中華民國第四十七屆中小學科學展覽會

作品說明書

高中組 化學科

040202

電子流動的真相

學校名稱:國立桃園高級中學

作者:	指導老師:
高二 林旅安	劉安強
高二 江建衡	曾友利
高二 楊士賢	
高一 余玉娟	

關鍵詞: <u>氫氣</u> 電子傳導 反應速率

題 目 : 電 子 流 動 的 真 相

壹、 摘要

單獨將銅片放在酸性的電解質溶液中,不會產生氫氣,但若我們把本身在酸性溶液中 會產生氫氣的金屬與銅片接觸,兩端都會產生氫氣,例如:鋅片與銅接觸後,除了鋅片上 本來就會產生氫氣外,銅片上也會產生氫氣,這證明鋅銅片間有電子傳遞,比較鋅片與銅 片產生的氫氣體積,推算出鋅銅片間電子傳遞的比例,討論不同變因造成的影響。經由這 個實驗,我們得知更好的方法詮釋陰極保護法,另一方面,也能延伸至如何得到一個有更 高效能的電池,或是發展出不需外加電壓的電鍍(浸鍍)技術。

貳、 研究動機

在化學課程-能源與化學中,有一節討論常見的化學電池,並進行化學電池(鋅銅電池) 的實驗課,實驗中有一步驟是將鋅片、銅片各單獨放入1M的硫酸水溶液,發現只有鋅片 產生出氣泡,如果將鋅片、銅片重疊,發現有部分的氣體轉而在銅片端冒出,其示意圖如 下:

這讓我們感到好奇,便試著翻閱相關資料,但都沒有明確的說明,有的甚至與實驗所 得到的結果相違背,在老師的鼓勵下,我們便探討兩不同金屬片(例如:Zn+Cu)互相接觸 產生的氣泡量多寡會受到什麼因素的影響?氣泡的總產量在不同的條件下又會有什麼不 同?我們與老師研討後,找出一些可能有影響的變因,諸如:改變酸性電解質溶液濃度(例 如:硫酸水溶液、不同溫度、金屬片間不同的緊密度、放入不同的酸性電解質溶液、不同 的金屬片組合、改變鹼性電解質溶液濃度、相同濃度的酸性電解質溶液與鹼性電解質溶液 等等。並自製實驗裝置,使它能夠分別收集到鋅片與銅片端的氫氣,進行探討、做出結論。

参、 研究目的

- 一、 瞭解改變電子傳遞效率的因素。
- 二、 瞭解改變反應速率因素。
- 三、 印證上課所學的知識。
- 四、 修正坊間參考書之錯誤敘述。
- 五、 設計發展「未來展望的新電池」。
- 六、 以簡單實用的裝置分別收集鋅片及銅片上產生的氫氣

肆、 實驗原理

- 一、 鋅為兩性金屬,將鋅片放入酸性溶液或強鹼溶液中會反應產生氫氣,其相關化學反應方程式如下式 a、b,由式中得知產生氫氣是因爲鋅被氧化而失去電子,溶液中的氫離子得到電子後還原成氫氣,因爲金屬爲導體,若將銅片與鋅片重疊,會有部分電子傳導到銅片上,因而產生氫氣。
- 二、 鋁也是兩性金屬,若我們將上列敘述中鋅片改為鋁片,鋁片也能在酸性溶液或強鹼 溶液中產生氫氣,其相關的化學反應方程式如下式 c、d,由式中能得知鋁片跟鋅片 反應相同,都會失去電子,溶液中的氫離子得到電子還原成氫氣,而鋁也是導電性 良好的金屬,所以將銅片與鋁片重疊,也會有部分電子傳導到銅片,而產生氫氣。
 - a. 鋅片與稀酸(例如:HCl、H₂SO₄)化學反應方程式: 陽極:Zn→Zn²⁺+2 e⁻ 陰極:2H⁺+2e⁻→H₂↑

全反應: $Zn+2H^+$ → $Zn^{2+}+H_2$ ↑

b. 鋅片與強鹼(例如:KOH、NaOH)化學反應方程式:
 陽極:Zn+4OH⁻→Zn(OH)4²⁻+2e⁻
 陰極:2H2O+2e⁻→H2+2OH⁻

全反應:Zn+2OH⁻+2H₂O→Zn(OH)₄²⁻+H₂↑

- H₂SO₄溶液 H₂SO₄溶液 H^{*} SO₄²⁻
 H^{*} H^{*} SO₄²⁻
 H^{*} H^{*} SO₄²⁻ SO₄
- c. 鋁片與稀酸(例如:HCl、H₂SO₄)化學反應方程式: 陽極:2Al→2Al³⁺+6e⁻
 陰極:6H⁺+6e⁻→3H₂ ↑

全反應:2A1+6H⁺→2A1³⁺+3H₂↑

d. 鋁片與強鹼(例如:KOH、NaOH)化學反應方程式:
 陽極:2A1+8OH⁻→2Al(OH)₄⁻+6e⁻
 陰極:6H₂O+6e⁻→3H₂+6OH⁻

全反應:2A1+2OH⁻+6H₂O→2A1(OH)₄⁻+3H₂↑

e.理想氣體方程式:

 $P \equiv V = nRT$

$$\mathbf{P}_{\text{figs}} = \mathbf{P}_{\text{figs}} - \mathbf{P}_{\text{figs}}^{\circ} \times \mathbf{X}_{\text{figs}} - \mathbf{P}_{\text{figs}}^{\circ}$$

(壓力的計算需以排水集氣法公式計算,並同時考慮水的飽和蒸氣壓因電解質水溶 液所造成的下降)

三、 經由我們自製的實驗裝置,利用排水集氣法可以個別收集鋅片與銅片上所產生的氣 氣,並記錄產生的氣氣體積。若假設氣氣是理想氣體,將實驗測得的氣氣體積、溫 度、壓力(將壓力修正後),代入理想氣體方程式,如上式 e,可得到氫氣莫耳數, 利用氫離子加電子產生氫氣的反應方程式推算電子莫耳數,藉此可計算出電子傳導 到銅片的比例。在此我們定義:

平均電子傳導效率(π_{av}) = 金屬片上平均電子反應速率 ×100%

進而探討不同變因下對 # , 的影響。 四、 日常生活中用的電池的導電過程, 就是一種電子的傳導,因此 瞬間電子傳導的效率(π)越高, 過程中所損耗掉的能量越少,就較有效率。

平均總電子反應速率

伍、 研究設備與器材

-、 一般器材: 自製器材 A、B、C 絕緣膠帶3捲 剪刀 砂紙 碼表 鑷子 螺絲、螺帽4組 螺絲起子 尖嘴鉗 油性筆 溫度計1支 玻棒1支

恆溫槽1台 1000mL 燒杯 3 個 塑膠直尺一把

二、 金屬片:

鋅片(1.5cm×1.5cm×0.05cm) 20 片 銅片(1.5cm×1.5cm×0.05cm) 5 片 鋁片(1.5cm×1.5cm×0.05cm) 10 片

三、 實驗藥品: 硫酸: 0.5、1、2、3、4M 各 500mL 鹽酸: 2M 500mL 氫氧化鉀: 1、2、3、4M 各 500mL

陸、 研究過程

一、 研究過程

(一) 自製實驗器材目的

本實驗過程最困難測量之處在於:

- 1.同時分別收集鋅片與銅片上產生的氫氣。
- 2.鋅片上產生的氫氣量明顯多於銅片,讓鋅片與銅片上都有明顯的體積變化可衡 量。
- 3.裝置的過程快速又準確。
- (二) 自製器材的演進
 - 第一號實驗裝置圖:

缺點:

- 1.兩金屬片面積難以固定。
- 2.兩金屬片接觸緊密度不佳。
- 3.針筒常位移,難以固定位置。
- 容器體積太小,對於鋅片產生氫氣的速率 過快難以收集。

第二號實驗裝置圖:

缺點:

- 1.以金屬夾來固定金屬片不容易。
- 2.金屬片接觸不夠緊密。
- 3.當鋅片被硫酸腐蝕完畢後,硫酸將會 自腐蝕處滲漏出。

第三號實驗裝置圖:

缺點:

1.100mL 之量筒刻度太大,難以判讀銅片端 產生的少量氫氣。

第四號實驗裝置圖:

缺點:

1.塑膠接管部分常有氣泡阻塞的問題。

2.以針筒來量測銅片產生的氫氣體積不易觀察。

第五號實驗裝置圖:

特色:

1.可固定金屬片面積。

- 2.可以使金屬片緊密接觸,且每次實驗都維持 相同接觸緊密度。
- 3.材料簡單且不需使用任何黏著劑於金屬片間。

第三號

第五號 鋅銅組器材

第四號

第六號 鋁銅組器材

二、 實驗步驟

(一) 不同濃度的酸性電解質溶液

1.取銅、鋅片各一,用細砂紙磨亮後,以去離子水沖洗並以氮氣吹乾(如下圖所示)。

2.將金屬片置於裝置上,並將螺絲鎖至固定位置。3.將 2M 的硫酸置入裝置中,以排水集氣法收集並記錄兩方產生氫氣的體積。

4.將濃度改變,重複步驟1~步驟3。

5.將實驗變因分別改為溫度、緊密度、不同酸溶液、不同金屬片、鋁片一銅片溶於強鹼溶液,重複步驟1~步驟3。

裝置實驗中

實驗進行中01

實驗進行中02

反應後鋅銅片

- **柒**、 研究結果與討論
 - 一、 不同濃度的酸性電解質溶液
 - (一)研究結果與數據處理

金屬片:鋅片+銅片 電解質溶液:硫酸水溶液 溫度:18℃

圖 1-1

圖 1-2

			X I				
硫酸濃度	0.5 M (D = 1.03)		1.0 M (D) = 1.06)	2.0 M (D = 1.12)		
實驗結果	鋅片	銅片	鋅片	銅片	鋅片	銅片	
電子莫耳數	9.71×10^{-5}	2.66×10^{-5}	6.08×10^{-4}	6.06×10^{-5}	2.19×10^{-3}	1.11×10^{-4}	
時 間	300)秒	300	1秒	300)秒	
電子反應平均速率	1.94×10^{-5}	5.33×10^{-6}	1.22×10^{-4}	1.21×10^{-5}	4.73×10^{-4}	2.22×10^{-5}	
電子反應總速率	2.47>	2.47×10^{-5} 1.34×10^{-4}		$< 10^{-4}$	4.95>	$< 10^{-4}$	
電子反應百分比	78.46 %	21.54 %	90.94 %	9.06 %	95.52 %	4.48 %	
硫酸濃度	3.0M (D	= 1.16)	4.0 M (D) = 1.20)			
實驗結果	鋅片	銅片	鋅片	銅片			
電子莫耳數	2.85×10^{-3}	7.28×10^{-5}	4.66×10^{-3}	8.10×10^{-5}			
時 間	180)秒	180	1秒			
電子反應平均速率	9.51×10^{-4}	2.42×10^{-5}	1.55×10^{-3}	2.7×10^{-5}			
電子反應總速率	9.75>	$< 10^{-4}$	1.58>	1.58×10^{-3}			
電子反應百分比	97.52 %	2.48 %	98.29 %	1.71 %			

表1

- (二) 討論
 - 1.從表1,硫酸濃度越高,總速率上升。推測硫酸濃度提高,氫離子的分佈密度 變大,鋅產生的電子與氫離子接觸的機會增加,因此平均反應速率變大。

2.鋅在反應中因腐蝕而增大鋅的表面積,使溶液中的氫離子與電子接觸的機會增加,平均電子反應速率變快。而銅不會被腐蝕,因此銅的表面積不變。但因鋅的表面積增加,有較多的電子在鋅上反應。

3.當濃度增加,鋅上單位時間腐蝕造成表面積增大的情形會更顯著,如表1,若 比較不同濃度的*π*_{av},會發現更明顯的下降趨勢。

4.從表1,觀察當鋅-銅接觸放入不同濃度的硫酸中,大部分的氫氣產生在鋅上。

二、 不同溫度

(一) 研究結果與數據處理

金屬片:鋅片+銅片 電解質溶液:2M 硫酸水溶液 溫度:18℃、30℃、45℃、60℃

啚

圖 2-1

圖 2-2

表2 不同溫度下的實驗結果

硫酸溫度	18	S°C	30	°C	45°C		60°C		
實驗結果	鋅片	銅片	鋅片	銅片	鋅片	銅片	鋅片	銅片	
電子莫耳數	2.19×10^{-3}	1.11×10^{-4}	1.83×10^{-3}	5.70×10 ⁻⁵	2.42×10^{-3}	6.87×10 ⁻⁵	3.52×10^{-3}	9.27×10 ⁻⁵	
時間	300)秒	100	秒	100	100 秒		100 秒	
電子反應平均速率	4.73×10^{-4}	2.22×10^{-5}	1.10×10^{-3}	3.42×10^{-5}	1.45×10^{-3}	4.12×10^{-5}	2.11×10 ⁻³	5.56×10 ⁻⁵	
電子反應總速率	4.95>	$\times 10^{-4}$	1.13×10 ⁻³		1.49×10^{-3}		2.17×10^{-3}		
電子反應百分比	95.52 %	4.48 %	96.98 %	3.02 %	97.24 %	2.76 %	97.43 %	2.57 %	

1.在鋅上、銅上平均電子反應速率與平均總電子反應速率,都隨溫度上升而增加, 可由高二下化學反應速率章節加以解釋,如下:

因反應物隨溫度上升,平均動能提升(E^K∝T(K)),超過低限能的分子數增加,碰 撞的頻率變大,所以反應速率變大。

- 2.圖 2-1、圖 2-2 得知溫度越高,反應速率越快且劇烈,曲線較不規則。
- 3.隨著溫度上升,反應速率變快,鋅在硫酸電解質中腐蝕速度增快,表面積因而 變大,有較多電子在鋅上與溶液中的氫離子反應產生氫氣,使較少比例的電子 傳導到銅上再進行反應,因此當溫度越高,πav會變得越小。
- 三、 不同的緊密程度
 - (一)研究結果與數據處理
 金屬片: 鋅片+銅片
 電解質溶液: 2.0M 硫酸水溶液
 溫度: 18℃

圖 3-1

圖 3-2

	,
া বহু া)

緊密度	鎖至	最緊	上調一	個螺距	上調二個螺距		
實驗結果		銅片	鋅片	銅片	鋅片	銅片	
電子莫耳數	2.19×10^{-3}	1.11×10^{-4}	3.09×10^{-3}	9.22×10^{-5}	3.50×10^{-3}	8.89×10^{-5}	
時 間	f 間 300 秒		300	1秒	300 秒		
電子反應平均速率	4.73×10^{-4}	2.22×10^{-5}	6.19×10^{-4}	1.84×10^{-5}	7.0×10^{-4}	1.78×10^{-5}	
電子反應總速率 4.95×10 ⁻⁴		$\times 10^{-4}$	0^{-4} 6.37×10 ⁻⁴		7.18>	$< 10^{-4}$	
電子反應百分比	95.52 %	4.48 %	97.11 %	2.89 %	97.52%	2.48 %	

- 1.當螺絲調鬆,鋅上平均電子反應速率增加,銅則反之,而π_{av}會降低,故反應速 率增大,傳導到銅上的比例變少,反應速率減少。
- 2.平均總電子反應速率隨緊密度下降而變大,推測:
 - (1)緊密度下降,傳遞電子數目下降,則傳遞電子所損失的電子也變少,因此總 電子反應速率變大。
 - (2) 非匀相反應導致鋅的表面積變大,反應更劇烈。另一方面,因緊密度下降, 傳遞電子的數目會下降,導致在鋅表面與氫離子反應的機會提高,促使鋅上 電子反應速率明顯增加,得知總反應速率隨緊密度下降而增大。

四、 不同的酸性電解質溶液

(一)研究結果與數據處理 金屬片: 鋅片+銅片 電解質溶液: 2.0M 硫酸水溶液、2.0M 鹽酸水溶液

溫度:18℃

圖 4-1

圖 4-2

	- 1
	/1
	4
~1~	
~ ~	-

電解質溶液	硫酸	(2M)	鹽酸(2M,	D = 1.028)		
實驗結果	鋅片	銅片	鋅片	銅片		
電子莫耳數	2.19×10^{-3}	1.11×10^{-4}	1.04×10^{-3}	9.3×10^{-5}		
時 間	時間 300秒			300 秒		
電子反應平均速率	4.73×10^{-4}	2.22×10^{-5}	2.08×10^{-4}	1.86×10^{-5}		
電子反應總速率	4.95×10^{-4}		2.27>	$\times 10^{-4}$		
電子反應百分比	95.52 %	4.48 %	91.83 %	8.17 %		

1.有關的化學反應方程式:

- (1) $Zn+H_2SO_4 \rightarrow Zn^{2+}+SO_4^{2-}+H_2 \uparrow$
- (2) $H_2SO_4 + SO_4^{2-} \Box 2HSO_4^{-}$
- (3) $Zn+2HCl \rightarrow Zn^{2+}+2Cl^{-}+H_2 \uparrow$

2.鹽酸酸度較硫酸稍強,但實驗中鹽酸溶解鋅的速率並未比硫酸快。可能是因硫酸為二質子酸,其第一階段解離為完全解離:H₂SO₄→HSO₄⁻⁺+H⁺,故解離出約 2M 的氫離子。但HSO₄⁻仍可解離:HSO₄⁻→SO₄⁻²+H⁺,由於大部分氫離子與鋅反應使得氫離子濃度降低,根據勒沙特列原理,反應將向右進行並釋放出更多的氫離子,使反應速率加快。另外,我們認為不同的酸溶液有不同的陰離子,而這些陰離子對於鋅的溶解也可能有不同的影響。

五、 不同的金屬片組合

(一)研究結果與數據處理
 金屬片:鋅片+銅片
 銘片+銅片
 電解質溶液:2M 鹽酸水溶液
 溫度:18℃

圖 5-1

_	/ /1	
	```	
	<u> </u>	
18		
~L~	~ ~	
~ ~		

金屬片	鋅-	銅片	鋁-銅片		
實驗結果	鋅片	銅片	鋁片	銅片	
電子莫耳數	1.04×10^{-3}	9.3×10^{-5}	5.25×10^{-5}	2.91×10^{-5}	
時 間	時間 300秒		300 秒		
電子反應平均速率	2.08×10^{-4}	1.86×10^{-5}	1.05×10^{-5}	5.81×10^{-6}	
電子反應總速率	2.27×10^{-4}		1.63>	<10 ⁻⁵	
電子反應百分比	91.83 %	8.17 %	64.38 %	35.62 %	

- 1.氧化還原反應章節中有提到,金屬失去電子的能力:鋁>鋅,所以預料鋁-銅片 比鋅-銅片會有較多電子傳導到銅片上。
- 2.鋅上的電子反應速率增快,銅上則趨於平緩。而觀察鋁-銅片上曲線的變化,鋁 片上瞬間電子反應速率變化不大,可能因氧化鋁薄膜而阻礙了鋁上電子與氫離 子反應,故鋁-銅片上反應速率較鋅-銅片上慢。

- 六、 不同濃度的鹼性電解質溶液
 - (一)研究結果與數據處理
 金屬片: 鋁片+銅片
 電解質溶液:氫氧化鉀水溶液
 溫度:18℃

圖 6-1

圖 6-2

表 6-3

5								
KOH 濃度	1.0 M (D:	= 1.041)	2.0 M (D	= 1.077)	3.0 M (D	= 1.108)	4.0 M (D	= 1.143)
實驗結果	鋁片	銅片	鋁片	銅片	鋁片	銅片	鋁片	銅片
電子莫耳數	6.30×10^{-5}	2.02×10^{-5}	1.05×10^{-4}	2.26×10^{-5}	1.78×10^{-4}	2.66×10^{-5}	3.23×10^{-4}	3.22×10^{-5}
時 間	300	秒	300)秒	300)秒	300	秒
電 子 反 應 平 均 速 率	1.26×10 ⁻⁵	4.04×10^{-6}	2.10×10 ⁻⁵	4.52×10 ⁻⁶	3.55×10 ⁻⁵	5.32×10 ⁻⁶	6.47×10 ⁻⁵	6.45×10 ⁻⁶
電子反應總速率	1.66x	10^{-5}	2.55>	$< 10^{-5}$	4.08	$\times 10^{-5}$	7.12×	(10^{-5})
電子反應百分比	75.72 %	24.28 %	82.29 %	17.71 %	86.97 %	13.03 %	90.93 %	9.07 %

- 1.隨濃度增加,鋁、銅上平均總電子反應速率變大,反應速率也會增加,與高二 下化學反應速率所學符合:濃度與速率有正向關係。
- 2.實驗曲線隨時間增加,瞬間電子反應速率變化不大,主要是因鋁片表面的氧化 層保護,接觸表面積變化不大所致。
- 3.雖有氧化鋁薄膜,在反應過程中鋁表面仍因侵蝕而增加表面積,故大多電子在 鋁片反應,隨著氫氧化鉀濃度的增加, *π*_{av}會下降。

- 七、 相同濃度的酸性電解質溶液與鹼性電解質溶液
 - (一)研究結果與數據處理

金屬片: 鋁片+銅片 電解質溶液:2M 氫氧化鉀水溶液、2M 氯化氫水溶液 溫度:18℃

圖 7-1

圖 7-2

表7

電解質溶液	鹽酸	(2M)	氫氧化鉀(2M)			
實驗結果	鋁片	銅片	鋁片	銅片		
電子莫耳數	5.25×10^{-5}	2.91×10^{-5}	1.05×10^{-4}	2.26×10^{-5}		
時 間	間 300秒			300 秒		
電子反應平均速率	1.05×10^{-5}	5.81×10^{-6}	2.10×10^{-5}	4.52×10^{-6}		
電子反應總速率	1.63×10^{-5}		2.55>	×10 ⁻⁵		
電子反應百分比	64.38 %	35.62 %	82.29 %	17.71 %		

 $1.2Al+6HCl \rightarrow 2AlCl_3+3H_2$

 $2Al+2KOH+6H_2O \rightarrow 2KAl(OH)_4+3H_2$

2.發現 Al-Cu 在 2M KOH 中平均電子反應速率較在 2M HCl 中快,可知 Al 在鹼中 反應會較為迅速。

捌、 綜合討論

- 一、選用硫酸為主要酸性電解質之因:硫酸、鹽酸存量較多,會以硫酸為主而不用鹽酸, 是因實驗初發現鋅在硫酸中生成氫氣較多,利於觀察。
- 二、 由於銅在強酸中會反應,我們先將銅放入 4M 硫酸觀察,確定銅不會反應。

- 三、 鋅為兩性金屬,本來應用鋅銅組合,進行不同氫氧化鉀濃度間的比較,但將鋅在氫 氧化鉀中反應極慢,氫氣量很少,無法做精確的比較,故選用活性較大的鋁片進行 實驗。
- 四、 鋁在鹽酸中的反應較硫酸中快,選用鹽酸溶液當電解質,較易觀察氫氣變化。
- 五、 探討誤差來源:
 - (一) 氫氣非理想氣體。
 - (二) 反應的過程中可能會有一些電子損失沒有反應成氫氣。
 - (三) 人為誤差。

玖、 結論

- 一、硫酸濃度越高,鋅及銅端產生氫氣速率越快,平均消耗電子莫耳數越多,但電子轉 移至銅的比例減少。
- 二、溫度越高,實驗所需時間越短,同時鋅上及銅上產生氫氣速率越快,平均消耗電子 莫耳數也越多,但是電子轉移至銅的比例相對減少。
- 三、 鋅及銅接觸越緊密,電子傳遞至銅的比例越高,但相對的會使鋅溶解於硫酸的速率 減慢,產生氫氣的速率及平均消耗電子莫耳數減少。
- 四、 鋅溶於不同的酸電解質溶液中的速率不同,其原因非與酸強度成正比。
- 五、不同的金屬片與銅相接觸並溶於酸溶液當中,產生氫氣的速率不同,若金屬腐蝕越快,則氫氣產生越快,電子轉移至銅的比例越小。比較鋁+銅與鋅+銅溶於鹽酸後發現,鋅溶於鹽酸產生氫氣的速率比鋁快,但電子傳遞至銅的比例則是鋁高於鋅。
- 六、將鋁與銅接觸後置於不同濃度的氫氧化鉀溶液中,濃度越高,鋁及銅上產生氫氣的 速率越快,平均消耗電子莫耳數也越多,但電子轉移至銅的比例相對減少。 將鋁與銅接觸後分別置於等濃度的鹽酸及氫氧化鉀中,鋁上產生氫氣的速率以氫氧 化鉀容易較快。電子由鋁傳遞至銅的比例則爲鹽酸大於氫氧化鉀。
- 七、 不論是鋅+銅或鋁+銅浸於強酸或強鹼溶液中,我們發現大多的氫氣都產生在活性大 的金屬片上。

自製實驗裝置簡單、方便且成本低,並可控制金屬片接觸緊密度,極適合用來研究 金屬腐蝕現象及金屬片接觸後的電子傳遞現象,更可用來作爲教學上的示範教具。

壹拾、未來展望

在這個實驗中我們明瞭許多會影響到電子傳遞的因素,當然也還有其他變因值得我們 深入討論,在近程目標是希望可以再設計出一些方法、器材來討論各項變因。尤其現在隨 身攜帶的電子產品日新月異,能使用的功能越來越多,而提供電力的電池品質要求也跟著 提高,電池基本上就是一種氧化還原,由陽極失去電子,陰極得到電子。之間的轉換牽涉 到電子轉移效率,如果轉移的好,那電能就不浪費,電力使用時間也能延長,故我們在遠 程目標上,希望能藉由實驗測試,找出最好的電池電子轉移方式,進而得到更好、更適合 現在這種多功能電子產品的現代化電池。 鋅最大的用途乃在於鋼鐵製品的防銹用途,因其氧化電位較大,故將鋅鍍於其他金屬 (氧化電位小於鋅)的表面上,則鋅會先代替氧化電位較鋅小的金屬發生腐蝕(氧化)現象, 故鋅又稱爲犧牲鍍層。當鋅被腐蝕時,一部分的電子會在鋅表面發生反應,而另一部分則 會傳遞至氧化電位小的金屬上,阻止此金屬發生氧化反應。此外,也可在欲保護的金屬(例 如鋼)上以導線連接一氧化電位大的金屬(例如鎂),使活性大的金屬成爲"犧牲性陽極", 而欲保護的金屬則成爲陰極,即爲"陰極保護法"。(如下圖(A))

本研究主要是探討兩金屬片相接觸後電子傳遞的現象,恰可將其延伸以鋅或鋁爲犧牲 陽極的陰極保護法在酸性及鹼性環境下的防護能力。(如下圖(B)所示,地下鋼管在不同鹽 分下產生電池反應而造成鋼鐵腐蝕現象)。

壹拾壹、參考資料及其他

- 一、 參考資料
 - (一) 高一基礎化學(泰宇出版)
 - (二) 高二物質科學化學篇上、下冊(康熹文化)
 - (三) 高三化學下冊(康熹文化)
 - (四) FUNDAMENTALS OF ANALYTICAL CHEMISTRY ISE 第八版 (作者:SKOOG | WEST | HOLLER | CROUCH)
 - (五) GENERAL CHEMISTRY AN INTEGRATED APPROACH 第三版 (作者:HILL PETRUCCI)
 - (六) <u>http://engine.cqvip.com/content/l/80709x/2002/000/004/jy02_13_6167289.pdf</u>
 (鋁片與鹽酸與硫酸溶液中之比較相關文章)

二、其他

(一) 不同溫度飽和水蒸汽壓表 (資料來源:康熙文化)							
t(°C)	P(mmHg)	t(°C)	P(mmHg)	t(°C)	P(mmHg)	t(°C)	P(mmHg)
0	4.58	21	18.65	35	42.2	92	567.0
5	6.54	22	19.83	40	55.3	94	610.9
10	9.21	23	21.07	45	71.9	96	657.6
12	10.52	24	22.38	50	92.5	98	707.3
14	11.99	25	23.76	55	118.0	100	760.0
16	13.63	26	25.21	60	149.4	102	815.9
17	14.53	27	26.74	65	187.5	104	875.1
18	15.48	28	28.35	70	233.7	106	937.9
19	16.48	29	30.04	80	355.1	108	1004.4
20	17.54	30	31.82	90	525.8	110	1074.6

(二) 本研究中所需使用之標準電位: (資料來源:龍騰版化學(下)教科書)

反應物	氧化反應	標準氧化電位(V)
Al	$Al \rightarrow Al^{3+} + 3e^{-} (0.01 \text{ M NaOH})$	1.71
Zn	$Zn \rightarrow Zn^{2+} + 2e^{-}$	0.76
	$Zn + 4OH^- \rightarrow ZnO_2^- + 2H_2O + 2e^-$	1.22
Fe	$Fe \rightarrow Fe^{2+} + 2e^{-}$	0.44
Ni	$Ni \rightarrow Ni^{2+} + 2e^{-}$	0.23
Sn	$\mathrm{Sn} \rightarrow \mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	0.14
Cu	$Cu \rightarrow Cu^{2+} + 2e^{-}$	-0.34
反應物	還原反應	標準還原電位(V)
H^{+}	$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$	0.00
H ₂ O	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83

(三) 坊間參考書內文

(資料來源:高分策略 高中化學下A第十一頁範例解說3 康熙文化)

【評語】 040202 電子流動的真相

自製測定氣體量裝置精巧,研究條理分明,惟實驗推論,理 論根據稍嫌不足。