6 - a_7 + a_8 - x$	$a_1 - 2a_2 + 2a_3 - 2a_4 + 2a_5 - a_6 + a_7 - a_8 + x$	$-a_1 + 2a_2 - 2a_3 + 2a_4 - 2a_5 + 2a_6 - a_7 + a_8 - x$	$a_1 - 2a_2 + 2a_3 - 2a_4 + 2a_5 - 2a_6 + 2a_7 - a_8 + x$	$-a_1 + 2a_2 - 2a_3 + 2a_4$ $-2a_5 + 2a_6 - 2a_7 +$ $2a_8 - x$
3	$ 2a_1 - 2a_2 + 2a_3 - 2a_4 + 2a_5 - 2a_6 + 2a_7 - 2a_8 + x $	$-2a_1 + 3a_2 - 2a_3$ $+2a_4 - 2a_5 + 2a_6 -$ $2a_7 + 2a_8 - x$	$ 2a_1 - 3a_2 + 3a_3 - 2a_4 + 2a_5 - 2a_6 + 2a_7 - 2a_8 + x $	$ \begin{array}{r} -2a_1 + 3a_2 - 3a_3 + \\ 3a_4 - 2a_5 + 2a_6 - 2a_7 \\ +2a_8 - x \end{array} $	$ 2a_1 - 3a_2 + 3a_3 - 3a_4 + 3a_5 - 2a_6 + 2a_7 - 2a_8 + x $	$ \begin{array}{r} -2a_1 + 3a_2 - 2a_3 + 3a_4 \\ -3a_5 + 3a_6 - 2a_7 + 2a_8 \\ -x \end{array} $	$ 2a_1 - 3a_2 + 3a_3 - 3a_4 + 3a_5 - 3a_6 + 3a_7 - 2a_8 + x $	$-2a_1 + 3a_2 - 3a_3 + 3a_4 - 3a_5 + 3a_6 - 3a_7 + 3a_8 - x$
4	$3a_1 - 3a_2 + 3a_3 - 3a_4 + 3a_5 - 3a_6 + 3a_7 - 3a_8 + x$	$-3a_1 + 4a_2 - 3a_3$ $+3a_4 - 3a_5 + 3a_6 -$ $3a_7 + 3a_8 - x$	$3a_{1}-4a_{2}+4a_{3}-3a_{4} +3a_{5}-3a_{6}+3a_{7}-3a_{8}+x$	$-3a_1 + 4a_2 - 4a_3 + 4a_4 - 3a_5 + 3a_6 - 3a_7 + 3a_8 - x$	$3a_{1}-4a_{2}+4a_{3}-4a_{4}$ $+4a_{5}-3a_{6}+3a_{7}-$ $3a_{8}+x$	$ \begin{array}{r} -3a_1 + 4a_2 - 3a_3 + 4a_4 \\ -4a_5 + 4a_6 - 3a_7 + 3a_8 \\ -x \end{array} $	$3a_{1}-4a_{2}+4a_{3}-4a_{4}$ $+4a_{5}-4a_{6}+4a_{7}-$ $3a_{8}+x$	$-3a_1 + 4a_2 - 4a_3 + 4a_4 - 4a_5 + 4a_6 - 4a_7 + 4a_8 - x$
5	$4a_{1}-4a_{2}+4a_{3}-4a_{4}$ $+4a_{5}-4a_{6}+4a_{7}-$ $4a_{8}+x$	$-4a_1 + 5a_2 - 4a_3 + 4a_4 - 4a_5 + 4a_6 - 4a_7 + 4a_8 - x$	$4a_{1} - 5a_{2} + 5a_{3} - 4a_{4} $ $+ 4a_{5} - 4a_{6} + 4a_{7} - $ $4a_{8} + x$	$-4a_1 + 5a_2 - 5a_3 + 5a_4 - 4a_5 + 4a_6 - 4a_7 + 4a_8 - x$	$4a_{1} - 5a_{2} + 5a_{3} - 5a_{4}$ $+ 5a_{5} - 4a_{6} + 4a_{7} -$ $4a_{8} + x$	$ -4a_1 + 5a_2 - 4a_3 + 5a_4 -5a_5 + 5a_6 - 4a_7 + 4a_8 -x $	$4a_{1} - 5a_{2} + 5a_{3} - 5a_{4}$ $+ 5a_{5} - 5a_{6} + 5a_{7} -$ $4a_{8} + x$	$-4a_1 + 5a_2 - 5a_3 + 5a_4 - 5a_5 + 5a_6 - 5a_7 + 5a_8 - x$
6	$5a_1 - 5a_2 + 5a_3 - 5a_4$ $+ 5a_5 - 5a_6 + 5a_7 -$ $5a_8 + x$	$-5a_1 + 6a_2 - 5a_3$ $+5a_4 - 5a_5 + 5a_6 -$ $5a_7 + 5a_8 - x$	$5a_1 - 6a_2 + 6a_3 - 5a_4$ $+ 5a_5 - 5a_6 + 5a_7 -$ $5a_8 + x$	$-5a_1 + 6a_2 - 6a_3 +$ $6a_4 - 5a_5 + 5a_6 - 5a_7$ $+5a_8 - x$	$5a_1 - 6a_2 + 6a_3 - 6a_4$ $+ 6a_5 - 5a_6 + 5a_7 -$ $5a_8 + x$	$ -5a_1 + 6a_2 - 5a_3 + 6a_4 -6a_5 + 6a_6 - 5a_7 + 5a_8 -x $	$5a_{1}-6a_{2}+6a_{3}-6a_{4}$ $+6a_{5}-6a_{6}+6a_{7}-$ $5a_{8}+x$	$ -5a_1 + 6a_2 - 6a_3 + 6a_4 - 6a_5 + 6a_6 - 6a_7 + 6a_8 - x $
÷	:	:	:	:	:	:	:	:
n	$(n-1)a_1 - (n-1)a_2$ $+ (n-1)a_3 - (n-1)a_4$ $+ (n-1)a_5 - (n-1)a_6$ $+ (n-1)a_7 - (n-1)$ $a_8 + x$	$-(n-1)a_1 + na_2 - (n-1)a_3 + (n-1)a_4 - (n-1)a_5 + (n-1)a_7 + (n-1)a_8 - x$	$(n-1)a_1 - na_2 + na_3$ $-(n-1)a_4 + (n-1)a_5$ $-(n-1)a_6 + (n-1)$ $a_7 - (n-1)a_8 + x$	$-(n-1)a_1 + na_2 - na_3 + na_4 - (n-1)a_5 +(n-1)a_6 - (n-1) a_7 + (n-1)a_8 - x$	$(n-1)a_1 - na_2 + na_3$ $-na_4 + na_5 - (n-1)a_6$ $+(n-1)a_7 - (n-1)$ $a_8 + x$	$-(n-1)a_1 + na_2 - na_3 + na_4 - na_5 + na_6 - (n-1)a_7 + (n-1)a_8 - x$	$(n-1)a_1 - na_2 + na_3$ $-na_4 + na_5 - na_6 + n$ $a_7 - (n-1)a_8 + x$	$-(n-1)a_1 + na_2 - na_3 + na_4 - na_5 + na_6 -n a_7 + n a_8 - x$


表十一、用代數法推導八邊形之結果

由表十一的數據,我們可以發現八邊形的數據與四邊形、六邊形一致,結果如下:


- (1)不論起始半徑 $\overline{\text{CP}_1}$ 值爲何,都會使 P 數列形成一公差爲 $a_1-a_2+a_3-a_4+a_5-a_6$ 的等差數列,其例圖如圖十四,此時所畫的弧無法完全弧弧相切。
- (2)當我們令起始半徑 $\overline{CP_1} = \overline{CP_2}$ 時,藉由解方程式:

$$x=a_1-a_2+a_3-a_4+a_5-a_6+a_7-a_8+x$$

整理**→** $0=a_1-a_2+a_3-a_4+a_5-a_6+a_7-a_8$
移項**→** $a_1+a_3+a_5+a_7=a_2+a_4+a_6+a_8$

只要八邊形邊長有 $a_1+a_3+a_5+a_7=a_2+a_4+a_6+a_8$ 的關係,不管起始半徑 $\overline{\text{CP}_1}$ 之值 爲何,P 數列皆會形成一公差爲零的等差數列,其例圖如圖十五。

圖十、在八邊形中,不管 $\overline{CP_l}$ 值為何,數列 P 皆會形成公差為 $\overline{BC} - \overline{CD} + \overline{DE} - \overline{EF} + \overline{FG} - \overline{GH}$ $+ \overline{HA} - \overline{AB}$ 的等差數列,且圖形中的弧無法完全弧弧相切

圖十一、在六邊形中,若 \overline{BC} + \overline{DE} + \overline{FG} + \overline{HA} = \overline{CD} + \overline{EF} + \overline{GH} + \overline{AB} 時,數列P會形成公差爲零的等差數列,且圖形中的弧會弧弧相切

(六)奇數邊多邊形

(1)當我們令起始半徑 $\overline{CP_1} = \overline{CP_2}$ 時,藉由解方程式:

整理
$$x = a_1 + a_2 - a_3 + a_4 - a_5 + \dots + (-1)^{2m-2} a_{2m-2} + (-1)^{2m-1} a_{2m-1} - x$$

整理 $2x = a_1 + a_2 - a_3 + a_4 - a_5 + \dots + (-1)^{2m-2} a_{2m-2} + (-1)^{2m-1} a_{2m-1} - x$

$$x = \frac{a_1 + a_2 - a_3 + a_4 - a_5 + \dots + (-1)^{2m-2} a_{2m-2} + (-1)^{2m-1} a_{2m-1}}{2}$$

$$x = \frac{2a_1 + [(a_2 + a_4 + \dots + a_{2m}) - (a_1 + a_3 + \dots + a_{2m-1})]}{2}$$

$$x = a_1 + \frac{[(a_2 + a_4 + \dots + a_{2m}) - (a_1 + a_3 + \dots + a_{2m-1})]}{2}$$

也就是當起始半徑 $\overline{CP_1} =$ 底邊 + $\frac{(偶數邊的和 - 奇數邊的和)}{2}$ 時,會使得數列 P 形成

一公差爲零的等差數列,且圖形中會有(2m-1)個弧弧相切的弧。

(2)在起始半徑 $\overline{\text{CP}_1} \neq a_1 + \frac{(偶數邊的和 - 奇數邊的和)}{2}$ 時,任何起始半徑 $\overline{\text{CP}_1}$ 都會使數列

P 有: $P_1=P_3=P_5=\cdots=P_{2n-1}$ 及 $P_2=P_4=P_6=\cdots=P_{2n}$ 的結果,且 $P_{2n}-P_{2n-1}=a_1+a_2$ $-a_3+a_4-a_5+\cdots+(-1)^{2m-2}a_{2m-2}+(-1)^{2m-1}a_{2m-1}-2\times$ 起始半徑,即 $P_{2n}-P_{2n-1}=2$ (底邊 一起始徑)+(偶數邊的和一奇數邊的和),且圖中會有 2(2m-1)個弧弧相切的弧。

邊數半	三邊形	五邊形	七邊形	奇數(2m-1)邊形
徑 n	$\overline{\mathit{CP}_n}$	$\overline{CP_n}$	$\overline{CP_n}$	$\overline{CP_n}$
1	х	x	x	x
2	$a_1 + a_2 - a_3 - x$	$a_1 + a_2 - a_3 + a_4 - a_5 - x$	$a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7$ $-x$	$a_1 + a_2 - a_3 + a_4 - a_5 + \dots + (-1)^{2m}$ $a_{2m-2} + (-1)^{2m-1} a_{2m-1} - x$
3	х	X	X	х
4	$a_1 + a_2 - a_3 - x$	$a_1 + a_2 - a_3 + a_4 - a_5 - x$	$a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7$ $-x$	$a_1+a_2-a_3+a_4-a_5+\cdots+(-1)^{2m-1}$ $a_{2m-2}+(-1)^{2m-1}a_{2m-1}-x$
5	х	x	x	x
6	$a_1 + a_2 - a_3 - x$	$a_1 + a_2 - a_3 + a_4 - a_5 - x$	$a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7$ $-x$	$a_1 + a_2 - a_3 + a_4 - a_5 + \dots + (-1)^{2m}$ $a_{2m-2} + (-1)^{2m-1} a_{2m-1} - x$
	•	•	•	·
	•			•
٠	•	•	•	
2n-1	х	x	x	X
2n	$a_1 + a_2 - a_3 - x$	$a_1 + a_2 - a_3 + a_4 - a_5 - x$	$a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7 - x$	$a_1+a_2-a_3+a_4-a_5+\cdots+(-1)^{2m-1}$ $a_{2m-2}+(-1)^{2m-1}a_{2m-1}-x$

表十二、用代數法推導奇數 (2m-1)邊形之結果

(七)偶數邊多邊形

分別將四邊形和六邊形及八邊形的 $\overline{\mathit{CP}_n}$ 整理在一起,藉由觀察其規律類推出偶數 (2m)邊形的結果,如表十三所示。

邊數半	四邊形	六邊形	八邊形	偶數(2m)邊形
徑 n	$\overline{\mathit{CP}_n}$	$\overline{\mathit{CP}_n}$	$\overline{CP_n}$	$\overline{CP_n}$
1	х	х	x	х
2	$a_1 - a_2 + a_3 - a_4 + x$	$a_1 - a_2 + a_3 - a_4 + a_5$ $-a_6 + x$	$a_1 - a_2 + a_3 - a_4 + a_5 - a_6 + a_7 - a_8 + x$	$a_1 - a_2 + a_3 - a_4 + a_5 + \dots + (-1)^{2m} a_{2m-1} + (-1)^{2m+1} a_{2m} + x$
3	$2a_1 - 2a_2 + 2a_3 - 2a_4 + x$	$2a_1 - 2a_2 + 2a_3 - 2a_4 + 2a_5 - 2a_6 + x$	$2a_1 - 2a_2 + 2a_3 - 2a_4 + 2a_5$ $-2a_6 + 2a_7 - 2a_8 + x$	$2a_{1} - 2a_{2} + 2a_{3} + 2a_{4} - 2a_{5} $ $+ \cdots + (-1)^{2m} 2a_{2m-1} + (-1)^{2m} $ $+ 12a_{2m} + x$
4	$3a_1 - 3a_2 + 3a_3 - 3a_4 + x$	$3a_1 - 3a_2 + 3a_3 - 3a_4 + 3a_5 - 3a_6 + x$	$3a_1 - 3a_2 + 3a_3 - 3a_4 + 3a_5$ $-3a_6 + 3a_7 - 3a_8 + x$	$3a_{1} - 3a_{2} + 3a_{3} + 3a_{4} - 3a_{5} + \dots + (-1)^{2m} 3a_{2m-1} + (-1)^{2m} + 13a_{2m} + x$
5	$4a_1 - 4a_2 + 4a_3 - 4a_4 + x$	$4a_1 - 4a_2 + 4a_3 - 4a_4 + 4a_5 - 4a_6 + x$	$4a_{1} - 4a_{2} + 4a_{3} - 4a_{4} + 4a_{5}$ $-4a_{6} + 4a_{7} - 4a_{8} + x$	$4a_{1} - 4a_{2} + 4a_{3} + 4a_{4} - 4a_{5}$ $+ \cdots + (-1)^{2m} 4a_{2m-1} + (-1)^{2m}$ $+ 1 4a_{2m} + x$
6	$5a_1 - 5a_2 + 5a_3 - 5a_4 + x$	$5a_1 - 5a_2 + 5a_3 - 5a_4 + 5a_5 - 5a_6 + x$	$5a_1 - 5a_2 + 5a_3 - 5a_4 + 5a_5$ $-5a_6 + 5a_7 - 5a_8 + x$	$5a_1 - 5a_2 + 5a_3 + 5a_4 - 5a_5$ $+ \cdots + (-1)^{2m} 5a_{2m-1} + (-1)^{2m}$ $+ 15a_{2m} + x$
	· ·	•		· ·
n	$(n-1)a_1-(n-1)a_2+(n-1)a_3 (n-1)a_4+x$	$(n-1)a_1-(n-1)a_2$ $+(n-1)a_3-(n-1)a_4+(n-1)a_5-(n-1)a_6+x$	$(n-1)a_1 - (n-1)a_2 + (n-1)a_3 - (n-1)a_4 + (n-1)a_5$ $-(n-1)a_6 + (n-1)a_7 - (n-1)a_8 + x$	$(n-1)a_1 - (n-1)a_2 + (n-1)a_3 - (n-1)a_4 + (n-1)a_5 + \cdots$ $+ (-1)^{2m} (n-1)a_{2m-1} + (-1)$ ${}^{2m+1}(n-1)a_{2m} + x$

表十三、用代數法推導偶數 (2m)邊形之結果

從表十三的結果中,我們可以得到:

(1)當我們令起始半徑 $\overline{\operatorname{CP_1}} = \overline{\operatorname{CP_2}}$ 時,藉由解方程式:

$$x = a_1 - a_2 + a_3 - a_4 + a_5 + \dots + (-1)^{2m} a_{2m-1} + (-1)^{2m+1} a_{2m} + x$$
整理 **>** $0 = a_1 - a_2 + a_3 - a_4 + a_5 + \dots + (-1)^{2m} a_{2m-1} + (-1)^{2m+1} a_{2m}$
移項 **>** $a_1 + a_3 + a_5 + \dots + a_{2m-1} = a_2 + a_4 + a_6 + \dots + a_{2m}$

也就是當『奇數邊的和=偶數的和』時,不管起始半徑 $\overline{CP_1}$ 之值爲何,會使得數列 P形成一公差爲零的等差數列,且圖形中會有2m個弧弧相切的弧。

(2)當『奇數邊的和≠偶數的和』時,不管起始半徑 CP₁ 之值爲何,數列 P 會是一個等差數列,公差是『奇數邊的和-偶數的和』,且圖形中的弧不能完全弧弧相切。

佰、結論

由以上的研究討論,其結論如下:

一、三邊形的結論:

- (-)當起始半徑值 $\overline{CP_1} = \frac{\overline{BC} + \overline{CA} \overline{AB}}{2}$,會使數列 P 成爲一公差爲零的等差數列,且此時所得的圖形是三個弧弧相切的弧。
- (二)當起始半徑值 $\overline{CP_1} \neq \frac{\overline{BC} + \overline{CA} \overline{AB}}{2}$ 時,不管 $\overline{CP_1}$ 值爲何,數列 P 有: $P_1 = P_3 = P_5 = \cdots$ $= P_{2n-1}$ 及 $P_2 = P_4 = P_6 = \cdots = P_{2n}$ 的現象,且 $P_{2n} P_{2n-1} = (\overline{BC} + \overline{CA} \overline{AB} 2 \times \overline{EB})$ 不管 $\overline{CP_1}$ 值爲何,數列 P 有: $\overline{P_1} = P_3 = P_5 = \cdots$ $= P_{2n-1}$ 及 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的現象,且 $\overline{P_2} = P_{2n-1} = (\overline{BC} + \overline{CA} \overline{AB} 2 \times \overline{EB})$ 不管 $\overline{CP_1}$ 值爲何,數列 P 有: $\overline{P_1} = P_3 = P_5 = \cdots$ $= P_{2n-1}$ 及 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的現象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_2} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_6 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_4 = P_5 = \cdots = P_{2n}$ 的现象,且 $\overline{P_3} = P_5 = \cdots$

二、多邊形的結論:

- (-)在奇數多邊形中,當起始半徑 $\overline{CP_1} = \underline{\text{Rig}} + \frac{(\text{偶數邊的和} \overline{\text{奇數邊的和}})}{2}$ 時,數列 P 形成一公差爲零的等差數列,且圖形中的(2m-1)個弧會弧弧相切;當起始半徑 $\overline{CP_1} \neq \underline{\text{Rig}} + \frac{(\text{偶數邊的和} \overline{\text{奇數邊的和}})}{2}$ 時,數列 P 會形成所有奇數項相同及所有 偶數項相同,且偶數項-奇數項的差= $2(\underline{\text{Rig}}$ 長一起始半徑)+(偶數邊的和-奇數邊的和),且圖形中的 2(2m-1)個弧會弧弧相切。
- (二)在偶數多邊形中,不管起始半徑 $\overline{CP_1}$ 之值爲何,數列 P 皆爲等差數列,公差是『奇數邊的和-偶數的和』,圖形中的弧並不一定能完全弧弧相切,只有當『奇數邊的和=偶數的和』時,即數列 P 形成公差爲零的等差數列時,且圖形中的 2m 個弧才會弧弧相切。
- (三)雖然數列 P 在奇數多邊形及偶數多邊形中,皆有形成公差爲零之等差數列的狀況,但是發生條件相當不同,在奇數多邊形中,與「起始半徑 $\overline{CP_l}$ 値」有關,但在偶數 多邊形中,僅與「邊長」有關。

(四)弧弧相切的況狀在奇數邊形與偶數邊形中亦不相同,在奇數多邊形中,一定會形成 弧弧相切,而在偶數多邊形時,在『奇數邊的和=偶數的和』時,才會有弧弧相切 的現象產生。

陸、研究展望

- (一)本研究已由實際運算推導出三邊形、四邊形、五邊形、六邊形、七邊形、八邊形之結論,唯奇數多邊形及偶數多邊之結論僅由列表、觀察、類推所得,期望能在日後以更嚴謹的方法導出結論,讓本研究結果更爲完備。
- (二)由 GSP 實際做圖,我們發現並非任意邊長之多邊形及任意之起始半徑 $\overline{CP_l}$ 皆能形成 數列 P,故起始半徑 $\overline{CP_l}$ 、邊長與數列 P 的項數間有何關係,仍需做進一步的研究探 討。

柒、參考資料

- 一、徐立民、馬榮喜、陳世易(民 96)。國中數學第四冊。台北縣:康軒。
- 二、許志農。動手玩數學。民97年2月10日,取自:

http://math.ntnu.edu.tw/~maco/play.htm •

三、吳政勳。GSP 動態幾何教學。民 97 年 3 月 2 日,取自: http://140.127.47.6/DLMathEd/home/Garden/GS P/index.htm。

四、邢維禮、高世良。GSP 動態幾何教材設計與網頁製作。民 97 年 3 月 2 日,取自:

http://tpc.k12.edu.tw/1001214071/index.html ,

附錄一

	Α	В	C	D	E	F	G
1					8,5		
2		$\overline{CP_n}$	三角形三邊長	$\overline{\mathtt{BC}}$	CA	ĀB	
3				200000			
4		是否等於 ——	n 坐徑	$\overline{CP_n}$	$\overline{AQ_n}$	$\overline{BR_n}$	
5		$\overline{CP_1}$	1			8	
6	S 10 k		2		22-	110	
7			3			.X	
8			4				
9			5				
10			6				
11			2				
12			3				
13			4				
14			5				
15			6				
16							
17							

利用 EXCEL 公式縮短運算時間的設定

圖一

- 1.開啓一新的 EXCEL 檔,先依上圖將表格繪製好。
- 2.在 E5 欄位中輸入=\$E\$3-D5,在 F5 欄位中輸入=\$F\$3-E5,在 D6 欄位中輸入=\$D\$3-F5,在 E6 欄位中輸入=\$E\$3-D6,在 F6 欄位中輸入=\$F\$3-E6。
- 3.然後,選取 D6 至 F6,按右鍵,點選『複製』,如圖二所示。

	Α	В	С	D	E	F	G H		
1					80	80			
2		$\overline{CP_n}$	三角形三邊長	$\overline{\mathtt{BC}}$	CA	ĀB			
3			_A///_/&_X						
4		是否等於	n 坐徑	$\overline{CP_n}$	$\overline{AQ_n}$	\overline{BR}_n			
5		$\overline{CP_1}$	1		0	0			
6			2	0	0	0			
7			3				■ 从 剪下(I) - 暋 複製(C)		
8			4		er-		- 13 貼上(2)		
9			5			100	選擇性貼上(3)		
10			6				- 插入(I)		
11			2						
12			3		65-	15	清除內容(N)		
13			4				- <u></u> 插入註解(<u>M</u>)		
14			5				E. Commission		
15			6				■ 儲存格格式(P - 從清單挑選(<u>K</u>)		
16	3 X						← 促済単規選(監)← 超連結(Ⅱ)		

4.再選取 D7 欄至 F17 欄,按右鍵,點選『選擇性貼上』,如圖三,再點選『公式』,如圖四。

	Α	В	С	D	E	F	G H
1					50	53	
2		$\overline{CP_n}$	三角形三邊長	ВC	CA	ĀB	
3			二角形二遼英	1000000			
4		是否等於	n 坐徑	$\overline{CP_n}$	$\overline{AQ_n}$	\overline{BR}_{n}	
5		$\overline{CP_1}$	1		0	0	
6		Ŷ	2	0	0	0	
7	1 1		3				
8			4		8	s	
9			5				从剪下(I)
10			6				- 1
11	3		2				選擇性貼上⑤
12			3				插入①
13			4				■除(D)
14			5				 -
15		1	6				_ <u>物</u> 插入註解(M)
16							
17					-		■ 儲存格格式(P— 從清單挑選(K)
18							● 超連結(H)

圖三

	Α	В	С	D	E	F	G	Н	I
1	- 9				601	60"	7013		
2		$\overline{CP_n}$	三角形三邊長	$\overline{\mathtt{BC}}$	CA	ĀB	(a)		
3			—円7/2-1/21/2		00				
4		是否等於	n 坐徑	$\overline{CP_n}$	$\overline{AQ_n}$	$\overline{BR_n}$			
5		$\overline{CP_1}$	1		0	0			
6			2	0	0	0			
7			3		選擇性贴上				? ×
8			4		86.1				
9			5		貼上	,	C =+47(C)		
10			6		○ 全部(A ○ 公式(E		○ 註解(C)○ 驗證(N)		
11			2		(值())	ω	○ 框線以外的3	全部項目(X)	
12			3		○ 格式(I))	○ 欄寬度(W)		
13			4		運算 ——				
14			5		●無(○)		○ 乘(M)		
15	3		6		C加(D)		○除①		
16					(減(3)				
17					厂 略過空	#\$ /D\	广神里の		
18							厂 轉置(E)		
19					贴上連結(0)	確定	取消	

圖匹

- 5.因爲我們發現 $\overline{CP_1}$ 的値有時會重復出現,故增設一欄快速比較欄,方式是於 B6 欄位輸入 =IF(D6=\$D\$5,"相等","不相等")後,點選 B6 欄位,按步驟 3~4 的方式,將公式複製到 B7~B15 等欄位。
- 6.接下來,我們在 D3、E3、F3 欄位內,分別輸入 15、14 及 13。
- 7.藉由分別在 D5 欄位內,輸入 $6 \cdot 7 \cdot 8$,我們就可以讓 EXCEL 快速地幫我們運算出表三、表四、表五內的其他數值。

【評語】030406

- 1. 有創意。
- 2. 論理詳實。
- 3. 善用電腦輔助說明。
- 4. 弧長比邊長大的情形已補足,往後作品如能事前考慮更多元更周延更好。