中華民國第四十八屆中小學科學展覽會 作品說明書

國小組 生活與應用科學科

080812

介質虹吸的運用一超慢速點滴加水器

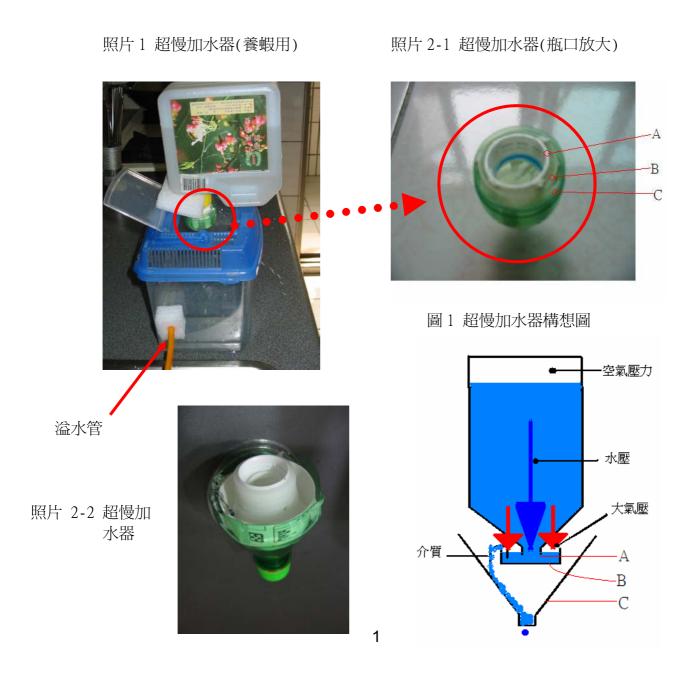
學校名稱:臺北市南港區胡適國民小學

作者: 指導老師:

小五 黄紹瑜

小五 張家碩

小五 陳冠銘


徐久倫

關鍵詞: 介質虹吸、表面張力、毛細管

作品名稱:「介質虹吸」的應用—『超慢速點滴加水器』

摘要:

本篇報告主要探討如何利用「介質虹吸」的原理,製造出流速穩定且緩慢的加水器。 透過實驗,我們發現結合「大氣壓力」與「表面張力」,可以有效的控制水位高度,而固 定的水位高度就能長期穩定控制「介質虹吸」的流速,若要微調介質虹吸的流速,則可 使用不同材料的介質,或調整水面高低差。當完成實驗作品,我們拿來實際運用,發現 一次加滿水可以使用好幾天,而且「介質虹吸」不會堵塞通路,成效相當良好。又使用 材料爲資源回收的塑膠罐、寶特瓶、棉質內衣及塑膠軟管等,不需另外花錢買材料,既 經濟實惠又環保。

壹、研究動機

我家常要幫魚缸換水,每次只能換一部分,以避免小蝦適應不良,又多天沒人換水, 更是麻煩。所以我就和爸爸及幾位同學共同討論,想辦法克服難題,思考是否有辦法製 造出能夠『緩慢持續且穩定』的「超慢速點滴加水器」。經過網站搜尋,在「中國南開大 學物理科學學院基礎物理實驗教學中心網站發現有一篇關於「有管、無管及媒介虰吸」 的簡報(資料來源詳參考資料及其他 六),其中關於「媒介虹吸」(本篇報告稱爲「介質 虹吸」)的內容恰符合我們的需求,加上正好有要參加學校科展的誘因,所以就開始了這 篇實驗報告。

貳、研究目的

- 一、先了解水的表面張力、毛細現象、有管虹吸及「介質虹吸」的科學原理。
- 二、透過實驗數據,探討影響介質虹吸的各種變因,並研究如何加以有效控制。
- 三、思考「介質虹吸」的生活應用,製造出實用的「超慢速點滴加水器」及「淨水器」。

參、研究設備及器材

- 一、瓷盆、鐵盤、玻璃杯、塑膠罐等容器。
- 二、人浩海棉、棉線、棉布、紙巾、醫用紗布、人浩絲洗澡巾。
- 三、計時器、量杯、滴管、量筒、針筒。
- 四、寶特瓶、塑膠罐、矽膠管、吸管。
- 五、清潔劑、墨水、污泥。
- 六、MP3 錄音機、電腦、麥克風。

肆、研究過程或方法

一、我們首先從書籍或網路蒐集相關知識,了解表面張力、毛細現象及虹吸的基本原理,並加以整理,以便讓實驗更順利進行。首先研究分析「介質虹吸」的變因,研判影響流速的主要因素是什麼?再加以控制這些變因,最後製造出『超慢速點滴加水器』。

(一)表面張力

表面張力存在於不同相之間的界面,因物質間的相互引力不對稱而導致的。當水與空氣接觸的表面層,水分子間的吸引力比空氣與水之間的吸引力要 大時,水分子會緊緊的靠在一起,類似形成一層水膜,這種力就叫做水的表面 張力。不同溶液有不同的表面張力;表面活性劑會降低表面張力。

(二)毛細現象

「毛細現象」也稱作「毛細管作用」是指液體在接觸物內側,由於內聚力與附著力的差異、抵抗地心引力而上升的現象。

(三)介質虹吸與毛細現象的關係

介質虹吸的吸入端就是靠著毛細現象,水分子先延著介質往上爬,到頂端 後由另一端因重力產生的拉力鏈結,攀越頂緣後再繼續往下流,因此液體與介 質如果是不浸潤的,水就不會向上升,也就無法產生介質虹吸現象。

(四)「介質虹吸」與有管虹吸、無管虹吸之差別

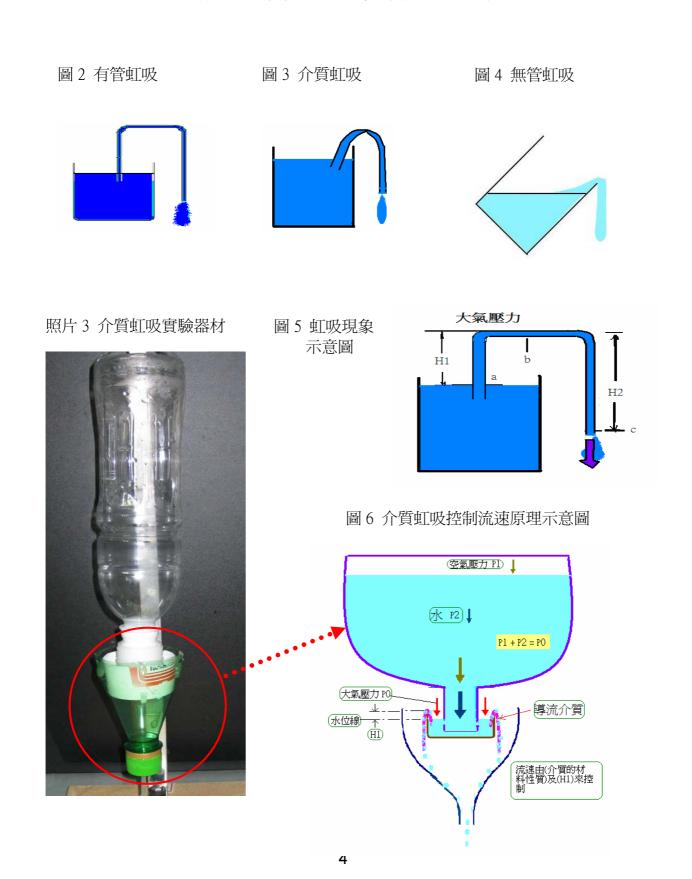

初步認識,透過圖 2、3、4 表示如下,其中有管虹吸與介質虹吸有重要關聯性要釐清,所以特別整理如附表。

表 1 有管虹吸與介質虹吸之特性比較表

影響因子	H1 的限制(註 A)	保持連續水流	與空氣壓力	與水的表面張	與地心引力的關係
類別		的因素	的關係	力的關係	
介質虹吸	介質乾燥情況	介質必須浸	無關	必須靠表面張	由於兩端水重不平
	下,必須小於毛細	潤,讓水分子手		力產生的毛細	衡,促使水持續流
	現象的高度。但浸	手相連。		現象把水向上	動,爲虹吸主要能
	潤下則與介質有	(註 B)		吸。	量來源。(H2>H1)
	關。(另詳「最大			(a 端)	
	H1的」實驗)				
有管虹吸	必須小於一大氣	須保持流出端	管內外壓力	無關	由於兩端水重不平
	壓的水柱高,約爲	管內實際水柱	不平衡時,大		衡,促使水持續流
	1033.6cm ∘	重大於H1全長	氣壓力將水		動,爲虹吸主要能
		的水注重。	擠入管內。(a		量來源。(H2>H1)
			端)		

註 A: 因爲水流也有其他阻力,例如黏滯力、摩擦力等,所以實際 H1 比理想值還要更小。

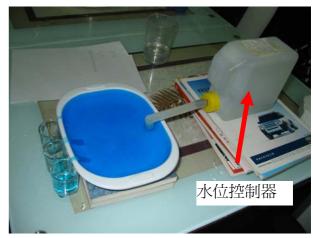
註 B:至於爲什麼管內或介質內的水分子不能中斷呢?我想起了科學教育館裡有一個鐵鍊的現場實驗展示,當鐵鍊在支點滑輪的二側不等重時,鍊條就會往一側一直滑動。而水分子間的內聚力就像鍊條般緊緊相扣,當中間斷掉時,二側彼此間就失去聯繫了,

二、擬定計畫與準備實驗器材

先與組員充分溝通討論,再將資料與意見整合與分類,尋找可控制的 變因,來規劃實驗步驟,尋找實驗器材,再進行實驗。對每個實驗過程, 使用相機拍照及筆記來紀錄實驗數據,最後分類整理寫成報告。

實驗類別分定性或定量二種,每種假設都做多組重複實驗,以便做分析比較,若發現同一種實驗結果中,各組誤差值偏離太大,就會思考了解原因,矯正實驗器材或方法,再重作實驗。

伍、研究結果


一、介質長度與流速的關係

什麼變因會影響到介質虹吸的速度呢?我們試著控制各種變因來進行。首先比較在水盆內的棉布長度與在外面的長度對流速的影響。實驗中,使用棉布爲介質,且保持介質材料不變,水質爲清水,但爲容易觀察,所以加入了少許印表機用墨水。H1 由盤內水位來控制;H2 則調整介質長度來控制。第一次實驗先控制H1 爲 5mm(必須小於毛細高度),按序調整 H2 爲 5cm、6cm、7.5cm、9cm,各實驗20 分鐘,得到藍線數據。同方法控制 H1 爲 7mm,按序調整 H2 爲 5cm、6cm、7.5cm、9cm 共 4 組,各實驗 20 分鐘,得到紅線數據,結果分析如下表:從實驗結果發現,H2 對介質虹吸之流速影響不大,而 H1 則影響甚大。

照片 5 不同介質長度之實驗

照片6 不同介質長度之實驗(附水位控制)

照片 4 介質長度與流速的實驗器材

圖 7 介質虹吸示意圖

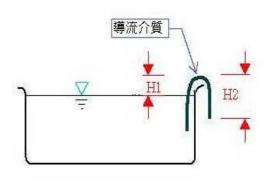


圖 8 水位控制器示意圖

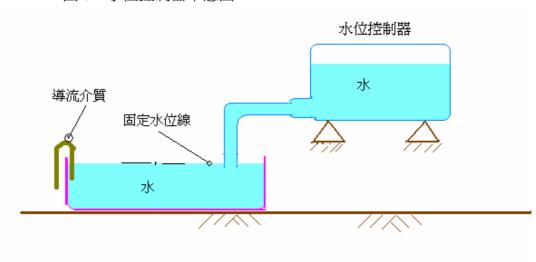
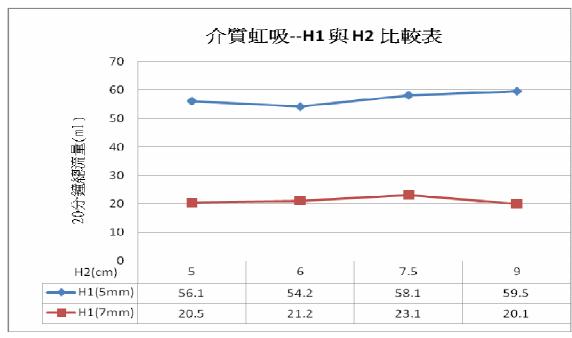



表 2 介質虹吸--H1 與 H2 比較表

二、水質與介質虹吸之流速的關係

從上一個實驗我們已經知道 H2 對介質虹吸之流速影像不大,因此就嘗試改變 H1 來比較泡沫水與清水的差異。這次實驗我們固定 H2 爲 6 cm, H1 各爲 4mm、5mm、6mm、7mm、8mm、9mm、10mm、11mm 共 8 組,每組各做 10 分鐘,先做清水實驗,得到綠色數據線;接著使用同樣步驟,再做泡沫水實驗,得到紅色數據線。

進行這個實驗後,我們知道了肥皂水會使水的表面張力減弱,毛細高度變小, 致使出水量減少。同時我們也發現另一有趣現象,實驗時間內清水總滴數為 204 滴、泡沫水為 213 滴,相差很小,但泡沫水的水滴體積較小。

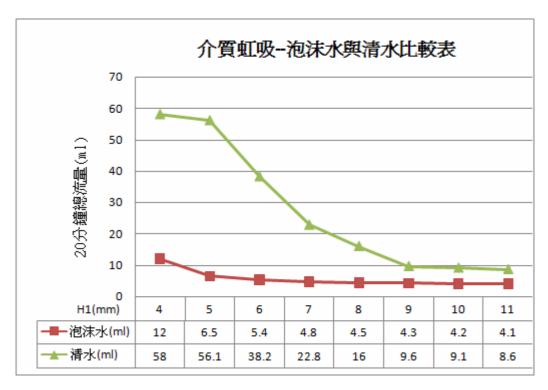
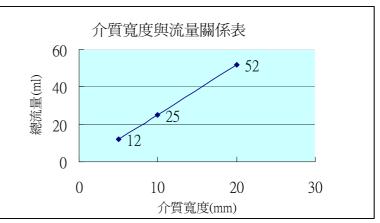


表 3 介質虹吸-泡沫水與清水比較表

三、介質寬度及厚度與介質虹吸之流速的關係


接下來,要實驗的便是使用同一種介質材料(棉布),但第一組寬度為 5mm,厚度為一層;第二組寬度為 10mm,厚度為一層;第三組寬度為 5mm,厚度為四層,每組 H1 與 H2 的長度都一樣,實驗時間為 16 分鐘。

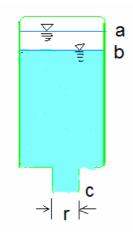
結果我們發現第二組水量約爲第一組的二倍,第三組水量約爲第一組的四倍,因第三組厚度爲四層,若展開後其寬度相對爲 20mm,所以水量與總寬度幾乎呈線性關係。

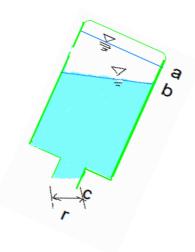
照片7 介質虹吸的寬度實驗

表 4 介質虹吸-介質寬度與與流量關係表

四、如何控制水位高(H1)

從實驗中已了解影響介質虹吸流速的主要因素為 H1,而水位高正是控制 H1 的手段,因此必須想辦法維持一定的水位高,才能穩定介質虹吸的流速。我們想出了運用大氣壓力與表面張力的力學平衡關係來維持水位高。使用器材為無破洞之塑膠罐或寶特瓶,從相關知識中知道表面張力與瓶口的材質、形狀、大小都有關係,因現有材料中瓶口的材質不是寶特瓶就是塑膠,而形狀幾乎都是圓形的,所以我們下一步要測試瓶口內直徑(r)的尺寸,以便了解瓶口應該多大,水才會持續流動。瓶口半徑須大於上面測出的最小半徑,否則就算盤子水位再低,瓶內水也不會流出。


內直徑(r)測試方法:


- 1. 將瓶子加滿水,盆子也加滿水,再把瓶子倒立放入水盆中。(見圖 9)
- 2.固定瓶子位置,等待瓶子內的水停止往下流爲止。
- 3. 將盆內的水慢慢吸出,觀察瓶內的水是否會繼續往下流,至盆內水位復原止。
- 4. 若水會繼續往下流,則此瓶口尺寸符合本次實驗需要。
- 5.共找到銅管、寶特瓶、矽膠管、不銹鋼管等四種材質,每種材質隨機選二種不同尺寸來測試。經過一連串測試後,將觀察結果整理如表 4,經討論後決定採用一般寶特瓶 21.5mm 最爲合適。

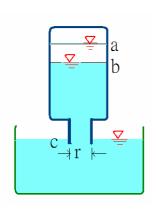

圖 9 瓶口尺寸試驗示 意圖 (直立,瓶 口未置入水中)

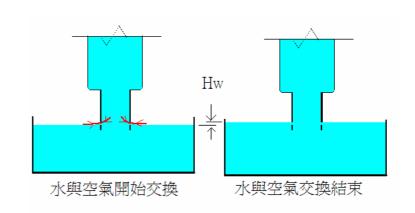
圖 10 瓶口尺寸試驗示 意圖(斜立,瓶口 未置入水中)

圖 11 瓶口尺寸試驗 示意圖(直立, 瓶口置入水中)

照片 8 瓶口內徑測量

表 5 瓶口尺寸試驗比較表(各材質隨機選用二種尺寸)

內直徑材質	銅管	寶特瓶	矽膠管	不銹鋼 管
不會持續流	8 mm	9 mm	7 mm	7 mm
會持續流	20 mm	21.5 mm	12.5 mm	15 mm


五、空氣與水的交換量與頻率

在觀察「水位控制器」時我們發現當盆內水位低於控制線(出水口),塑膠罐的水會自動補充,氣泡則迅速進入塑膠罐內,而造成這種現象的主要因素爲「水的表面張力」。假如細心觀察就會發現,當水位緩慢下降時,瓶口接觸水膜拉伸成弧度,最後水膜破裂,空氣擠入,又空氣比水輕,所以氣泡會一直向上,每次交換時距與 Hw 有關。Hw:受表面張力控制,因甚小,很難測定。

如於側邊開小孔,斷面積小則氣泡較小但氣泡數多,水面波動較微;但若於瓶口底部交換,則因孔斷面積大,氣泡大但氣泡數少,水面波動較劇。

因每次交換體積爲 $Hw \times A$ (水平面的面積),假設介質流速固定,那麼 A 愈大表示交換體積愈大,交換間距較長。反之 A 愈小表示每次交換體積愈小,交換間距較短。

圖 12 空氣與水的交 換的示意圖

六、最大 H1 的測定

我們已知道 H1 是影響介質虹吸流速的主要因素之一,但 H1 的最大值到底是多少呢?以下我們將作一個實驗。使用介質材料如【照片 10】,由左至右爲 1.毛巾、2.人造海綿、3.紙巾、4.薄棉布、5.醫用紗布、6.人造絲洗澡巾。測定方法爲 1.將罐內裝滿水、2.將介質完成浸濕後放好,介質兩邊長度要夠長、3.介質開始虹吸,不補充水,罐內水位持續下降,至停止流出爲止(我們設水停止滴下超過二分鐘就算停止了)、4.測量 H1 的長度並紀錄,數據整理如表 5 所示。

這次實驗結果,發現吸水性強的材質,H1 可達到 5 cm以上,讓我們聯想到一個自然現象『野溪的秘密』,爲什麼連續很多天都不下雨,而且山不高也沒溶雪或下過山區地形雨,小野溪裡的水還是一直潺潺流個不停呢?除『植物釋出』、『土壤壓密』及『岩層滲透』等「慢速流」外,大地表面有很多岩穴、石坑、樹洞等,

下雨時灌滿水,其後賴有機腐質、岩石及土壤等介質,「介質虹吸」作用讓積水緩慢而且持續很多天的流出,這樣小野溪就可展現多樣生命力了。

表 6 不同介質的 最大 H1

介質 材料	人造 海綿	紙巾	薄棉布	醫用紗布	毛巾	人造 絲洗 澡巾
最大 H1	4.1 cm	1.4 cm	1.6 cm	6.9 cm	7.1 cm	5.3 cm

照片 9 最大 H1 的實驗器材

照片 10 實驗所用的介質材料

由左至右爲 1.毛巾、2.人造海綿、3.紙巾、4.薄棉布、5.醫用紗布、6.人造絲洗澡巾

照片 11 觀察水位 (局部放大)

七、水滴流速的分析

在實驗過程中,只能觀察水一滴一滴的流下,但每滴水的時間間隔在整個過程中的變化,以及「水、氣」交換的時間周期,到底爲何?我們很感興趣,於是設計了下面的實驗。因考慮背景噪音的干擾,使用靈敏度較低的麥克風,滴水高程儘量加大,以提高撞擊聲量。又考慮人爲活動碰觸而影響音質,所以實驗空間盡量獨立,不採用電腦配音量感測軟體;而使用麥克風及 MP3 錄音機錄下水滴撞擊保鮮膜的聲音,持續記錄 24 小時以上,錄音品質使用最低,以減少與錄音檔案的大小。

錄完音後,使用 Adobe Audition 3.0 軟體來開取錄音檔,取樣二個階段各 2 分鐘(約 70 條線,即取樣 70 滴水)的聲波存成圖檔及 WAV 檔來作分析(原始檔太 大),第一階段時間點約在開始錄音後 30 分鐘;第二階段時間點約在開始錄音後 330 分鐘。

當使用 Adobe Audition 觀察波形時,發現波形很規律,每條線間隔幾乎都一樣,很難比較出差異,所以要對峰值(Beat)進行數值分析,程式執行順序爲 [EDIT]-[Auto Mark]-[Find Beats and Mark]-(Decibel Rise:30 dB、Rise Time:100ms)-{滑鼠右健 GoTo Marker List},因{Marker}視窗無法使用複製與貼上功能,所以另使用 HyperSnap 這套軟體來擷取視窗文字,貼到 Excel 做分析。

照片 12 流速分析之實驗設備擺設

照片13 實驗所用器材

滴水頭

照片 14 麥克風固定 位置示意

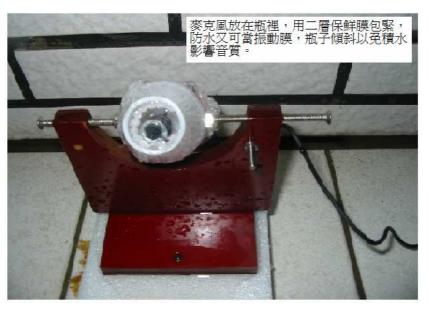
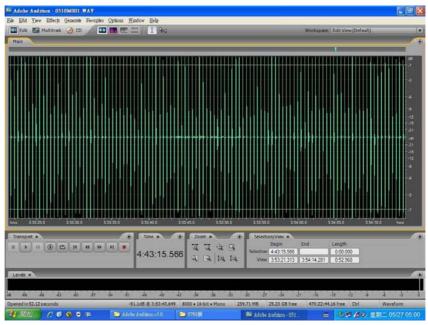


圖 13 使用 Adobe Audition 分析錄音檔之波形



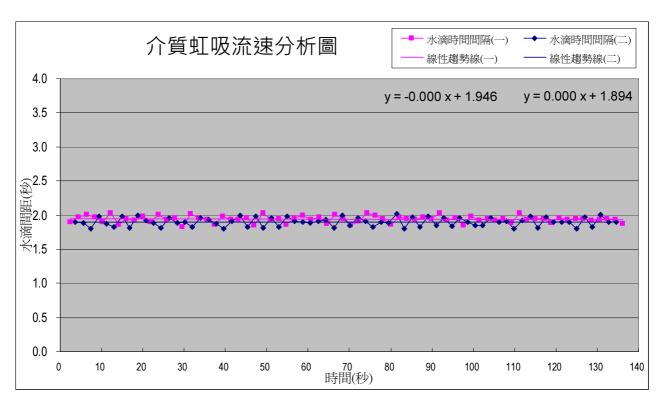

圖 14 第一階段取樣的波形

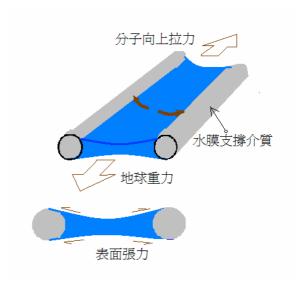
圖 15 第二階段取樣的波形

圖 16 二階段的介質虹吸流速分析

從分析結果圖 16 中可發現每滴水的時間間隔都很接近,「水、氣交換」對流速影響不大,從實驗觀察也發現「水、氣交換」間隔短且交換量小,H1 看不出有變化。從趨勢線得知,第一階段水滴時間間隔的平均值是 1.894 秒;第二階段水滴時間間隔的平均值是 1.894 秒;第二階段水滴時間間隔的平均值是 1.946 秒,第二階段比第一階段少了 0.052 秒,相差甚微。而二條趨勢線都呈水平狀,表示每滴水的間距雖有些微上下震盪,但總體而言是相當平均的。從以上實驗可知道『介質虹吸』的流速相當穩定,若在古代,應可拿來當『水鐘』計時了。

八、介質會不會被髒水堵塞

我們一直擔心介質會不會像濾網一樣,沒多久就會被髒東西堵住,以致流速 漸漸變慢,甚至停止,如果這樣的話,本實驗目的將完全失敗,因爲我們得不到 流速可以長時間穩定的「加水器」了。


以下就要用實驗來證實,使用人造海棉爲介質,將水加入泥沙,進行介質虹 吸實驗,流出的水用 250 號篩網來過濾,長時間來觀察水流量及篩網上有無殘留 沙粒。很幸運,我們發現介質跟水面接觸處雖有浮渣聚積,但並不會被吸入介質 內,流速一直很穩定,而且篩網上也沒發現殘留的沙粒。

經我們思考,認爲介質虹吸係藉由水分子的內聚力,分子一個接一個往上拉, 雜物則因重力向下拉,故不容易被吸入。不像水流通過濾網,因重力促使水流與 雜物一起向同方向運動,很快就被堵住了。

照片 15 髒水會不會堵塞介質之實驗

圖 17 介質虹吸向上拉力示意圖

九、介質材料、水滴流速與水滴體積的分析

觀察到水滴一個個流下,每滴水的體積是否與介質材料、水滴流速有關呢? 我們設計了一個三種不同介質,時間各爲30分鐘的實驗來驗證。因要記錄水滴的 滴數及測量總流量,滴水高程不能過高,故水滴聲量很小,不能再像「七、水滴 流速的分析」的實驗方式,所以改用高靈敏度的麥克風,使用耳溫槍套來防水, 因耳溫槍套前膜超薄可及逼真傳聲效果。再用電腦音量感測軟體(Tobest Stealth Recorder Pro)來記錄每滴水的時間及總滴數,完成後再一筆一筆比對 數據,因每滴水時間間距應很接近,我們以此來濾除背景噪音所產生的不正常的 資料。假設同一實驗,每滴水的體積都一樣,那麼每滴水的體積就是總流量除以 總滴數。

從實驗結果來推論,水珠最大體積 (Vmax)與水質(表面張力)有關,水珠根部 (A-A)最大斷面積 (直徑 W之圓面積-Amax)與水珠最大體積(重量)有關,而介質 A-A 斷面積 (直徑 W之範圍內)如小於 Amax,則水珠會比 Vmax 小;否則水珠會等於 Vmax。簡言之,Amax 的拉力就是支撐水珠重的,拉力超過極限時,水珠就掉下了。

照片 16 水滴體積之實驗器材

高靈敏度麥克風外覆耳溫 槍套來防水(放大圖)

圖 18 Tobest Stealth Recorder Pro 操作 視窗畫面

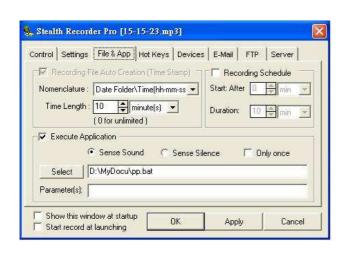


圖 19 介質末端斷面積與水珠形狀

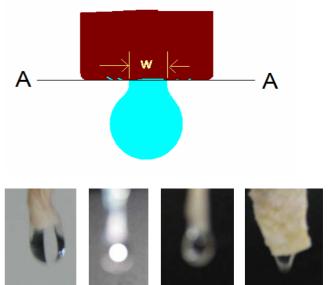
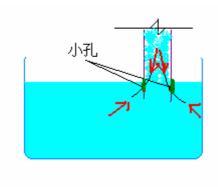


表 7 水滴體積比較表(實驗時間爲 30 分鐘)

介質材質	薄棉布	一束棉線	二根棉線	毛巾
總滴數	51	48	27	694
總流量	2.5 ml	7.5ml	0.7ml	98.5ml
毎滴平均 體積	0.049ml	0.156ml	0.026m1	0.142m1
平均流速 (ml/sec)	0.0014	0.0042	0.0004	0.055

二根棉線 毛巾

一束棉線


薄棉布

(側面)

陸、討論

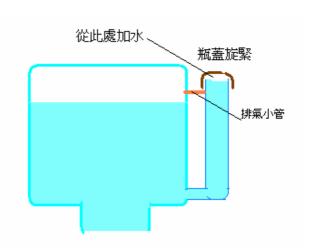

一、在第一個「介質長度與流速的關係」的實驗裡,我們便面對一個難題,那就是要控制盆內水位,讓 HI 在實驗過程中保持一定,雖然想出了使用『大氣壓力與表面張力的平衡關係』,製造出水位控制器,但當盆內水位低於控制線,塑膠罐的水自動補充時,水無法很緩和漸進的流出,而是大氣泡(噗、噗)從瓶口進到塑膠罐,水也(通、通)從瓶口流出。我們於是在管二側接近水位線處開小孔,讓空氣與水從側邊小孔交換,來改善此情況。

圖 20 在管側開小孔

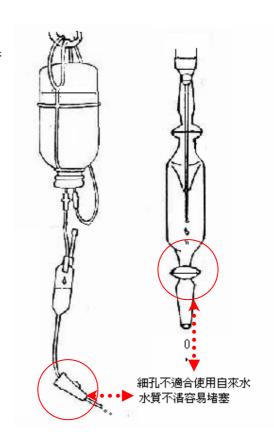

二、我們做的「加水器」當要補充瓶內的水時,就必須把瓶蓋轉出來,加滿水後旋緊再 倒立,我們思考到底有沒有更簡單的加水方法?我們討論後提出一個粗略的構想。

圖 21 儲水器的加水口

三、醫學上用的滴管適不適合用來當「加水器」呢?我們從相關知識了解到醫學上用的 滴管適合純水,但不適合自來水,因爲自來水不能保證完全無微粒,很可能一下子 就堵住了。再來就是要調整控制幾分鐘才掉一滴水,並不容易。而「加水器」則無 此煩惱,實驗已經告訴我們「介質虹吸」流速可由 H1 長度來控制,很容易調整。而 且「介質虹吸」係向上拉力,不易把微粒吸上去。

圖 22 醫學用滴管

四、在以上實驗中,我們發現當瓶口內徑不夠大時,縱然瓶子灌滿水再倒立,水也不會從瓶口流出,我們便思考是否能應用這現象做一些實用的東西,這也算是額外的收穫。經簡單的嘗試,我們把它放在浴室,裡面裝消毒水,長期不用也不會漏水。要用時只要將手輕觸瓶口,消毒水就會浸濕皮膚,而且不用手去按,較不會互相傳染疾病,適合醫院等場所使用。

照片17 消毒水給水器

照片 18 消毒水給水器(瓶口特寫)

- 五、以上實驗所用的「加水器」是雛型,我們也想到要改良,讓他更方便實用,於是提出下列構想:(詳圖 23)
 - 1.加大儲水容量,加水口開在儲水容器上方,比較方便使用。
 - 2.固定方式直接放置在平台上,因「懸吊」易晃動且較危險。
 - 3.增加給水管爲「一對四」,可同時提供四個用途,或大面積均佈加水。

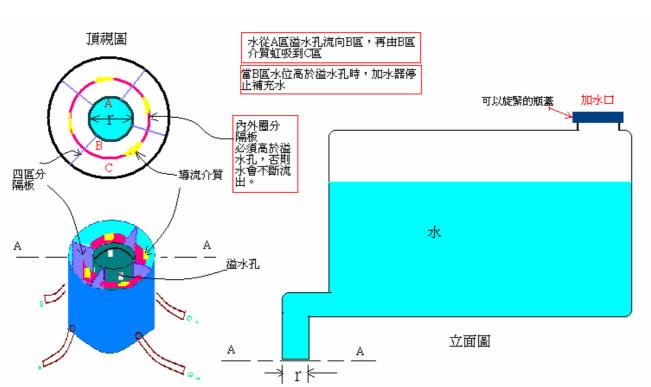


圖 23 改良型加水器

六、到底可不可以用瓶子、控制環與盤子來測量溶液的表面張力呢?我們做個假設:『若瓶子出水口控制環的半徑是可調整的,微調盤內水位至低於控制環底沿,觀察瓶子內水是否可以流出,若不能流出時就微量加大控制環半徑。重複試驗,直到瓶子內水可以流出爲止,此時控制環的半徑就是表面張力的相對值,這個相對值可以跟使用精密儀器測量相同溶液的表面張力值,比較與校正係數後,求出關係公式。以後就可以運用建立的關係公式,簡易的測量出溶液的表面張力了。』

柒、結論

- 一、這次實驗雖然辛苦,但讓我們更深入了解『水』的各種物理與力學特性,經過實際 操作,讓我們深深體會自然界還有這麼多的奧秘。當「加水器」雛型成品出來後, 我們都躍躍欲試,既期待又怕受傷害,擔心萬一與預期相差太遠,肯會自責對物理 科學認知還不足夠。還好,終於可以鬆口氣了。
- 二、影響「介質虹吸」流速的變因可歸納爲 1.介質吸水端的淨高 H1、2.介質的材料特性,例如材質組織與寬厚度等、3.水溶液的性質等等。
- 三、從實驗結果中,我們知道 H2 對介質虹吸之流速影響不大,而 H1 則影響甚大,而盆 內水位高度正是控制 H1 最重要的關鍵點,運用大氣壓力與水的表面張力的平衡關 係,則可以用來補充盆內水量,隨時維持在一定水位。
- 四、爲什麼瓶口埋入盆子水中時比較容易維持穩定?因爲瓶口處水分子緊緊密合,而盆子水與空氣接觸面因地心引力關係始終保持水平,空氣無法進入到瓶內。
- 五、當盆子水位低於瓶口一些時(因有表面張力,所以會低於瓶口,跟杯子水滿溢時不會流出之情況相似),水膜會破裂,空氣立即被擠入瓶口內,空氣比水輕,所以氣泡從瓶口往上浮,瓶內水就會隨之流出,直達到另一個穩定狀態爲止,因此盆內水位因有瓶子水來補充,所以會維持一定高度。
- 六、『介質虹吸』係將水由下向上拉,與重力方向相反,所以不易將微粒雜質一起吸上去 而堵住介質,這種作用在野外若拿來當『淨水器』,相當環保且有效率。經過實際測 試,使用人造海棉當介質,2000cc的水只要16分鐘就可過濾完畢。(詳照片21)
- 七、一般家庭常種植一些花草,時常要澆水;或者每次澆水都會溢流,造成水資源浪費 也干擾到樓下住戶,便用「超慢速點滴加水器」來澆花。經過實際使用來驗證,我 們發現 2000cc 的寶特瓶加滿水後可以持續緩慢滴水7天以上,管子也不會堵塞,成 果很不錯。

照片19 超慢加水器(澆花用)

照片 21 淨水器(濾除雜質)

照片 22 淨水器(測試流速)

人造海綿 流速超快

捌、參考資料及其他

- 一、虹吸、表面張力。民 96 年 7 月 2 日,取自「維基百科網站__自由的百科全書」: zh.wikipedia.org。
- 二、地下室鐵鏈實驗模型。民96年3月6日,取自「國立臺灣科學教育館」。
- 三、沾一點「水」性。民 96 年 7 月 2 日,取自「行政院國家科學委員會__科普知識」: http://web1.nsc.gov.tw/ct.aspx?xltem=8183&ctNode=40&mp=1。
- 四、水壓與浮力。民 96 年 7 月 2 日,取自「國立台灣師範大學物理系__物理教學示範實驗教室網站」: www.phy.ntnu.edu.tw/moodle/index.php。
- 五、虹吸。民 96 年 7 月 2 日,取自「中國科普網 網站」: www.cpus.gov.cn。
- 六、王新傳(2003.05)。虹吸。民 96 年 7 月 2 日,取自「中國南開大學物理科學學院。基礎物理實驗教學中心網站」:

 $http://phyftp.nankai.edu.cn/phyftp.nankai.edu.cn/songz/index/homework/2002/wxw/siphon.ppt \ ^{\circ}$

【評語】080812

本作品善用大氣壓力、表面張力及虹吸效應來達到慢速及長時間供水之效果,所採用之材料皆是回收物品值得嘉許。本研究針對流量與介質皆有探討,但對裝具之材質及瓶口尺寸採隨機選用經過討論決定,比較缺乏科學之方法,宜使用量化分析。