中華民國第四十七屆中小學科學展覽會 作品說明書

高中組 化學科

佳作

040203

轉吧!毛髮溼度計

學校名稱:國立羅東高級中學

作者: 指導老師:

高二 張育慈 李尚諭

高二 游惇蓉 黄雋杰

高二 游舜志

關鍵詞: 毛髮濕度計

壹・摘要:

利用溼度計的轉動,找出影響毛髮長度改變的因素與各種分子有著什麼密不可分的關係,並試著推廣至其他研究實驗中。

貳•研究動機:

高一地科課第六章(大氣的結構與組成)中提到溼度的大小可由毛髮溼度計來測量,其原因是由於毛髮遇水時會有伸長的現象,且會隨著溼度的增加而伸長,進而使指針偏轉測出溼度。但是毛髮遇到水以外的溶劑是否會也會伸長?這點引起我們的興趣,試圖找出其中的關係。

參•目的:

- 一、探討各種氣體分子對毛髮長度的影響。
- 二、探討混合不同種類的氣體對毛髮長度的影響。
- 三、探討混合不同比例甲醇和乙醇對毛髮的影響。
- 四、研究不同濃度乙醇對毛髮之影響
- 五、應用毛髮溼度計測量乙醇濃度。

30 80 80 30 80 30 80 30 80

圖一、市售之毛髮溼度計。

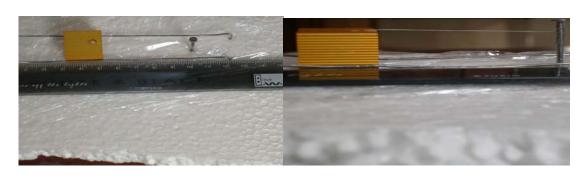
肆•研究設備及器材:

一、器材:

1.毛髮溼度計x3 2.密封膠 3.密封罐x4 4.乾燥劑 5.恆溫箱 6.微量注射管。

二、藥品:

1.甲醇 2.乙醇 3.乙二醇 4.丙三醇 5.丙酮 6.丙醛 7. 正戊烷 8.正己烷 9.水 10.乾燥劑(MgCl₂、CaCl₂、NaOH)



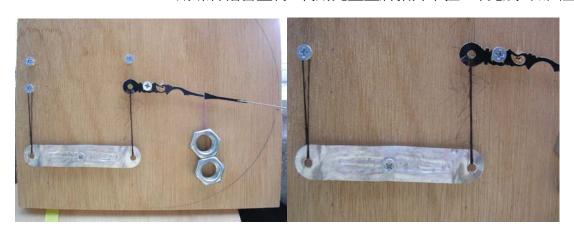
圖二、市售溼度計內之構造。

伍•研究過程或方法:

一、溼度計的製作:

(一)製作(第一代):取一根長度適當的頭髮,以肥皂水洗去頭髮上的油脂,再經 清水漂洗並陰乾後,將頭髮一端固定在木板上方,另一端固定 在鐵片製成的指針中,指針一端固定於木板上,但指針可上下 轉動。在指針旁取等間隔畫上刻度即可使用,如圖三。

圖三、自製毛髮溼度計


缺點:由於保麗龍的摩擦力及毛髮之收縮不易觀察,所以我們製作了第二種溼度計。

(二)製作(第二代):取數根頭髮,因爲長度不夠,所以我們將每一根毛髮都接 起來,再用肥皂水洗去頭髮上的油脂,經清水漂洗並陰乾。 先將兩根圖釘取適當寬度固定於木板,以毛髮來回環繞且 固定於指針上,然後使用螺絲帽當重物,利用此重量將指 針下拉,即完成,如圖四。

圖四、自製毛髮溼度計 缺點:雖然已經可以看見明顯的轉動,但轉動 幅度還是不足已提供實驗用,我們懷疑是毛 髮長度不夠長,所以我們製作了第三種。

(三) 製作(第三代): 這一組是參考毛髮溼度計的裝置。取數根頭髮,因爲長度不夠,所以我們將每一根毛髮都接起來,再以肥皂水洗去頭髮上的油脂,經清水漂洗並陰乾。以鐵片的中點爲支點,將毛髮分別在兩端來回環繞,其中一端固定於指針上,然後使用螺絲帽當重物,利用此重量將指針下拉,即完成,如圖五。

圖五、自製毛髮溼度計

缺點:螺絲帽的重量會使指針扭曲,所以我們製作了第四種。

(四)製作(第四代):取數根頭髮,因爲長度不夠,所以我們將每一根毛髮都接起來,再以肥皂水洗去頭髮上的油脂,經清水漂洗並陰乾。將鐵片固定,於另一端用頭髮來回環繞且連接指針,再將兩根指針相連接(二次放大),把螺絲帽掛於毛髮下方,即完成,如圖六。

圖六、自製毛髮溼度計

二、各種不同氣體對於毛髮長度的影響:

(-)步驟一:利用乾燥劑 $(MgCl_2 \cdot CaCl_2 \cdot NaOH)$ 將密封罐內空氣乾燥。

步驟二:注入藥劑(氨水、丙酮、乙醇、甲醇、甲醛及丙醛)觀察指針是否

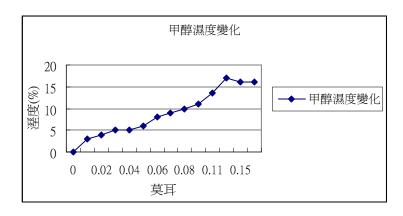
轉動,進而找出影響轉動的因素。(藥劑均先乾燥過)

(二)調配不同濃度之乙醇與水:

步驟一:利用乾燥劑($MgCl_2 \cdot CaCl_2 \cdot NaOH$)將密封罐內空氣乾燥。

步驟二:注入待測藥劑(水及乙醇),觀察指針轉動,找出調配比例與溼度

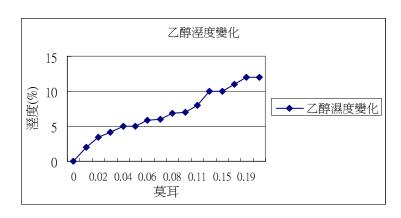
計指數之關係。


陸•研究結果:

一、測量各種不同物質對毛髮溼度計的影響。 *溫度固定在 25 度

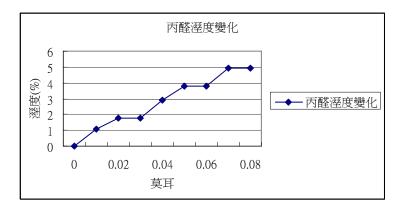
表一

	甲醇													
莫耳	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.11	0.13	0.15	0.17
溼度(%)	13.0	16.0	17.0	18.0	18.0	19.0	21.0	22.0	23.0	24.0	26.5	30.0	29.0	29.0
溼度變化	0.0	3.0	4.0	5.0	5.0	6.0	8.0	9.0	10.0	11.0	13.5	17.0	16.0	16.0


圖七

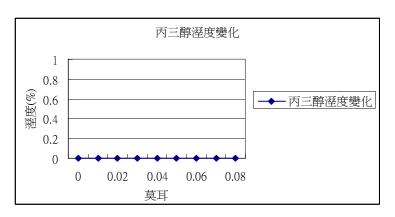
表二

	乙醇															
莫耳	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.11	0.13	0.15	0.17	0.19	0.21
溼度(%)	13.0	15.0	16.5	17.2	18.0	18.0	18.9	19.0	19.9	20.0	21.0	23.0	23.0	24.0	25.0	25.0
溼度變化	0.0	2.0	3.5	4.2	5.0	5.0	5.9	6.0	6.9	7.0	8.0	10.0	10.0	11.0	12.0	12.0


圖八

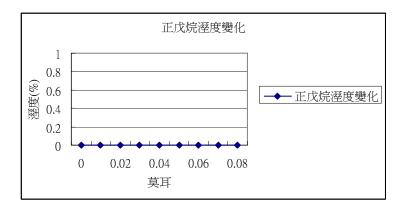
表三

_									
万醛									
莫耳	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08
溼度(%)	13.1	14.2	14.9	14.9	16.0	16.9	16.9	18.0	18.0
溼度變化	0.0	1.1	1.8	1.8	2.9	3.8	3.8	4.9	4.9


圖九

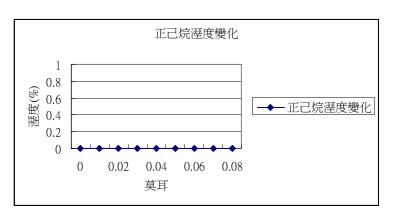
表四

丙三醇									
莫耳	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08
溼度(%)	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
溼度變化	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0


圖十

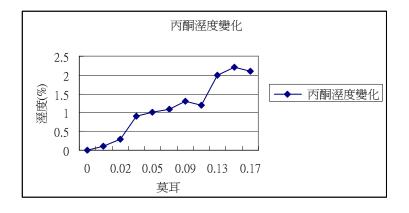
表五

正戊烷									
莫耳	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08
溼度(%)	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1
溼度變化	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0


圖十一

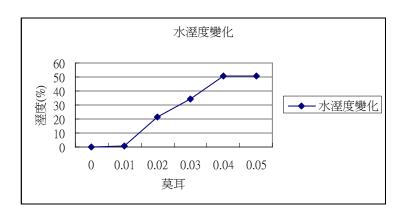
表六

正己烷									
莫耳	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08
溼度(%)	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2
溼度變化	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0


圖十二

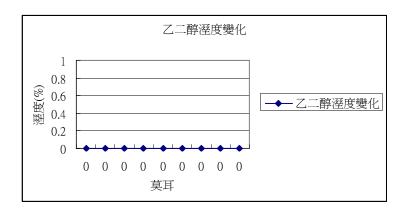
表七

	內酮										
莫耳	0	0.01	0.02	0.03	0.05	0.07	0.09	0.11	0.13	0.15	0.17
溼度(%)	13.0	13.1	13.3	13.9	14.0	14.1	14.3	14.2	15.0	15.3	15.2
濕度變化	0.0	0.1	0.3	0.9	1.0	1.1	1.3	1.2	2.0	2.2	2.1


圖十三

表八

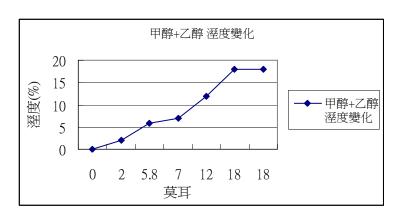
			水			
莫耳	0	0.01	0.02	0.03	0.04	0.05
溼度(%)	13.6	14.2	34.9	48.0	64.0	64.0
溼度變化	0.0	0.6	21.3	34.4	50.4	50.4


圖十四

表九

	乙二醇									
莫耳	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	
溼度(%)	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	
溼度變化	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

圖十五

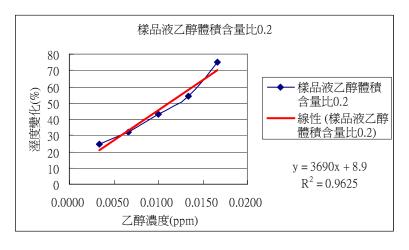

二、調配不同濃度的甲醇+乙醇混合液,找出其比例與溼度變化關係

*溫度固定在25度

表十

甲醇+乙醇 同莫耳混合									
莫耳	0	0.01	0.03	0.05	0.07	0.09	0.11		
溼度(%)	13.0	15.0	18.8	20.0	25.0	31.0	31.0		
溼度變化	0.0	2.0	5.8	7.0	12.0	18.0	18.0		

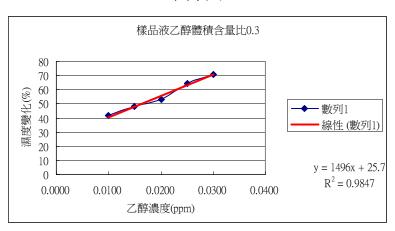
圖十六



三、乙醇和水不同濃度之溼度變化

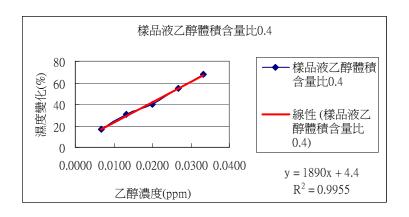
表十一

乙醇濃度(ppm)	濕度變化
0.0033	24.6
0.0067	32.1
0.0100	43.1
0.0133	54.1
0.0167	75.1


圖十七

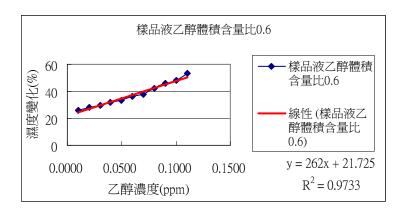
表十二

乙醇濃度(ppm)	濕度變化
0.0100	41.7
0.0150	48.1
0.0200	53.1
0.0250	64.1
0.0300	71.1


圖十八

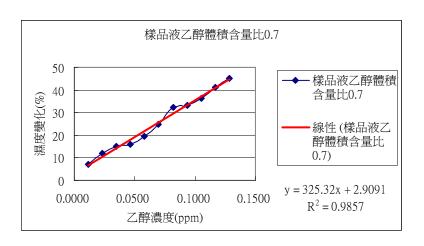
表十三

乙醇濃度(ppm)	濕度變化
0.0067	17
0.0133	31
0.0200	40
0.0267	55
0.0333	68


圖十九

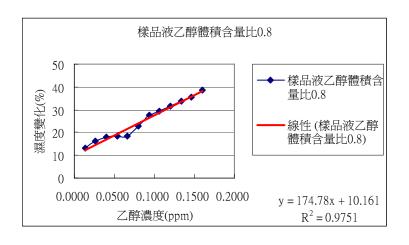
表十四

乙醇濃度(ppm)	濕度變化
0.0100	26
0.0200	28
0.0300	30
0.0400	31.9
0.0500	33
0.0600	36
0.0700	38
0.0800	42
0.0900	46
0.1000	48
0.1100	53


圖二十

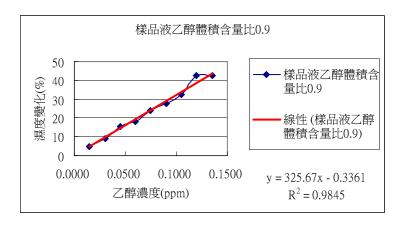
表十五

乙醇濃度(ppm)	濕度變化
0.0117	7
0.0233	12
0.0350	15
0.0467	16
0.0583	19.5
0.0700	25
0.0817	32.5
0.0933	33
0.1050	36.5
0.1167	41
0.1283	45


圖二十一

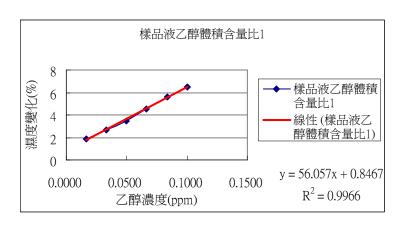
表十六

乙醇濃度(ppm)	濕度變化
0.0133	13.1
0.0267	16.4
0.0400	18
0.0533	18.4
0.0667	18.6
0.0800	22.6
0.0933	27.6
0.1067	29.6
0.1200	31.6
0.1333	33.6
0.1467	35.6
0.1600	38.6


圖二十二

表十七

乙醇濃度(ppm)	濕度變化
0.0150	5
0.0300	9.3
0.0450	15.5
0.0600	18
0.0750	24
0.0900	27.5
0.1050	32.5
0.1200	42.5
0.1350	42.5


圖二十三

表十八

乙醇濃度(ppm)	濕度變化
0.0167	1.9
0.0333	2.7
0.0500	3.5
0.0667	4.5
0.0833	5.6
0.1000	6.5

圖二十四

柒·討論:

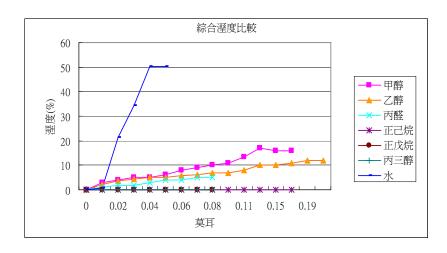
一、我們發現乙二醇、正己烷、正戊烷及丙三醇皆不轉動(見表九、六、五及四與 圖十五、十二、十一及十),因此我們由分子結構及分子間作用大小分析如下:

(一) 溼度計的轉動與是否形成氫鍵有關:

我們發現只要能形成氫鍵的物質即可和毛髮結合,使其長度變長,如甲醇、乙醇、丙酮、丙醛等。而正戊烷,正乙烷無法與它物形成氫鍵的物質,則不影響毛髮的長度,毛髮溼度計亦不會偏轉。

(二) 溼度計的轉動與引力大小是否有關:

甲醇和乙醇皆可使毛髮長度變長,但爲何乙二醇,丙三醇卻不可以,我們推測因其分子間引力較大,沸點高(分別爲 197.2 度、270 度 C),較不易揮發,故不影響毛髮之結構,但我們將毛髮溼度計直接置於乙二醇液中,就馬上指針偏轉,即證明我們的推論。


(三)再由分子結構分析如下:

甲醇對於毛髮長度的影響大於乙醇,我們認爲是因爲乙醇含有乙基相較於 甲醇中的甲基,乙醇的非極性部分占分子整體比例較大,和毛髮之結合力 較小,結合之數量也較少,因此對於毛髮本身蛋白質鏈上的氫鍵取代的數 量較少,故毛髮伸長量較小。

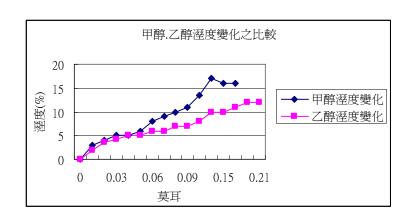
表十九

	綜合濕度差比較														
莫耳	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.11	0.13			
甲醇	0.0	3.0	4.0	5.0	5.0	6.0	8.0	9.0	10.0	11.0	13.5	17.0			
乙醇	0.0	2.0	3.5	4.2	5.0	5.0	5.9	6.0	6.9	7.0	8.0	10.0			
丙醛	0.0	1.1	1.8	1.8	2.9	3.8	3.8	4.9	4.9						
正己烷	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
正戊烷	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
丙三醇	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
水	0.0	0.6	21.3	34.4	50.4	50.4									

圖二十五

三、乙醇和水不同濃度之線性關係:

乙醇及水之混合比例的樣本中,溼度變化量與乙醇濃度皆有線性關係(如 表十一至表十八及圖十一至圖十八),由此我們可以從溼度變化量找出乙 醇濃度,將來可應用於酒測。


四、甲醇及乙醇不同濃度變化之關係:

只要甲醇的量增加,溼度計的指數也會隨之增加,由此我們混合將甲醇、 乙醇以不同比例混合,依序注入毛髮溼度計檢測裝置,不同濃度做出其線性 關係,以檢測假酒,但由實驗結果發現(如表一、表二與圖一、圖二),甲醇、 乙醇之溼度變化相近,則無法做出不同濃度對濕度變化之影響。

表二十一

甲醇.乙醇溼度變化之比較																
莫耳	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.11	0.13	0.15	0.17	0.19	0.21
甲醇溼度變化	0.0	3.0	4.0	5.0	5.0	6.0	8.0	9.0	10.0	11.0	13.5	17.0	16.0	16.0		
乙醇溼度變化	0.0	2.0	3.5	4.2	5.0	5.0	5.9	6.0	6.9	7.0	8.0	10.0	10.0	11.0	12.0	12.0

圖二十七

捌•結論:

一、影響溼度計的轉動之主要因素:

- (一)液體分子須能和蛋白質形成氫鍵,如醇、醛、酮等。
- (二)分子之非極性部分占分子整體比例較大,和毛髮之結合力較小,結合之數 量也較少。
- (三)分子間引力小(物質的黏度較小),越易揮發,溼度計越易轉動。因爲容易揮發可以使毛髮溼度計越易結合而轉動。
- 二、藉由乙醇及水之線性關係,進而推廣應用至簡易之酒測裝置。

玖 • 研究心得:

在這次實驗中,我們藉由甲醇與乙醇混合的比例,找出使溼度計轉動的關係, 使我們學習到做實驗必須要夠細心,更需要具備足夠的耐心!因爲我們要調配溶 液的比例,還要定時觀察溼度的變化。長期實驗用的密封罐,以及注射藥劑用 的針頭,裡面都珍藏了我們的心血,雖然我們沒有能力與時間一一探索每種試 劑的化學反應,但我們已深刻的體驗到,化學變化之美!

拾•參考資料:

- 一、蔣丙然一應用氣象學上冊一台灣商務印書館—p58~p164—41.7.21
- 二、高源清—科學教授—故鄉出版社—p30~p31—70.9.10
- 三、杜逸虹—物理化學—三民書局印行—P.95-P.101

【評語】 040203 轉吧!毛髮溼度計

研究主題創新,自製毛髮溼度計頗爲用心,若能對毛髮遇水及不同溶劑伸長現象的原因進一步探討,作品將會更完整。