中華民國第四十八屆中小學科學展覽會作品說明書

國小組 數學科

佳作

080409

別跟我相鄰

學校名稱:高雄縣梓官鄉梓官國民小學

作者: 指導老師:

小六 簡姿妮 余翎瑋

小六 吳佩珊 王培旬

小六 謝宗儒

小六 曾蕙慈

小六 蔣佳吟

小六 石宗明

關鍵詞: 平面圖形、空間圖形、怎樣解題

別跟我相鄰

摘要:藉由數學課程中,怎樣解題的學習經驗,我們嘗試找出「別跟我相鄰」遊戲中雙方可走的棋數,以探究遊戲的公平性;在由對戰結果進行觀察、分析、驗證後,我們找出遊戲的必勝方法,並發現雙方可走棋數具規則性,且遊戲具公平性;經由嘗試創造不同的正方形棋盤,進行遊戲,也能有相同的結論;更將遊戲應用於生活中,以「別跟我相鄰」進行填滿平面圖形遊戲、填滿立體圖形遊戲及串珠子活動,並從中找出棋子、珠子數量所呈現的規則性,並將其以數學式表示。在研究過程中,我們將五年級數學課程中所學得「怎樣解題」、「因數和倍數」、「柱體與錐體」的觀念及經驗加以應用,讓我們再次感受到數學有趣及神奇之處;另一方面,這個研究有助於大家對於平面及空間的觀察及思考更加敏銳,且不論年紀皆可以多玩「別跟我相鄰」,亦可幫助思考。

關鍵詞:平面圖形、空間圖形、怎樣解題

壹、 研究動機

在圖書館中,發現一本相當有趣的書---趣味數學遊戲篇,我們幾個同學,特別喜愛雙人遊戲對戰篇,所以從裡面找了一些遊戲,利用下課時間,互相對戰,看誰能贏;後來我們漸漸開始對遊戲的設計產生興趣,我們想知道在遊戲中,是否每個參賽者獲勝的機率都是一樣的;因此我們決定從我們最常玩的遊戲「別跟我相鄰」開始著手,探究遊戲的

公平性!在我們向老師請教時,老師告訴我們可以將這個研究記錄下來,供大家 參考,甚至還可以根據自己的想法,創造新的遊戲;我們聽了非常開心,大家都 躍躍欲試。

我們嘗試找出遊戲的必勝方法,再讓比賽雙方皆使用必勝方法,來探究遊戲的公平性;我們又發現,這個遊戲和「平面圖形」的頂點關係很相似,這讓我們想到許多新的遊戲,每每有新的發現及想法時,就令人相當興奮。我們希望藉由研究遊戲,增強自己的邏輯、推理、平面圖形能力,更期待自己能夠創造出更多「別跟我相鄰」的新遊戲,或將其發現應用於日常生活中。

貳、 研究目的

本研究旨在探討:

- 一、探究「別跟我相鄰」遊戲的公平性。
- 二、創造不同棋盤的「別跟我相鄰」遊戲,並探究其公平性。
- 三、將研究過程中的發現,應用於日常生活 中。

參、 研究設備及器材

一、本次實驗所使用的器材如下:

編號	項目名稱	規格	數量
1	紙	A4 大小,以方便收納;有空白	120 張
		可以紀錄及計算即可。	
2	鉛筆	可以記錄即可。	6 枝
3	橡皮擦	可以擦拭即可。	6個
4	珠子	四種顏色、同樣大小。	各1包(約50顆/包)
5	釣魚線	比珠子的洞細的線即可。	1 捆

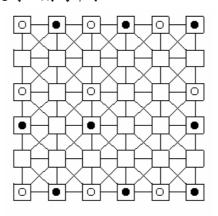
二、本次實驗所使用的設備如下:

編號	項目名稱	規格	數量
1	數位相機	可近拍	1台
2	電腦	可進行文書處理、計 算與上網	1台
3	文件列印纸	A4	120 張

肆、 研究過程與方法

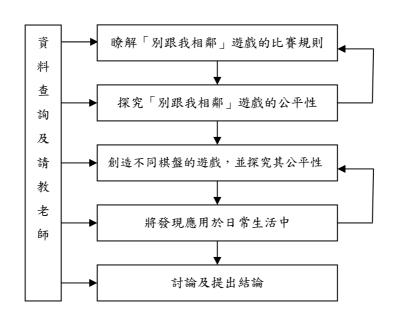
瞭解並確定「別跟我相鄰」遊戲的比賽規則,其步驟如下:

- 一、玩家一人持黑棋,一人持白棋,輪流將棋子放入方格內。
- 二、玩家必須避免讓己方(即同色)的棋子相鄰,否則就輸棋。
- 三、玩家雙方必須放相同的棋子數,先放者若造成同色棋子相鄰,而後放者 也出現相同狀況時,則為平手。



圖一 「別跟我相鄰」遊戲棋盤

為了達成研究目的,我們經過不斷的探究及實作,並參考之前的科學展覽作品,於是將我們的研究過程,藉由流程圖呈現出來,用以確認自己的研究進度與步驟,進而解決問題:



圖二 研究流程圖

伍、 研究結果與討論

一、探究「別跟我相鄰」遊戲的公平性。

(一) 想法:

- 1. 我們先由書中瞭解「別跟我相鄰」遊戲 的比賽規則。
- 2. 由實戰中找出必勝方法。
- 讓比賽雙方皆使用必勝方法,來探究遊戲的公平性。

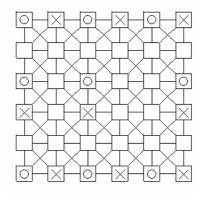
- 1. 由實戰中找出必勝方法:
 - (1) 相鄰的位置越少,對己方越有利:
 - A. 角的位置:棋盤中,角的位置,僅與另3個位置相鄰, 故對己方有利。
 - B. 邊上的位置:棋盤中,邊的位置,僅與另5個位置相鄰, 故對己方有利。

- C. 非角及邊的位置:棋盤中,非角及邊的位置,與另8個位置相鄰,即對己方最不利。
- D. 將位置及對己方有利程度排序如下表:

項目位置	角的位置	邊上的位置	非角及邊的位置
相鄰的位置個數	3	5	8
對己方有利程度排序	1	2	3
下棋先後	1	2	3

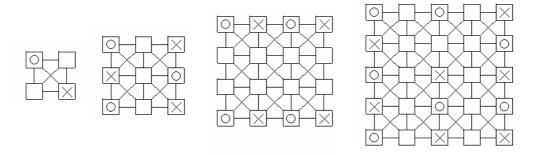
- E. 由上表可知,下棋的位置依角、邊上、非角及邊的位置, 對己方最有利。
- (2) 己方棋子越集中,對己方越有 利:
 - A. 實戰中我們常常發現:由於 己方的棋子過於分散,常常 造成己方出現雙邊或三邊 受限,無法放棋的窘境。

- B. 若己方棋子過於分散,會常 常讓自己眼花,未能及時發現己方的活路,反而讓對方 有機可乘。
- C. 所以當己方的棋子越集中,讓己方受限較少,視野也較清楚,則對己方越有利。
- (3) 根據以上發現及實戰經驗,則必勝方法是:「先占角、再 占邊,己方的棋子要集中」。
- 2. 讓比賽雙方者皆使用必勝方法,來探究遊戲的公平性:
 - (1) 我們讓比賽雙方者皆使用必勝方法,並將其記錄下來,為 紀錄方便,我們以「○」、「×」來進行紀錄:
 - A. 紀錄的圖形如下:



圖三 「別跟我相鄰」遊戲紀錄圖

- B. 雙方皆只能走 9 步, 所以為和棋, 故遊戲設計具公平性。
- C. 為確實探究這種形狀的棋盤,在不同邊長時,是否也具 公平性,故由 2×2 (邊長 2 個位置) 開始探究,為方便 陳述,以下我們將這種形狀命名為環環相扣正方形。
- (2) 我們讓雙方皆使用必勝方法,探究2×2、3×3、4×4、5×5、7×7、8×8 環環相扣正方形棋盤,探究遊戲的公平性:



圖四 「別跟我相鄰」axa 環環相扣正方形棋盤遊戲紀錄圖

A. 我們將比賽結果記錄於下表:

項目 名稱	2×2	3×3	4×4	5×5	6×6	7×7	8×8
先攻可走棋數	1	3	4	7	9	14	16
後攻可走棋數	1	3	4	7	9	14	16

- B. 由上表可知,先攻及後攻的勝率皆相同,如雙方皆採必 勝方法,則為和棋。
- C. 紀錄時,我們發現,雙方可走的棋數,似乎有其規則性, 於是我們將其列表,並嘗試以數學式表示雙方可走的棋 數。

項目 名稱	2×2	3×3	4×4	5×5	6×6	7×7	8×8
雙方可走的棋數	1	3	4	7	9	14	16
數學式	1 ²	1×2+1	2^2	2×3+1	3^2	3×4+2	4^2

- D. 根據以上發現及紀錄的圖形,我們將 axa 環環相扣正方 形棋盤,雙方可走的棋數以數學式表示:
 - a. 當 a 為偶數時,雙方可走的棋數為: $(\frac{a}{2})^2$ 。

E. 為驗證我們所找到的數學式是否正確,我們先算出 9×9、10×10、11×11、12×12,再進行實戰,發現如下表 所示:

雙方可走棋數 名稱	9×9	10×10	11×11	12×12
計算結果	$4 \times 5 + 2 = 22$	5×5=25	5×6+3=33	6×6=36
實戰結果	22	25	33	36
比較	相同	相同	相同	相同

- F. 由上表可知,我們所找到的數學式是正確的。
- G. 我們發現環環相扣正方形棋盤,當雙方皆採必勝方法時,雙方可走的棋數皆相同,所以為和棋,故遊戲設計 具公平性。另一方面,當 a 為偶數時,雙方可走的棋數

為:
$$(\frac{a}{2})^2$$
,當 a 為奇數時,雙方可走的棋數為:

$$(\frac{a-1}{2})(\frac{a+1}{2})+Z(\frac{a+1}{4})$$
 °

3. 根據以上的結果,我們發現環環相 扣正方形棋盤,遊戲設計具公平 性;且雙方皆採必勝方法時,雙方 可走的棋數皆相同,具規則性。也 激起我們想要探究不同形狀的棋 盤,遊戲是否也同樣具有公平性。 另一方面,雙方可走的棋數是否亦 具有規則性。

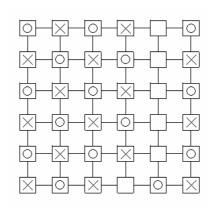
二、創造不同棋盤的「別跟我相鄰」遊戲,並探究其公平性。

(一) 想法:

- 1. 根據環環相扣正方形棋盤的設計,我們嘗試將其簡化及複雜化,創造出不同的棋盤。
- 我們先確認新棋盤的必勝方法, 再讓比賽雙方者皆使用必勝方 法,來探究遊戲的公平性,並找 出雙方可走棋數是否具有規則 性。

(二) 結果:

- 1. 「方正不阿正方形棋盤」:
 - (1) 我們將環環相扣正方形棋盤進行簡化,設計出方正不阿正 方形棋盤,如下圖所示。

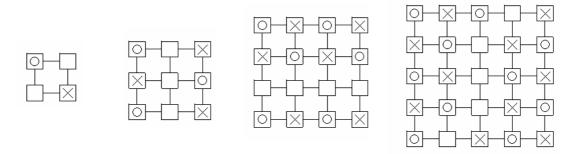


圖五 「別跟我相鄰」方正不阿正方形棋盤遊戲紀錄圖

(2) 我們發現使用「方正不阿正方形棋盤」進行別跟我相鄰遊戲時,其必勝方法與「環環相扣正方形棋盤」相同:「先 占角、再占邊,己方的棋子要集中」。

項目位置	角的位置	邊上的位置	非角及邊的位置
相鄰的位置個數	2	3	4
對己方有利程度排序	1	2	3
下棋先後	1	2	3

(3) 我們讓雙方皆使用必勝方法,探究2×2、3×3、4×4、5×5、 6×6、7×7、8×8 方正不阿正方形棋盤,探究遊戲的公平性:



圖六 「別跟我相鄰」axa 方正不阿正方形棋盤遊戲紀錄圖

A. 我們將比賽結果記錄於下表:

項目 名稱	2×2	3×3	4×4	5×5	6×6	7×7	8×8
先攻可走棋數	1	3	6	10	15	21	28
後攻可走棋數	1	3	6	10	15	21	28

- B. 由上表可知,不論先攻或後攻的勝率皆相同,如雙方皆 採必勝方法,則為和棋。
- C. 紀錄時,我們發現,雙方可走的棋數,似乎有其規則性, 於是我們將其列表,並嘗試以數學式表示雙方可走的棋 數。

項目 名稱	2×2	3×3	4×4	5×5	6×6	7×7	8×8
雙方可走的棋數	1	3	6	10	15	21	28
數學式	$\frac{1\times 2}{2}$	$\frac{2\times3}{2}$	$\frac{3\times4}{2}$	$\frac{4\times5}{2}$	$\frac{5\times6}{2}$	$\frac{6\times7}{2}$	$\frac{7\times8}{2}$

D. 根據以上發現及紀錄的圖形,我們將 axa 方正不阿正方 形棋盤,雙方可走的棋數以數學式表示為

$$\frac{(a-1)\times a}{2} = \frac{a(a-1)}{2} \circ$$

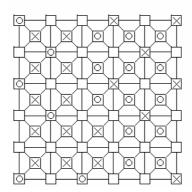
E. 為驗證我們所找到的數學式是否正確,我們先算出 9×9、10×10、11×11、12×12的棋盤雙方可走的棋數,再 進行實戰,發現如下表所示:

雙方可走棋數 名稱	9×9	10×10	11x11	12×12
計算結果	$\frac{8\times 9}{2} = 36$	$\frac{9\times10}{2}=45$	$\frac{10\times11}{2}=55$	$\frac{11\times12}{2}=66$
實戰結果	36	45	55	66
比較	相同	相同	相同	相同

F. 由上表可知,我們所推演出到的數學式是正確的。

(4) 我們發現也方正不阿正方 形棋盤,當雙方皆採必勝方 法時,雙方可走的棋數皆相 同,所以為和棋,因此證明 遊戲具有公平性。另一方 面,雙方可走的棋數為: <u>a(a-1)</u>。

- (5) 未來探究方向:創造較複雜的棋盤,讓比賽雙方者皆使用 必勝方法,來探究遊戲的公平性,並找出雙方可走棋數是 否具有規則性。
- 2. 「頂天立地正方形棋盤」:
 - (1) 我們將環環相扣正方形棋盤進行複雜化,設計出頂天立地 正方形棋盤,如下圖所示。



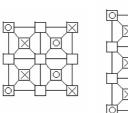
圖七 「別跟我相鄰」頂天立地正方形棋盤遊戲紀錄圖

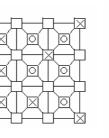
(2) 我們發現使用「頂天立地正方形棋盤」進行別跟我相鄰遊戲時,其必勝方法為「先占角、再占中,角、中的棋子要分開,中的棋子要集中」,與「環環相扣正方形棋盤」、「方正不阿正方形棋盤」不同。

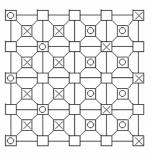
位置	角的位置	中心點的位	邊上的位置	非角及邊的
項目		置(小正方		位置
		形中間)		
相鄰的位置個數	3	4	5	8
對己方有利程度排序	1	2	3	4
下棋先後	1	2	3	4

(3) 我們讓雙方皆使用必勝方法,探究2×2、3×3、4×4、5×5、6×6、7×7、8×8 頂天立地正方形棋盤,探究遊戲的公平性:









圖八 「別跟我相鄰」axa 頂天立地正方形棋盤遊戲紀錄圖

A. 我們將比賽結果記錄於下表:

項目 名稱	2×2	3×3	4×4	5×5	6×6	7×7	8×8
先攻可走棋數	1	4	7	13	19	29	37
後攻可走棋數	1	4	7	13	19	29	37

- B. 由上表可知,先攻及後攻的勝率皆相同,如雙方皆採必 勝方法,則為和棋。
- C. 紀錄時,我們發現,雙方 可走的棋數,似乎有其規 則性,於是我們將其列 表,並嘗試以數學式表示 雙方可走的棋數。

							The same of the sa
名稱	2×2	3×3	4×4	5×5	6×6	7×7	8×8
項目							
雙方可走	1	4	7	13	19	29	37
的棋數							
數學式	0+1	$\frac{2^2}{2} + 2$	$3^2 + 1$	42	$5^2 + 1$	6^2	$\frac{7^2+1}{}+12$
		$\frac{}{2}$ + 2	$\frac{}{2}$ + 2	$\frac{1}{2}$ + 3	$\frac{3}{2} + 6$	$\frac{}{2}^{+11}$	$\phantom{00000000000000000000000000000000000$

- D. 根據以上發現及紀錄的圖形,我們將 axa 頂天立地正方 形棋盤,雙方可走的棋數以數學式表示為:
 - a. 當 a 為奇數時,雙方可走的棋數為:

$$\frac{(a-1)^{2}}{2} + \left[\left(\frac{a+1}{2} \right) \times Z \left(\frac{\frac{a+1}{2}}{2} \right) + \left(\frac{a-1}{2} \right) \times Z \left(\frac{\frac{a-1}{2}}{2} \right) \right]$$

$$= \frac{(a-1)^{2}}{2} + Z \left(\frac{a+1}{4} \right) \left(\frac{a+1}{2} \right) + Z \left(\frac{a-1}{4} \right) \left(\frac{a-1}{2} \right)$$

b. 當 a 為偶數時,雙方可走的棋數分為兩類,其中 $Z(\frac{a-2}{4})$ 表示只取商的整數部分:

* 當 a 不為 4 的倍數時:

$$\frac{(a-1)^{2}+1}{2} + \frac{a}{2} + \frac{a}{2} \times Z(\frac{\frac{a}{2}-2}{2}) + (\frac{a-2}{2}) \times Z(\frac{\frac{a}{2}-1}{2}) + Z(\frac{a}{4})$$

$$= \frac{a(a-1)+2}{2} + Z(\frac{a-4}{4}) \frac{a}{2} + Z(\frac{a-2}{4}) (\frac{a-2}{2}) + Z(\frac{a}{4})$$

* 當 a 為 4 的倍數時:

$$\frac{(a-1)^{2}+1}{2} + \left[\frac{a}{2} + \frac{a}{2} \times Z\left(\frac{\frac{a}{2}-2}{2}\right) + \left(\frac{a-2}{2}\right) \times Z\left(\frac{\frac{a}{2}-1}{2}\right)\right] + Z\left(\frac{a}{4}\right) - 1$$

$$= \frac{a(a-1)}{2} + Z\left(\frac{a-4}{4}\right) \frac{a}{2} + Z\left(\frac{a-2}{4}\right) \left(\frac{a-2}{2}\right) + Z\left(\frac{a}{4}\right)$$

E. 為驗證我們所找到的數學式是否正確,我們先算出 9×9、10×10、11×11、12×12的棋盤雙方可走的棋數,再 進行實戰,發現如下表所示:

雙方可走棋數 名稱	9×9	10×10	11×11	12×12
計算結果	50	61	78	91
實戰結果	50	61	78	91
比較	相同	相同	相同	相同

- F. 由上表可知,我們所推演出到的數學式是正確的。
- (4) 我們發現使用「頂天立地正方形棋盤」進行別跟我相鄰遊戲時,其必勝方法為「先占角、再占中,角、中的棋子要分開,中的棋子要集中」。當雙方皆採必勝方法時,雙方可走的棋數皆相同,所以為和棋,因此遊戲具有公平性。另一方面,雙方可走的棋數以數學式表示為:
 - A. 當 a 為奇數時,雙方可走的棋數為:

$$\frac{{{{\left({a - 1} \right)}^2}}}{2} + Z(\frac{{a + 1}}{4})\;(\frac{{a + 1}}{2}) + Z(\frac{{a - 1}}{4})\;(\frac{{a - 1}}{2})$$

- B. 當 a 為偶數時,雙方可走的棋數分為兩類:
 - a. 當 a 不為 4 的倍數時:

$$\frac{a(a-1)+2}{2}+Z(\frac{a-4}{4})\frac{a}{2}+Z(\frac{a-2}{4})(\frac{a-2}{2})+Z(\frac{a}{4})$$

b. 當 a 為 4 的倍數時:

$$\frac{a(a-1)}{2} + Z(\frac{a-4}{4}) \cdot \frac{a}{2} + Z(\frac{a-2}{4}) \cdot (\frac{a-2}{2}) + Z(\frac{a}{4})$$

- 3. 在探究過程中,我們發現雙方可走的棋數及棋子排列規則性, 且皆可以用數學式來表示。另一方面,在對戰過程中,我們發 現除了可將棋盤用於進行對戰遊戲外,將棋盤的空格進行填滿 遊戲也相當有趣,而這就好像用不同珠子在設計一件平面的作 品,所以我們決定將研究過程中的發現,延伸於日常生活中。
- 三、將研究過程中的發現,應用於日常生活中。

(一) 想法:

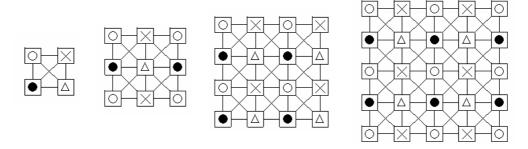
- 1. 我們將根據探究「別跟我相鄰」 遊戲所獲得的發現,將它應用於 日常生活中。
- 我們將利用現有棋盤,進行填滿 遊戲。

3. 再將研究過程中發現,更進一步與日常生活經驗做結合,用以 解決日常生活中的問題。

(二) 結果:

- 1. 「別跟我相鄰」之填滿遊戲:我們先以既有的環環相扣正方形 棋盤、方正不阿正方形棋盤、頂天立地正方形棋盤進行填滿遊 戲,找出填滿這些棋盤,且同樣的棋子不能相鄰的情況下,需 要幾種棋子,而這些棋子又各需多少顆,是否具有規則性。
 - (1) 填滿「環環相扣正方形棋盤」時,我們的發現如下:

A. 填滿「環環相扣正方形棋盤」,需要4種棋子,如圖所示。



圖九 別跟我相鄰之填滿「axa 環環相扣正方形棋盤」遊戲紀錄圖

B. 我們經實際排列後,紀錄各種棋子所需的數量如下表:

棋子種類 名稱	2×2	3×3	4×4	5×5
圈圈(○)數量	1	4	4	9
叉叉(×)數量	1	2	4	6
黑圈圈(●)數量	1	2	4	6
三角形(△)數量	1	1	4	4
棋子總數	4	9	16	25

C. 在排列過程中,我們亦發現排列棋子具有規則性,所以 我們嘗試以數學式表示棋子的數量:

棋子種類 名稱	2×2	3×3	4×4	5×5
圏圏(○)數量	$\frac{2^2}{4} = 1$	$(\frac{3+1}{2})^2 = 4$	$\frac{4^2}{4} = 4$	$(\frac{5+1}{2})^2 = 9$
叉叉(×)數量	$\frac{2^2}{4} = 1$	$(\frac{3-1}{2})(\frac{3+1}{2})=2$	$\frac{4^2}{4} = 4$	$(\frac{5-1}{2})(\frac{5+1}{2})=6$
黑圈圈(●)數量	$\frac{2^2}{4} = 1$	$(\frac{3+1}{2})(\frac{3-1}{2})=2$	$\frac{4^2}{4} = 4$	$(\frac{5+1}{2})(\frac{5-1}{2})=6$
三角形(△)數量	$\frac{2^2}{4} = 1$	$(\frac{3-1}{2})^2=1$	$\frac{4^2}{4} = 4$	$(\frac{5-1}{2})^2 = 4$
棋子總數	2^2	3 ²	4 ²	5 ²

- D. 由上表可知,各種棋子的數量具有規則性,所以我們將 填滿 axa 環環相扣正方形棋盤所需棋子數量表示如下:

 - b. 當 a 為奇數時:

* 圏圏 (\bigcirc) 數量: $(\frac{a+1}{2})^2$ 。

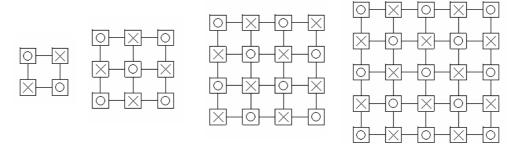
* 叉叉(×)數量與黑圈圈(●)數量相同:

$$(\frac{a+1}{2})(\frac{a-1}{2}) = \frac{a^2-1}{4}$$

* 三角形 (\triangle) 數量: $(\frac{a-1}{2})^2$ 。

- E. 根據上述結果,我們發現填滿 axa 環環相扣正方形棋盤,需4種不同的棋子,且共需a²顆;每一種棋子排列具有規則性,且可以數學式表示。
- F. 以上的發現,讓我們相當驚喜,我們決定繼續挑戰填滿 不同形狀的棋盤。

(2) 填滿「方正不阿正方形棋盤」時,我們的發現如下: A. 填滿「方正不阿正方形棋盤」,僅需要2種棋子,如圖所示。



圖十 別跟我相鄰之填滿「axa 方正不阿正方形棋盤」遊戲紀錄圖

B. 我們經實際排列後,紀錄各種棋子所需的數量如下表:

棋子種類 名稱	2×2	3×3	4×4	5×5
圈圈(○)數量	2	5	8	13
叉叉(×)數量	2	4	8	12
棋子總數	4	9	16	25

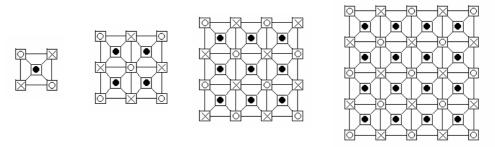
C. 在排列過程中,我們亦發現排列棋子具有規則性,所以 我們嘗試以數學式表示棋子的數量:

棋子種類 名稱	2×2	3×3	4×4	5×5
圏圏(○)數量	$\frac{2^2}{2} = 2$	$\frac{3^2+1}{2} = 5$	$\frac{4^2}{2} = 8$	$\frac{5^2+1}{2}$ =13
叉叉 (╳) 數量	$\frac{2^2}{2} = 2$	$\frac{3^2-1}{2}$ =4	$\frac{4^2}{2} = 8$	$\frac{5^2-1}{2}$ =12
棋子總數	2^2	3 ²	4 ²	5 ²

- D. 由上表可知,各種棋子的數量 具有規則性,所以我們將填滿 axa 方正不阿正方形棋盤所需 棋子數量表示如下:
 - a. 當 a 為偶數時: 圏圏 (○)
 - 數量=叉叉(\times)數量= $\frac{a^2}{2}$ 。

- b. 當 a 為奇數時:
 - * 圏圏 (\bigcirc) 數量: $\frac{a^2+1}{2}$ 。
 - * 叉叉 (\times) 數量: $\frac{a^2-1}{2}$ 。
- E. 根據上述結果,我們發現填滿 axa 方正不阿正方形棋盤,需2種不同的棋子,且共需a²類;每一種棋子的排列具有規則性,且可以數學式表示。

- F. 探究了填滿「方正不阿正方形棋盤」後,讓我們更有信心,我們決定繼續挑戰探究填滿「頂天立地正方形棋盤」 所需的棋子數及棋子的排列方式。
- (3) 填滿「頂天立地正方形棋盤」時,我們的發現如下: A. 填滿「頂天立地正方形棋盤」,需要3種棋子,如圖所示。



圖十一 別跟我相鄰之填滿「axa 頂天立地正方形棋盤」遊戲紀錄圖

B. 我們經實際排列後,紀錄各種棋子所需的數量如下表:

棋子種類 名稱	2×2	3×3	4×4	5×5
圈圈(○)數量	2	5	8	13
黑圈圈(●)數量	1	4	9	16
叉叉(×)數量	2	4	8	12
棋子總數	5	13	25	41

C. 在排列過程中,我們發現圈圈(○)與叉叉(×)的數量及排列方式和填滿「方正不阿正方形棋盤」時相同,而黑圈圈(●)數量,也有其規則性;所以我們嘗試以數學式表示棋子的數量:

名稱 棋子種類	2×2	3×3	4×4	5×5
圏圏(○)	$\frac{2^2}{2} = 2$	$\frac{3^2+1}{2}=5$	$\frac{4^2}{2} = 8$	$\frac{5^2+1}{2}$ =13
數量	${2}^{-2}$		${2}$ -8	2 -13
黑圈圈(●)	$(2-1)^2=1$	$(3-1)^2 = 4$	$(4-1)^2 = 9$	$(5-1)^2=16$
數量	(2-1) = 1	(3-1) = 4	(4-1) = 9	(3-1) = 16
叉叉 (×)	$\frac{2^2}{2} = 2$	$\frac{3^2-1}{2}=4$	$\frac{4^2}{2} = 8$	$\frac{5^2-1}{2}=12$
數量	${2}$ =2	2=4	${2}$ =8	${2}$ =12
棋子總數			$4^2 + (4 + 1)^2$	
	$2^2 + (2-1)^2 = 5$	$3^2 + (3-1)^2 = 13$	$4^2 + (4-1)^2$	$5^2 + (5-1)^2 = 41$
			=25	

- D. 由上表可知,各種棋子的數量具有規則性,所以我們將 填滿頂天立地正方形棋盤所需棋子數量表示如下:
 - a. 當 a 為偶數時:

* 图图 (
$$\bigcirc$$
) 數量=叉叉 (\times) 數量= $\frac{a^2}{2}$ 。

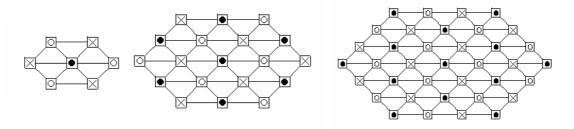
- * 黑圈圈 (●) 數量=(a-1)²。
- b. 當 a 為奇數時:

* 圏圏 (
$$\bigcirc$$
) 數量: $\frac{a^2+1}{2}$ 。

* 黒圈圈(●)數量=(a-1)²。

* 叉叉 (\times) 數量: $\frac{a^2-1}{2}$ 。

- E. 根據上述結果,我們發現填滿 axa 頂天立地正方形棋盤時,與填滿 axa 方正不阿正方形棋盤相似,差異只在多填入一種棋子;所以填滿 axa 頂天立地正方形棋盤所需棋子數量為 a²+(a-1)² 顆;每一種棋子的排列具有規則性,且可以數學式表示。
- (4) 探究了填滿「頂天立地正方形棋盤」後,我們決定挑戰外 形為六邊形的棋盤,探究填滿「六邊形棋盤」所需的棋子 數及棋子的排列方式。
- 2. 「六邊形棋盤」之「別跟我相鄰」填滿遊戲:我們找出填滿各 式正方形棋盤時,所需的總棋數、棋的種類、各種棋的數量, 甚至於排列,都有其規則性;所以我們想嘗試探究不同形狀的 棋盤,是否也同樣具有規則性。
 - (1) 填滿「六邊形棋盤」,需要3種棋子,如圖所示。



圖十二 別跟我相鄰之填滿「六邊形」遊戲紀錄圖

(2) 我們經實際排列後,紀錄各種棋子所需的數量如下表,我 們將邊上棋有 a 個的六邊形棋盤稱為 a-a 六邊形棋盤(讀 作 a 之 a 六邊形棋盤):

棋子種類 名稱	2-2	3-3	4-4	5-5
圈圈(○)數量	3	6	12	21
黑圈圈(●)数量	1	7	13	19
叉叉(╳) 數量	3	6	12	21
棋子總數	7	19	37	61

(3) 在排列過程中,我們亦發現排列棋子具有規則性,所以我們嘗試以數學式表示棋子的數量:

棋子種類	2-2	3-3	4-4	5-5
名稱				
圏圏(○)数量	$(2^2 - 2) + 1 = 3$	$3^2 - 3 = 6$	$4^2 - 4 = 12$	$(5^2 - 5) + 1 = 21$
黑圈圈(●)数	$(2^2-2)-1=1$	$(3^2 - 3) + 1 = 7$	$(4^2 - 4) + 1 = 13$	$(5^2 - 5) - 1 = 19$
藝				
叉叉(╳) 数量	$(2^2 - 2) + 1 = 3$	$3^2 - 3 = 6$	$4^2 - 4 = 12$	$(5^2 - 5) + 1 = 21$
棋子總數	$3(2^2-2)+1$	$3(3^2-3)+1$	$3(4^2-4)+1$	$3(5^2-5)+1$
	=7	=19	=37	=61

- (4) 由上表可知,填滿 a-a 六邊形棋盤所需棋子數量為 3(a²-a)+1顆。
- (5) 各種棋子的數量具有規則性,所以我們將填滿 a-a 六邊形 棋盤所需棋子數量表示如下:
 - A. 當 2a-1 為 3 的倍數時:
 - a. 圈圈 (○) 数量=叉叉 (×) 数量=(a²-a)+1。
 - b. 黑圈圈 (●) 数量=(a²-a)-1・
 - B. 當 2a-1 不是 3 的倍数時:
 - a. 圈圈 (○) 數量=叉叉 (×) 數量=(a²-a)·
 - b. 黑圈圈 (●) 数量=(a²-a)+1・

(6) 為驗證我們所找到的數學式是否正確,我們先算出 6-6、 7-7、8-8,再將圖形填滿,發現如下表所示:

棋數	6-6	7-7	8-8
計算圈圈(○)數量	$6^2 - 6 = 30$	7 ² – 7 = 4 2	$(8^2 - 8) + 1 = 57$
實作圈圈(○)數量	30	42	57
比較	相同	相同	相同
計算黑圈圈(●)數量	$(6^2 - 6) + 1 = 31$	$(7^2 - 7) + 1 = 43$	$(8^2 - 8) - 1 = 55$
實作黑圈圈(●)數量	31	43	55
比較	相同	相同	相同
計算叉叉 (×) 數量	$6^2 - 6 = 30$	7 ² – 7 = 4 2	$(8^2 - 8) + 1 = 57$
實作叉叉 (×) 數量	30	42	57
比較	相同	相同	相同

- (7) 由上表可知,我們所找到的數學式是正確的。
- (8)根據上述結果,我們發現填滿六邊形棋盤時所需棋子總數量為3(a²-a)+1顆;每一種棋子的排列具有規則性,且可以數學式表示。
- (9)在我們填滿六邊形棋盤時,有同學提出新的想法,如果將 其應用在立體圖形上是否可行;另一方面,我們是不是可 將我們在紙上計算的結果,經由操作,形成實物;大家對 於這兩個想法,於是我們決定進一步嘗試立體圖形與實物 操作。
- 3. 「立體圖形」之「別跟我相鄰」填滿遊戲:我們先由網站上找 到一些立體圖形,再針對圖形的頂點進行「別跟我相鄰」填滿 遊戲;我們嘗試填滿各式立體圖形,並找出其所需的總棋數、 棋的種類、各種棋的數量,甚至探究圖形中,是否仍有具規則 性的項目。

(1) 「立體圖形」的要素分析:

A. 先將各圖形的構成要素分析如下:

編號	名稱	圖形	構成面的形狀	面數量	頂點 数量	邊數量
1	正四面體		等邊三角形	4	4	6
2	立方體 (正六面體)		正方形	6	8	12
ω	正八面體		等邊三角形	ω	9	12
4	正十二面纜		正五邊形	12	20	30
5	正二十面纜		等邊三角形	20	12	30

B. 嘗試藉由上圖,找出各要素間的關係:

a. 各要素間關係列表如下:

編號	名稱	過形	構成面的形狀 (正 n 邊形)	面 a 數量	頂點 p 数量	邊 S 數量
1	企四面鐵		等邊三角形	4	4 =3×4÷3 =n×a÷3	6 =3×4÷2 =n×a÷2
2	立方體 (正六面體)		正方形	6	8 =4×6÷3 =n×a÷3	12 =4×6÷2 =n×a÷2
3	正八面體		等邊三角形	8	6 =3×8÷4 =n×a÷4	12 =3×8÷2 =n×a÷2
4	正十二面纜		正五邊形	12	20 =12×5÷3 =n×a÷3	30 =5×12÷2 =n×a÷2
5	正二十面體		等邊三角形	20	12 =3×20÷5 =n×a÷5	30 =20×3÷2 =n×a÷2

- b. 邊 s 的数量為 n×a÷2= an 2
- c. 頂點 p 的數量為 n×a÷(每個頂點所接的邊數)。
- d. 此外我們還發現:p=s-a+2,即 p-s+a=2。

(2) 填滿「立體圖形」所需棋子分析如下:

A. 填滿「立體圖形」所需棋子分析如下表:

編號	名稱	圖形	構成面的形狀 (正 n 邊形)	棋子 總數	至少需 要的棋 子種類	各棋子 数量
1	正四面微		等邊三角形	4	4	各丨
2	立方體 (正六面體)		正方形	8	2	& 4
3	正八面體		等邊三角形	6	3	\$ 2
4	正十二面纜		正五邊形	20	3	7 - 7 - 6
5	正二十面纜		等邊三角形	12	4	\$ 3

- B. 棋子總數=頂點數量 p=nxa÷(每個頂點所接的邊數)。
- C. 除正十二面體外,各棋子數量=棋子總數÷棋子種類;正十二面體不符合的原因是構成面的形狀為五邊形,五邊

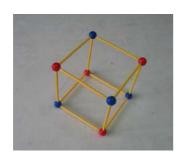
形的5個頂點無法被3整除, 且構成「別跟我相鄰」的棋子 總数20,無法被3整除。

D. 填滿立體圖形與平面圖形的差 異在於,填滿立體圖形時除考 量構成面的形狀的頂點個數 外,還需考量三度空間構成 時,必須避免不同面的頂點出 現相同棋子相鄰的情形。

- (3) 我們於平面圖形的發現及經驗,能應用在立體圖形上,讓 我們非常高興,我們除了找出各立體圖形構成要素間的規 則性,選以紙筆完成了立體圖形的「別跟我相鄰」填滿遊 戲;我們想更進一步將其應用於實物操作上。
- 4. 「別跟我相鄰」填滿遊戲之實物操作:會想將「別跟我相鄰」 填滿遊戲應用於串珠子中,主要是看兒媽媽在串珠子時,常常 為了要買幾種珠子及數量,而大傷腦筋;有時還看兒媽媽因為 串錯一個珠子,而功虧一簣,所以我們決定將我們的發現,常 是應用在「串珠子」活動中;我們在經過實物操作後,有了以 下發現:
 - (1) 我們以前述的立體圖形作為 串珠子活動的藍圖,我們發現 串珠可分為單以珠子(頂點)、短棍 來串及以珠子(頂點)、短棍 (邊)來串兩種;不論哪一 種,皆可應用探究活動中的數 據來解決數量及排列問題。

- (2)有了平面的「別跟我相鄰」遊戲的經驗,讓我們在立體實物 操作時,得心應手。
- (3)實物操作中,我們還發現立體 圖形隱藏著角度的問題,而角 度是我們這次研究尚未涉獵

的部分,也是值得我們未來更進一步探究之處。



隆、 结論

根據我們的研究及實際進行遊戲結果,進行討論,提出以下結論:

- 一、探究「別跟我相鄰」遊戲公平性時,我們找出遊戲的必勝方法,並於實 戰及記錄中發現遊戲具公平性,且雙方可走棋數具規則性:
 - (一)「別跟我相鄰」遊戲的必勝方法:
 - 1. 相鄰的位置越少,對己方越有利。
 - 2. 己方棋子越集中,對己方越有利。
 - (二)以 axa 環環相扣正方形棋盤進行「別跟我相鄰」遊戲具公平性, 且雙方可走棋數具規則性:
 - 1. 當 a 為偶數時,雙方可走的棋數為: $(\frac{a}{2})^2$ 。
 - 2. 當 a 為奇數時,雙方可走的棋數為: $(\frac{a-1}{2})(\frac{a+1}{2})+Z(\frac{a+1}{4})$ 。
- 二、我們創造了2種新的棋盤來進行「別跟我相鄰」遊戲,並於實戰及記錄中發現遊戲具公平性,且雙方可走棋數具規則性:
 - (-) axa 方正不阿正方形棋盤,雙方可走的棋数為 $\frac{a(a-1)}{2}$ 。
 - (二) axa 頂天立地正方形棋盤,雙方可走的棋数為:
 - 1. 當 a 為奇數時,雙方可走的棋數為:

$$\frac{(a-1)^2}{2} + Z(\frac{a+1}{4})(\frac{a+1}{2}) + Z(\frac{a-1}{4})(\frac{a-1}{2})$$

- 2. 當 a 為偶數時,雙方可走的棋數分為兩類:
 - (1) 當a不為4的倍數時:

$$\frac{a(a-1)+2}{2}+Z(\frac{a-4}{4})\frac{a}{2}+Z(\frac{a-2}{4})(\frac{a-2}{2})+Z(\frac{a}{4})$$

(2) 當a為4的倍數時:

$$\frac{a(a-1)}{2} + Z(\frac{a-4}{4}) \frac{a}{2} + Z(\frac{a-2}{4}) (\frac{a-2}{2}) + Z(\frac{a}{4})$$

- 三、將研究遇程中的發現,應用於日常生活中時,我們有了新的發現:
 - (一) 我們創造了「別跟我相鄰」填滿遊戲,發現填滿各式平面棋盤時,所需的各類棋子數量具有規則性,且能以數學式表示:
 - 1. 填滿「axa環環相扣正方形棋盤」的別跟我相鄰遊戲:
 - (1) 需要4種棋子: 圈圈(○)、叉叉(×)、黑圈圈(●)、 三角形(△)。
 - (2) 棋子總数為a²類,各棋子數量如下:

A. 當a為偶数時:圈圈(○)数量=叉叉(×)数量=黑圈

圈 (●) 數量=三角形 (△) 數量=
$$\frac{a^2}{4}$$
= $(\frac{a}{2})^2$ -

- B. 當 a 為奇數時:
 - a. 圈圈 (〇) 数量:(a+1 / 2) ² ·
 - b. 叉叉 (×) 数量與黑圈圈 (●) 数量相同:

$$\left(\frac{a+1}{2}\right)\left(\frac{a-1}{2}\right) = \frac{a^2-1}{4}$$

- c. 三角形 (\triangle) 数量: $(\frac{a-1}{2})^2$ -
- 2. 填满「axa 方正不阿正方形棋盤」的別跟我相鄰遊戲:
 - (1) 需要2種棋子: 圈圈(○)、叉叉(×)。
 - (2) 棋子總數為a²顆,各棋子數量如下:
 - A. 當 a 為偶數時:圈圈 (\bigcirc) 數量=叉叉 (\times) 數量= $\frac{a^2}{2}$.
 - B. 當 a 為奇數時:
 - c. 圈圈 () 数量: a²+1 2 -
 - d. 叉叉 (×) 數量: $\frac{a^2-1}{2}$ -
- 3. 填满「axa 頂天立地正方形棋盤」的別跟我相鄰遊戲:
 - (1) 需要3種棋子:圈圈(○)、黑圈圈(●)、叉叉(×)。
 - (2) 棋子總数為a²+(a-1)²類,各棋子數量如下:
 - A. 當 a 為偶數時:
 - a. 图图(〇) 数量=叉叉(×) 数量= $\frac{a^2}{2}$ 。
 - b. 黑圈圈 (●) 数量=(a-1)²。
 - B. 當 a 為奇數時:
 - a. 圈圈 (○) 數量: a²+1/2 ·
 - b. 黑圈圈 (●) 数量=(a-1)²
 - c. 叉叉 (×) 数量: $\frac{a^2-1}{2}$ -
 - C. 填滿 axa 頂天立地正方形棋盤時,與填滿 axa 方正不阿正方形棋盤相似,差異只在多填入一種棋子。

- 4. 填滿「a-a 六邊形棋盤」的別跟我相鄰遊戲:
 - (1) 需要3種棋子:圈圈(○)、黑圈圈(●)、叉叉(×)。
 - (2) 棋子總數為3(a²-a)+1顆,各棋子數量如下:
 - A. 當 2a-1 為 3 的 倍數 時:
 - a. 圈圈 (○) 數量=叉叉 (×) 數量=(a²-a)+1。
 - b. 黑圈圈 (●) 数量=(a²-a)-1・
 - B. 當 2a-1 不是 3 的倍數時:
 - a. 圈圈 (○) 數量=叉叉 (×) 數量=(a²-a)·
 - b. 黑圈圈 (●) 数量=(a²-a)+1・
- (二)我們將「別跟我相鄰」填滿遊戲延伸至「立體圖形」,先找出立體圖形各要素間的關係(構成面的形狀:正n邊形、面 a、頂點 p、邊 s),再找出填滿各式立體圖形時,所需的各類棋子數量:

- 1. 立體圖形各要素間的關係:
 - (1) 邊s的數量為n×a÷2= an 2.
 - (2) 頂點 p 的數量為 n×a÷(每個頂點所接的邊數)。
- 2. 所需的各類棋子數量:
 - (1) 棋子總數=頂點數量 p=nxa÷(每個頂點所接的邊數)。
 - (2) 除正十二面體外,各棋子數量=棋子總數÷棋子種類。
- (三)「別跟我相鄰」填滿遊戲之實物操作,我們進行了串珠子活動, 發現之前探究活動中的結果,可解決實物操作中的數量及排列問題。

由進行「別跟我相鄰」的遊戲中,產生了進一步 探究、發現、創造及延伸的活動,讓我們學會在遊戲 中找規則,在數字間找關係,在活動中找發現,更在 發現中提出更多的想法及創意;這不僅讓我們學習到 怎樣找出關係、怎樣解題,更讓我們沉浸於探究數學 活動的快樂中,每次有了新的發現,都令人相當與奮; 但我們仍有許多不足之處,期待能再進一步精益求

精,找出更多的规则性;未來我們需要努力的方向如下:

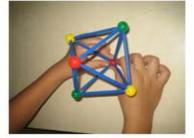
(一)以「axa 環環相扣正方形棋盤」進行「別跟我相鄰」遊戲時,我 們發現當 a 為奇數時,雙方可走的棋數為:

$$(\frac{a-1}{2})(\frac{a+1}{2})+Z(\frac{a+1}{4})$$
 ; 這是我們由對戰的紀錄中,找出的規

則,但我們尚無法解釋為什麼會產生這樣的規則性?我們甚至一度懷疑自己所找到的規則是否能符合邊長較大的棋盤,故我們還嘗試了以19×19環環相扣正方形棋盤進行實際對戰,確立了我們的發現;但如何進一步以圖形來解釋,則是我們仍在努力的方向。

- (二)不論是哪一種棋盤,我們皆以代入法來驗證雙方可走棋數的數學式,所以我們只能確定在有限範圍內數學式的正確性,但之後我們期待能以其他方法來進行驗證,以確立我們所找出的數學式的正確性,這仍有待我們進一步的努力。
- (三)在找出立體圖形各要素間的關係(構成面的形狀:正n邊形、面a、頂點p、邊s)時,我們於數字中發現了p=s-a+2,即p-s+a=2,經縣賽中教授提醒我們這是著名的「尤拉公式」,在經我們上網查詢資料後發現,2即所謂的「尤拉示性數」;但如何運用尤拉示性數,將其與「別跟我相鄰」遊戲結合,運用到非凸多面體則有待我們進一步探究。

這次的活動,我們除了對平面圖形、空間圖形、 數學式更加熟悉之外,對於自己能參與探究,與同學 集思廣益,共同解題、對戰、激發創意及操作,感到 關心,且於活動中,以歸納的方式找出策略,更是讓 人與奮不已。



最後感謝所有在過程中幫助過我們的人,包括那 些與我們玩對戰遊戲及填滿遊戲的人!更期待大家給予我們批評指教或和我們 一起玩遊戲,讓我們更加進步!

參考文獻

- 1. さ.......自己想....^^ (2005): YAHOO!奇摩知識。2008年6月10日,取自 http://tw.knowledge.yahoo.com/question/question?qid=1005012002821。
- 2. 李國賢 (2003):趣味數學·遊戲篇。臺北市:新潮社。
- 3. 陳建隆 (2008):淺談尤拉公式及其應用。2008 年 6 月 10 日,取自 www.math.ncu.edu.tw/math/link/chern/euler.pdf。
- 4. 教育部(2003):國民中小學九年一貫課程綱要—數學學習領域。臺北市:教育部。
- 5. 兼職賺個幾千元也不錯 (2007): YAHOO!奇摩知識。2008 年 3 月 8 日,取自 http://tw.knowledge.yahoo.com/question/question/qid=1607112910445。
- 6. 維基媒體基金會 (2007):維基百科:正多面體。2008年3月10日,取自 http://zh.wikipedia.org/wiki/%E6%AD%A3%E5%A4%9A%E9%9D%A2%E9%AB%94。

附錄

【評語】080409

- 1. 本作品是從遊戲中觀察、分析、驗證,找出必勝的方法, 學生操作熟練,思考敏銳,內容頗富趣味性。
- 2. 學生對於 3 人、4 人與障礙的棋盤,都能提出說明,解釋清楚。