中華民國第四十七屆中小學科學展覽會 作品說明書

國小組 數學科

080406

聰明的審判-尋找避免囚犯串供問題的解答

學校名稱:臺北縣板橋市後埔國民小學

作者: 指導老師:

小四 鄭士驤 黄秀葉

吳炳源

關鍵詞: 囚犯串供 費氏數列 巴斯卡三角形

膏、摘要

這個研究是針對「避免囚犯串供的偵訊選取囚犯的方法數」進行分析。

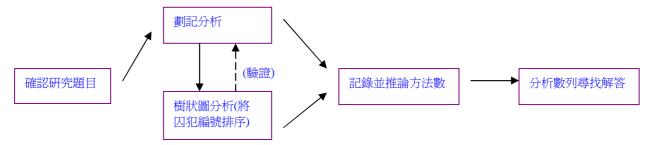
- (1)首先,用圖形劃記分析,找出當有 1-9 個囚犯排成一列等待偵訊,一次至少間隔 1~4 個囚犯的方法數。
- (2)進一步,將囚犯以數字編號,然後用樹狀圖列出可能選取囚犯的方法數,確認了 劃記的正確性。
- (3)接著,依照囚犯人數及間隔人數的不同,我們找出總方法數、固定偵訊人數時的 方法數、以囚犯編號計次的方法數各種數列。
- (4)分析這些數列,尋找數列的規則,希望能找出問題的解答,在尋找答案的過程中, 真的有許多令自己驚訝的發現。

貳、研究動機

老師給我昌爸工作坊討論區的一道題目,題目是這樣的:「在一個監獄裡有 n 名 囚犯被手銬銬住,排成一列等待偵訊。偵訊的過程中,爲了避免串供,要<u>在這 n 名中取出若干不相鄰的囚犯</u>。舉例而言,若共有 6 名囚犯,編號爲 1、2、3、4、5、6,則可取 1、3、6 等三人,亦可取 2,4 等兩人。單單取其中任何一人亦可。考慮在 n 個囚犯的情形下,共有 F(n)個取法。」爲了鼓勵我,老師說:「這個題目雖然很難,但是只要你肯努力,說不定也可以找到答案。」;爸爸也說:「有興趣的話就試試看!」在老師的指導及爸爸媽媽的支持下,我決定要全力以赴,尋找問題的解答。

參、研究目的

我認爲會有兩個變因,影響偵訊(選取囚犯)的方法數。一個是一次至少間隔多少個不相鄰囚犯,用m表示;另一個是囚犯的人數,用n表示。也就是說,當m、n决定時,選取囚犯的方法數也會被決定,這樣的對應關係,可以用函數 f(m,n)表示偵訊的方法數。因此,本研究的目的如下:


- 一、找出選取囚犯方法數的算式。
- 二、分析選取囚犯方法數數列的規則。

肆、研究設備及器材

紙、筆、計算機、電腦

伍、研究過程

一、研究架構

二、劃記 $f(m=1 \sim 4, n=1 \sim 9)$ 的偵訊情形

(一)我用圖形劃記,並從最簡單的情形開始—囚犯 1 人在至少間隔 1 名囚犯的情形下進行偵訊,以○代表未被偵訊的囚犯,以●代表被偵訊的囚犯,那麼有 1 名囚犯時只有●的情形。限制條件還是至少間隔 1 名囚犯時,囚犯人數變爲 2 人,則有○●及●○兩種情形;當囚犯變爲 3 人時,則有●○○、○●○、○○●以及●○●共4種情形。以此類推,找出當囚犯人數爲 1 至 9 人時在至少間隔 1 至 4 名囚犯時進行偵訊,也就是將 f(m=1~4,n=1~9)的所有情形劃記下來。

(二)圖形網底顏色示意說明(以9名囚犯爲例)

1.圖形示例: ●○○○○○○○

網底顏色:黃

說明:一次偵訊1人

2.圖形示例: ●○●○○○○○

網底顏色:淺藍

說明:一次偵訊2人

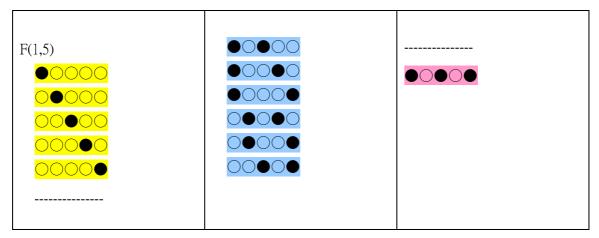
3.圖形示例: ●○●○●○○○○

網底顏色:粉紅

說明:一次偵訊3人

4.圖形示例: ●○●○●○●○○

網底顏色:草綠色


說明:一次偵訊4人

5.圖形示例: ●○●○●○●○●

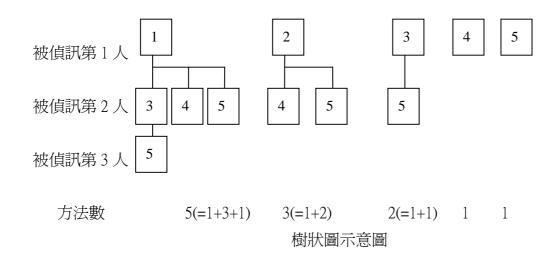
網底顏色:灰色

說明:一次偵訊5人

(三)劃記方法示意(以5名囚犯爲例,僅列出部份劃記資料)

劃記方法示意圖

(四)將劃記結果及推論結果記錄於表 1-1 到表 1-4。


三、證明劃記結果的正確性:

(一)爲了確認劃記結果的正確性,我將囚犯以數字編號,並依照編號把選取囚犯的可能情形用樹狀圖列出。

(二)樹狀圖的畫法說明

- 1.以 m = 1, n = 5即 f(1.5) 時說明:總共 5 名囚犯,將囚犯依 $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ 編號。
- 2.同時偵訊 2 人時,第 2 層的囚犯編號必須比第一層被偵訊囚犯的編號至少多m+1。同樣的,要增加成同時偵訊 3 人時,第 3 層的囚犯編號必須比第 2 層的偵訊囚犯編號至少多m+1。
- 3.以囚犯 1 號開始,則有<u>(1)偵訊 1 名囚犯:1 號;(2)偵訊 2 名囚犯:1 號 3 號、1</u> 號 4 號、1 號 5 號;(3)偵訊 3 名囚犯:1 號 3 號 5 號;共 **5**種情形。
- 4.以囚犯 2 號開始,則有<u>(1)偵訊 1 名囚犯:2 號;(2)偵訊 2 名囚犯:2 號 4 號、2</u>號 5 號;共 *3*種情形。
- 5.以囚犯 3 號開始,則有(1)偵訊 1 名囚犯: 3 號;(2)偵訊 2 名囚犯: 3 號 5 號;共 2種情形。其中偵訊 2 名囚犯: 1 號 3 號及偵訊 3 名囚犯: 1 號 3 號 5 號時,在 以囚犯 1 開始時,已經算過,不需重複計算。
- 6.以囚犯 4 號開始,則有(1)偵訊 1 名:囚犯 4 號,共 1 種情形。 其中偵訊 2 名囚犯 1 號 4 號、2 號 4 號的情形,也已經算過,不需重複。
- 7.以囚犯 5 開始,則有(1)<u>偵訊 1 名囚犯:5 號,共 1 種情形。</u>其中偵訊 2 名囚犯: 1 號 5 號、2 號 5 號及 3 號 5 號及偵訊 3 名囚犯:1 號 3 號 5 號時,也已經算過,不需重複。
- 8.因此 f(1,5) 依囚犯編號的方法數依序為 $5 \cdot 3 \cdot 2 \cdot 1 \cdot 1$,如表 2-1(斜體字部份)。

(三)樹狀圖圖示

(四)對照樹狀圖及劃記結果,發現選取囚犯的總方法數相同。進一步分析劃記結果,發現固定偵訊人數的方法數,在不同偵訊人數的數列間,有一定的關係(規則二A);分析樹狀圖則發現以囚犯號次找出的方法數中,可由前數項的和推導出後項(規則三D)。依據這樣子的發現,分別推論到囚犯人數 15 人及偵訊人數 1-7 人,並將劃記結果記錄於表 1-1 到表 1-4,將樹狀圖結果記錄於表 2-1 到 2-4。

表1-1 F(1,n)-囚犯 n 個人時,一次至少問隔 m=1 人值訊的方法數

<u>121-1 1(1,11)</u>		177时 .	八土ノ 門		一句 かんこう	仏奴		
一次偵訊人數 囚犯人數	1	2	3	4	5	6	7	總方法數
1	1	0	0	0	0	0	0	1
2	2	0	0	0	0	0	0	2
3	3	1	0	0	0	0	0	4
4	4	3	0	0	0	0	0	7
5	5	6	1	0	0	0	0	12
6	6	10	4	0	0	0	0	20
7	7	15	10	1	0	0	0	33
8	8	21	20	5	0	0	0	54
9	9	28	35	15	1	0	0	88
10	10	36	56	35	6	0	0	143
11	11	45	84	70	21	1	0	232
12	12	55	120	126	56	7	0	376
13	13	66	165	210	126	28	1	609
14	14	78	220	330	252	84	8	986
15	15	91	286	495	462	210	36	

說明:1.僅劃記至囚犯人數9人時,其餘爲推論數值。

2.囚犯人數15人時,有一次偵訊8人以上的情形,所以總方法數不完整,故不列出。

表1-2 F(2,n)-囚犯n個人時,一次至少間隔m=2人偵訊的方法數

1 2 1 (2,11)		/ Vn ij	<u> </u>	(1)11111 D)		1144		
次偵訊人數 囚犯人數	1	2	3	4	5	6	7	總方法數
1	1	0	0	0	0	0	0	1
2	2	0	0	0	0	0	0	2
3	3	0	0	0	0	0	0	3
4	4	1	0	0	0	0	0	5
5	5	3	0	0	0	0	0	8
6	6	6	0	0	0	0	0	12
7	7	10	1	0	0	0	0	18
8	8	15	4	0	0	0	0	27
9	9	21	10	0	0	0	0	40
10	10	28	20	1	0	0	0	59
11	11	36	35	5	0	0	0	87
12	12	45	56	15	0	0	0	128
13	13	55	84	35	1	0	0	188
14	14	66	120	70	6	0	0	276
15	15	78	165	126	21	0	0	405
說明:僅劃記至	医囚犯人數9/	人時,其餘額	爲推論數值。					

表1-3 F(3,n)-囚犯n個人時,一次至少間隔m=3人偵訊的方法數

一次偵訊人數 囚犯人數	1	2	3	4	5	6	7	總方法數
1	1	0	0	0	0	0	0	1
2	2	0	0	0	0	0	0	2
3	3	0	0	0	0	0	0	3
4	4	0	0	0	0	0	0	4
5	5	1	0	0	0	0	0	6
6	6	3	0	0	0	0	0	9
7	7	6	0	0	0	0	0	13
8	8	10	0	0	0	0	0	18
9	9	15	1	0	0	0	0	25
10	10	21	4	0	0	0	0	35
11	11	28	10	0	0	0	0	49
12	12	36	20	0	0	0	0	68
13	13	45	35	1	0	0	0	94
14	14	55	56	5	0	0	0	130
15	15	66	84	15	0	0	0	180
說明:僅劃記	至囚犯人數9/	人時,其餘爲	推論數值。					

表1-4 F(4,n)-囚犯n個人時,一次至少間隔m=4人偵訊方法數

一次偵訊人數	1	2	3	4	5	6	7	總方法數
1	1	0	0	0	0	0	0	1
2	2	0	0	0	0	0	0	2
3	3	0	0	0	0	0	0	3
4	4	0	0	0	0	0	0	4
5	5	0	0	0	0	0	0	5
6	6	1	0	0	0	0	0	7
7	7	3	0	0	0	0	0	10
8	8	6	0	0	0	0	0	14
9	9	10	0	0	0	0	0	19
10	10	15	()	0	0	0	0	25
11	11	21	1	0	0	0	0	33
12	12	28	4	0	0	0	0	44
13	13	36	10	0	0	0	0	59
14	14	45	20	0	0	0	0	79
15	15	55	35	0	0	0	0	105
說明:僅劃記至囚犯	已人數9人時,	其餘爲推論鷜	收值。					

表2-1 以樹狀圖找出F(1,n)偵訊的方法數

				(1,11)			L號?	欠找出	的方	法數	(囚犯	編號)				總方法數
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	尼刀公数
	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	3	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	4
	4	3	2	1	1	0	0	0	0	0	0	0	0	0	0	0	7
	5	5	3	2	1	1	0	0	0	0	0	0	0	0	0	0	12
囚	6	8	5	3	2	1	1	0	0	0	0	0	0	0	0	0	20
犯	7	13	8	5	3	2	1	1	0	0	0	0	0	0	0	0	33
人	8	21	13	8	5	3	2	1	1	0	0	0	0	0	0	0	54
數	9	34	21	13	8	5	3	2	1	1	0	0	0	0	0	0	88
=n	10	55	34	21	13	8	5	3	2	1	1	0	0	0	0	0	143
	11	89	55	34	21	13	8	5	3	2	1	1	0	0	0	0	232
	12	144	89	55	34	21	13	8	5	3	2	1	1	0	0	0	376
	13	233	144	89	55	34	21	13	8	5	3	2	1	1	0	0	609
	14	377	233	144	89	55	34	21	13	8	5	3	2	1	1	0	986
	15 610 377 233 144 89 55 34 21 13 8 5 3 2 1 1 1596																
說明	:僅位	效到9	個囚	记時的	勺選取	囚犯	方法	數,	其餘為	系推 語	命數値	<u>i</u> •					

表2-2 以樹狀圖找出F(2.n)偵訊的方法數

202 2	2 27 (12)	別八回	17/11	1 (2,11)				次找出	的方	法數	(囚犯	編號)				√肉 → ∴→ 申/←
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	總方法數
	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3
	4	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	5
	5	3	2	1	1	1	0	0	0	0	0	0	0	0	0	0	8
囚	6	4	3	2	1	1	1	0	0	0	0	0	0	0	0	0	12
犯	7	6	4	3	2	1	1	1	0	0	0	0	0	0	0	0	18
人	8	9	6	4	3	2	1	1	1	0	0	0	0	0	0	0	27
數	9	13	9	6	4	3	2	1	1	1	0	0	0	0	0	0	40
=n	10	19	13	9	6	4	3	2	1	1	1	0	0	0	0	0	59
	11	28	19	13	9	6	4	3	2	1	1	1	0	0	0	0	87
	12	41	28	19	13	9	6	4	3	2	1	1	1	0	0	0	128
	13	60	41	28	19	13	9	6	4	3	2	1	1	1	0	0	188
	14	88	60	41	28	19	13	9	6	4	3	2	1	1	1	0	276
	15	129	88	60	41	28	19	13	9	6	4	3	2	1	1	1	405
說明	: 僅	数到 9	個囚:	犯時的	的選用	又囚犯]方法	數,	其餘	爲推語	論數 信	直。					

表2-3 以樹狀圖找出F(3,n)偵訊的方法數

1×2-3	, P) (E		1//1	(5,11)				大找片	的方	法數	(囚犯	編號)				rata tistiata
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	總方法數
	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3
	4	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	4
	5	2	1	1	1	1	0	0	0	0	0	0	0	0	0	0	6
囚	6	3	2	1	1	1	1	0	0	0	0	0	0	0	0	0	9
犯	7	4	3	2	1	1	1	1	0	0	0	0	0	0	0	0	13
人	8	5	4	3	2	1	1	1	1	0	0	0	0	0	0	0	18
數	9	7	5	4	3	2	1	1	1	1	0	0	0	0	0	0	25
=n	10	10	7	5	4	3	2	1	1	1	1	0	0	0	0	0	35
	11	14	10	7	5	4	3	2	1	1	1	1	0	0	0	0	49
	12	19	14	10	7	5	4	3	2	1	1	1	1	0	0	0	68
	13	26	19	14	10	7	5	4	3	2	1	1	1	1	0	0	94
	14	36	26	19	14	10	7	5	4	3	2	1	1	1	1	0	130
	15	50	36	26	19	14	10	7	5	4	3	2	1	1	1	1	180
說明	: 僅	故到9	個囚	犯時的	的選耳	又囚犯]方法	數,	其餘	爲推詞	命數值	直。					

表2-4 以樹狀圖找出F(4,n)的偵訊可能情形次數

	12.11	47 V		1 (4,11,			に號?			法數	(囚犯	編號)				/肉十二十曲h
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	總方法數
	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3
	4	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	4
	5	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	5
囚	6	2	1	1	1	1	1	0	0	0	0	0	0	0	0	0	7
犯	7	3	2	1	1	1	1	1	0	0	0	0	0	0	0	0	10
人	8	4	3	2	1	1	1	1	1	0	0	0	0	0	0	0	14
數	9	5	4	3	2	1	1	1	1	1	0	0	0	0	0	0	19
=n	10	6	5	4	3	2	1	1	1	1	1	0	0	0	0	0	25
	11	8	6	5	4	3	2	1	1	1	1	1	0	0	0	0	33
	12	11	8	6	5	4	3	2	1	1	1	1	1	0	0	0	44
	13	15	11	8	6	5	4	3	2	1	1	1	1	1	0	0	59
	14	20	15	11	8	6	5	4	3	2	1	1	1	1	1	0	79
	15	26	20	15	11	8	6	5	4	3	2	1	1	1	1	1	105
說明	:僅	做到9	個囚	犯時	的選耳	仅囚刻	已方法	數,	其餘	爲推	論數值	直。					

陸、研究結果資料彙整

一、選取囚犯的總方法數

綜合表 1-1 到表 1-4 及表 2-1 到表 2-4 的結果,當n(囚犯人數)爲 1-15 人時,偵訊方法數依照m(至少間隔人數)爲 1~4 人時而有不同。

(-)至少間隔m=1人時,依照囚犯人數,偵訊方法數如下:

囚犯人數 1 2 3 4 5 6 7 1 2 4 7 12 20 方法數 33 54 88

(二)至少間隔m=2人時,依照囚犯人數,偵訊方法數如下:

囚犯人數 1 2 3 4 5 6 方法數 1 2 3 5 8 2.7

(三)至少間隔m=3人時,依照囚犯人數,偵訊方法數如下:

囚犯人數 1 2 3 4 5 6 方法數 1 2 3 4 6 9 13

(四)至少間隔m=4人時,依照囚犯人數,偵訊方法數如下:

囚犯人數 1 2 3 4 5 6 7 1 2 3 4 5 7 10 方法數

二、固定偵訊人數的方法數

依照表 1-1 到表 1-4,不論m(間隔人數)爲多少,依照<u>一次偵訊人數 1-7 人</u>時而有不同的方法數(列出一次偵訊人數 1~4 人的偵訊方法數) \circ (註:討論的部份以 g(k,l)表示,k 代表一次偵訊人數,l 代表數列順序)

(一)一次偵訊1人時,偵訊方法數如下:

數列順序 12. 方法數

(二)一次偵訊2人時,偵訊方法數如下:

1 2 3 4 數列順序 方法數 1 3 6 10 15 21 28 36 45

(三)一次偵訊3人時,偵訊方法數如下:

數列順序 1 2 方法數 1 4 10 20 35 56 84

(四)一次偵訊 4 人時, 偵訊方法數如下:

數列順序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 方法數 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060

三、以囚犯編號計次的方法數

綜合表 2-1 到表 2-4,以囚犯編號依序計算偵訊方法數,依照m(至少間隔人數) 爲 1~4 人時而有不同。(註:討論的部份以h(m, j)表示,j代表數列順序)

(-)至少間隔m=1人時,依照囚犯編號計次的方法數如下:

數列順序 1 2 3 4 5 6 7 方法數 1 1 2 3 5 8 13

(二) 至少間隔m=2人時,依照囚犯編號計次的方法數如下:

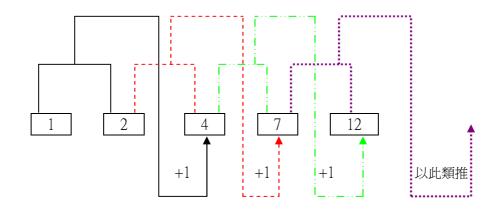
數列順序 1 2 3 4 5 6 7 8 方法數 1 1 1 2 3 4 6 9 13

(Ξ) 至少間隔m=3人時,依照囚犯編號計次的方法數如下:

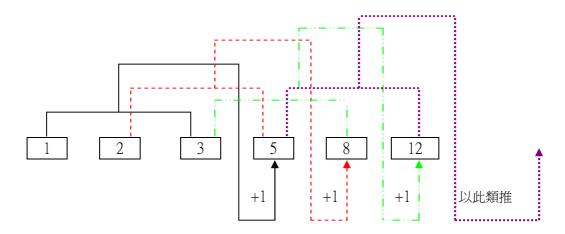
數列順序 1 2 3 4 5 6 1 1 1 1 2 3 4 5 7 方法數

(四) 至少間隔m=4人時,依照囚犯編號計次的方法數如下:

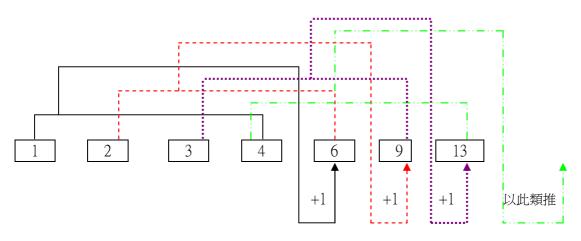
數列順序 1 2 3 4 5 6 1 1 1 1 2 3 方法數 4 5 6

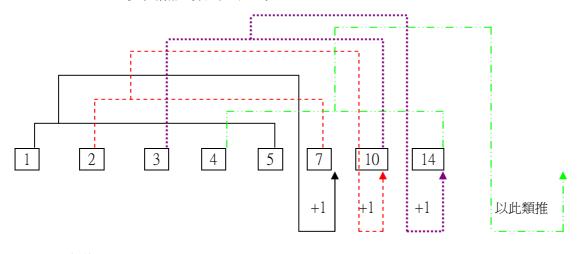

柒、討論

一、總方法數的分析


(--)

規則一 A:至少間隔人數爲 m 時,第 n 項加上第 n+m 項再加上 1 就是第 n+m+1 項,也就是 f(m,n)+f(m,n+m)+1=f(m,n+m+1)。


1.至少間隔人數爲1人時,

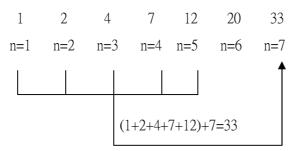

2.至少間隔人數爲2人時,

3.至少間隔人數爲3人時,

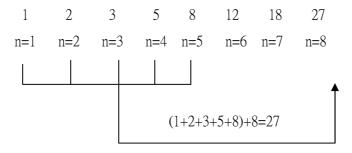
4.至少間隔人數爲 4 人時,

 $(\underline{})$

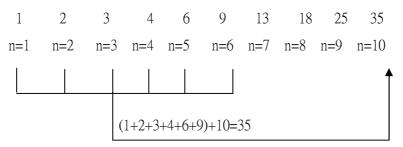
規則一 B:至少間隔人數爲m 時,前n-m-1項的和再加上n就是第n項,也 就是 f(m,1)+...+f(m,n-m-2)+f(m,n-m-1)+n=f(m,n)

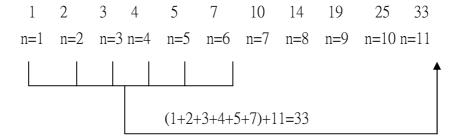

1.在m=1(至少間隔 1 人)的總方法數的每 1 項都加上 1 後,就變成費氏數列第 3 項開始的數列 2、3、5、8、13、21、34、55、89、144…。

2.分析過程:


- (1)費氏數列其中有 1 個性質: $F_1 + F_2 + ... + F_{n-1} + F_n + 1 = F_{n+2}$,意思是第 1 項 一直加到第 n 項再加上 1 ,就是第 n + 2 項。
- (2)我想要試試看把這種性質應用在 m = 1(至少間隔 1 人)的總方法數上。所以 我就把 m = 1(至少間隔 1 人)的總方法數第 1 項和第 3 項的差;總方法數第 1 項加上第 2 項的和跟第 4 項的差;總方法數第 1 項加上第 2 項加上第 3 項的 和跟第 5 項的差…排成數列,發現數列是: 3(總方法數第 1 項和第 3 項的差)、 4(總方法數第 1 項加上第 2 項跟第 4 項的差)、5、6、7…。
- (3)前項敘述(m = 1時)列成算式如下:

$$f(1,3) - f(1,1) = 3$$
;
 $f(1,4) - (f(1,1) + f(1,2)) = 4$;
 $f(1,5) - (f(1,1) + f(1,2) + f(1,3)) = 5$;
 $f(1,6) - (f(1,1) + f(1,2) + f(1,3) + f(1,4)) = 6$;
 $f(1,7) - (f(1,1) + f(1,2) + f(1,3) + f(1,4) + f(1,5)) = 7$;
推導出:
 $f(1,n) - (f(1,1) + \dots + f(1,n-3) + f(1,n-2)) = n$ 。
 $\Rightarrow f(1,1) + \dots + f(1,n-3) + f(1,n-2) + n = f(1,n)$


以m=1(n=7)的總方法數說明:


(4)如同m=1時的方式,我分別找出m=2、m=3、 m=4 時的規律性,現在以m=2 (n=8)的總方法數說明:

(5)以m = 3(n = 10)的總方法數說明:

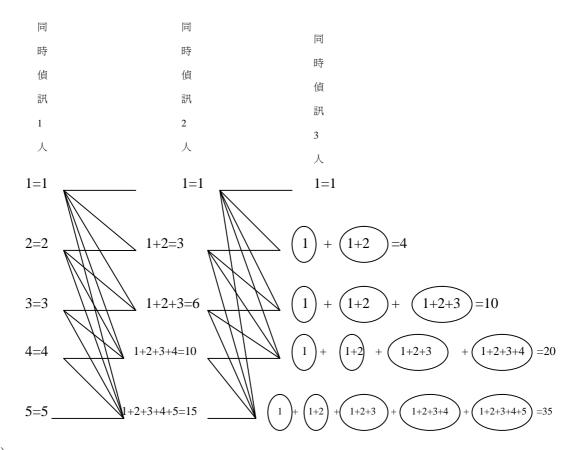
(6)以m = 4(n = 11)的總方法數說明:

 (Ξ)

規則一
$$C(限 f(1,n))$$
 :在至少間隔人數 $m=1$ 時,總方法數直接求值的公式是
$$f(1,n)=\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^{n+2}-(\frac{1-\sqrt{5}}{2})^{n+2}]-1$$

- 1.m=1(至少間隔 1 人)的總方法數的每個數加上 1 就是費氏數列,把這個數列排序後;2(費氏數列第 3 項)、3、5、8、13…。這時,總方法數的第 1 項加上 1 就是費氏數列第 3 項;總方數法的第 2 項加上 1 就是費氏數的第 4 項,由此可知,總方法數的第 n 項加上 1 就是費氏數列的第 n+2 項。
- 2.我參考費氏數列直接求值的公式 $F_n = \frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^n (\frac{1-\sqrt{5}}{2})^n]$,將費氏數列 公式中的n次方變成n+2次方,這樣子公式就變成費氏數列第n+2項直接求值的公式。那也因爲費氏數列第n+2是總方法數的第n項加上 1,所以最後 面再減 1 就是總方法數的第n項直接求值的公式了。

二、固定偵訊人數的方法數的分析


(--)

規則二 A: g(k,l) 表示第 k 行第 l 項的方法數(k 代表偵訊 k 人形成的數列,l 代表數列的第 l 項,數列的首項均爲 1)則

$$g(k,1) + g(k,2) + ... + g(k,l-1) + g(k,l) = g(k+1,l)$$

表 3 f(1,n) 進行的分析(節錄部份內容)

					一次偵討	凡人數			
		1	2	3	4	5	6	7	總方法數
	1	1	7 0	0	0	0	0	0	1
	2	2 —	0	0	0	0	0	0	2
囚	3	3 —	+2	0	0	0	0	0	4
犯	4	4	+33	0	0	0	0	0	7
人	5	5	+4 6	+3 1	0	0	0	0	12
數	6	6	+510	+6 4	0	0	0	0	20
	7	7	±6 15	+1010	+41	0	0	0	33
	8	8	+1 ₂₁	#120	<u>+105</u>	0	0	0	54
	9	9	<u> </u>	→ ^{†Zl} 35	+ 2 1 ₅		0	0	88

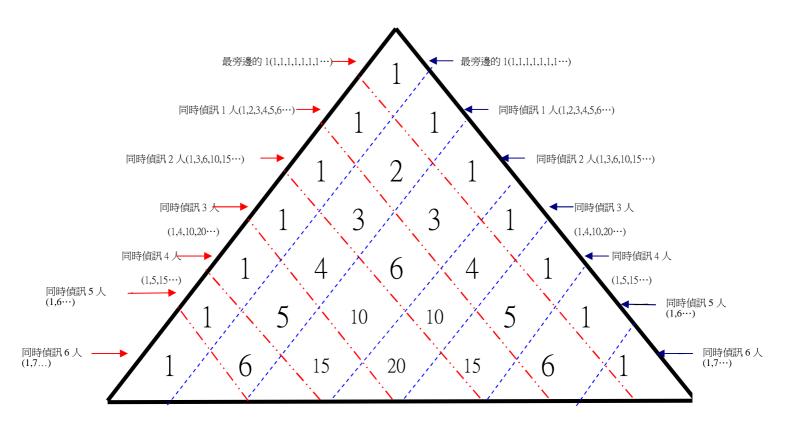
(___)

規則二 B:可以同時偵訊 k 人的條件是囚犯人數 n 必須符合 $n \ge (m+1)k-m$

- 1.在m=1的表格中,可以同時偵訊 1 人的條件是 $n \ge 1$; 2 人是 $n \ge 3$; 3 人 $\Rightarrow n \ge 5$; 4 人 $\Rightarrow n \ge 7 \cdots k$ 人 $\Rightarrow n \ge 2k-1$ 。
- 2.在m=2的表格中,1 人 \Rightarrow $n \ge 1$;2 人 \Rightarrow $n \ge 4$;3 人 \Rightarrow $n \ge 7$;4 人 \Rightarrow $n \ge 10 \cdots$ k人 \Rightarrow $n \ge 3k-2$ 。
- 3.在m=3的表格中,1 人 \Rightarrow $n \ge 1$;2 人 \Rightarrow $n \ge 5$;3 人 \Rightarrow $n \ge 9$;4 人 \Rightarrow $n \ge 13 \cdots$ k人 \Rightarrow $n \ge 4k-3$ 。
- 4.在m = 4的表格中,1人 $\Rightarrow n \ge 1$;2人 $\Rightarrow n \ge 6$;3人 $\Rightarrow n \ge 11$;4人 $\Rightarrow n \ge 16$ … k人 $\Rightarrow n \ge 5k 4$ 。
- 5.推論出,可以同時偵訊k人的條件n ≥ (m+1)k-m

 (Ξ)

規則二 C:不同偵訊人數第 L 項所構成的數列前端加上 $1(1 \cdot g(1,l) \cdot g(2,l) \cdot g(3,l) \cdot g(4,l)$)就是同時偵訊 l-1 人的數列。


- 1.不管m是多少,同時偵訊人數 1 人的第 2 項、同時偵訊 2 人的第 2 項及同時偵訊 3 人的第 2 項…,也就是各行第 2 項構成的數列(2、3、4、5、6、7…),前端再加上 1 就是同時偵訊 1 人時的數列($\frac{1}{1}$ 、2、3、4、5、6、7…)。
- 2.同時偵訊人數 1 人的第 3 項、同時偵訊 2 人的第 3 項及同時偵訊 3 人的第 3 項…,也就是各行第 3 項構成的數列(3、6、10、15、21、28、36…),前端再加上 1 就是同時偵訊 2 人的數列($\frac{1}{2}$ 、3、6、10、15、21、28、36…)。
- 3.同時偵訊人數 1 人的第 4 項、同時偵訊 2 人的第 4 項及同時偵訊 4 人的第 4 項…,也就是各行第 4 項構成的數列(4、10、20、35、56、84、120…),前端再加上 1 就是同時偵訊 3 人的數列($\mathbf{1}$ 、4、10、20、35、56、84、120…)。
- 4.所以,同時偵訊 1 人的第l 項、同時偵訊 2 人的第l 項、同時偵訊 3 人的第l 項… 所構成的數列的前端再加上 1 就是同時偵訊 l-1 人的數列。
- 5. 也就是不同偵訊人數第l項所構成的數列前端加上 1 的數列($\frac{1}{2}$ 、 g(1,l) 、 g(2,l) 、 g(3,l) 、 g(4,l))就是同時偵訊l-1人的數列。

舉例如下:

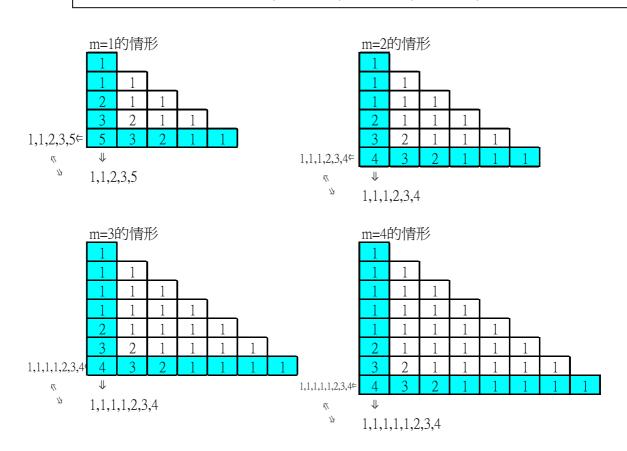
	同時偵訊1人	同時偵訊2人	同時偵訊3人	同時偵訊4人	同時偵訊5人
1	1	1	1	1	1
1	2	3	4	5	<u>6</u>
1	3	6	10	15	<u>21</u>
1	4	10	20	35	<u>56</u>
1	5	15	35	70	<u>126</u>
1	<u>6</u>	<u>21</u>	<u>56</u>	<u>126</u>	<u>252</u>

規則二 D:將不同偵訊人數構成的數列後,並在最左邊加上 1,從右下方往左上方看過去,會發現正好是巴斯卡三角形。

不管m是多少,同時偵訊人數 1 人、同時偵訊 2 人、同時偵訊 3 人、同時偵訊 4 人…,各行並列後再把每 1 列的最左邊加上 1 ,從右下方往左上方看過去,會發現正好是巴斯卡(楊輝)三角形。

(五)

規則二 E: 同時偵訊 k 人的第 1 項加上同時偵訊 k-1 人的第 2 項…,一直加到同時偵訊 1 人的第 l(l=k) 項是 2^k-1 。

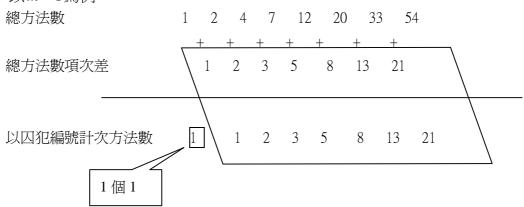

- 1.不管m是多少,同時偵訊 1 人的第 1 項是 2-1。
- 2.同時偵訊 2 人的第 1 項加上同時偵訊 1 人的第 2 項是 $2^2 1$;
- 3.同時偵訊 3 人的第 1 項加上偵訊 2 人的第 2 項再加上同時偵訊 1 人的第 3 項是 2^3-1 ;
- 4.所以,同時偵訊k 人的第 1 項加上同時偵訊k-1人的第 2 項…,一直加到同時偵訊 l(l=k) 項是 2^k-1 。

	同時偵訊1人	同時偵訊2人	同時偵訊3人	同時偵訊4人	同時偵訊5人	同時偵訊6人
2 ¹ -1	1	1	1	1	1	1
2^2 -1	2	3	4	5	6	
2 ³ -1	3	6	10	15		
2 ⁴ -1	4	10	20			
2 ⁵ -1	5	15				
2 ⁶ -1	6					

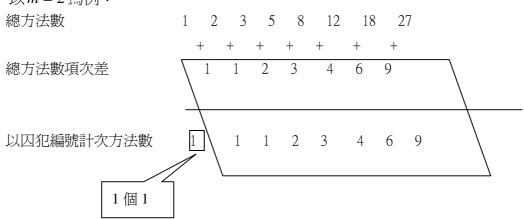
三、以囚犯編號計次的方法數的分析

(--)

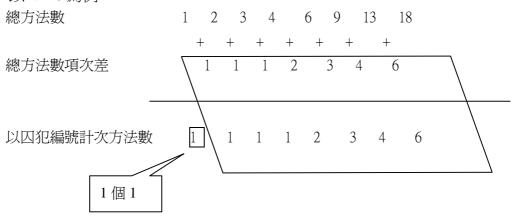
規則三 A:在囚犯編號計次的方法數的數列中,只要在m(至少間隔人數)相同的表格裡,每1行(從上到下)與每1列(從右到左)的數列皆相同。

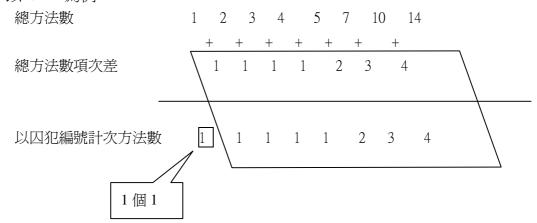


 $(\underline{})$


規則三 B:在總方法數項次差的數列前端再加 1 個 1,就是囚犯編號計次方法 數的數列。

1.以m=1爲例,也就是f(1,n) 總方法數的第 1 項和第 2 項的差是 1;第 2 項和第 3 項的差是 2;f(1,4)-f(1,3)=3;f(1,5)-f(1,4)=5;f(1,6)-f(1,5)=8,把f(1,n)的所有相鄰的項次的差寫成數列後是 $1 \cdot 2 \cdot 3 \cdot 5 \cdot 8 \cdots$;而以囚犯編號計次方法數的數列是 $1 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \cdot 8 \cdots$ 。




3. 以m = 2 爲例:

3. 以*m* = 3 爲例:

4. 以m = 4 爲例:

 (Ξ)

- 1.我發現在m = 1(至少間隔 1 個囚犯)的情形中,以囚犯編號計次的方法數的數列 正好是費氏數列, $1 \times 1 \times 2 \times 3 \times 5 \times 8 \times 13 \times 21 \times 34 \times 55 \times 89 \times 144 \times 233 \cdots$ 。依照 費氏數列的結果,記成表 4-1。
- 2.發現從第 3 項開始的「可生兔子的成兔」和「幼兔」的數列(1、1、2、3、5、8、13、21、34、55、89、144、233…)都是費氏數列;從第 4 項開始的「未成熟的成兔」的數列也是費氏數列。換句話說就是第 3 項是第 1 項的 2 倍;第 4 項是第 2 項的 2 倍加上第 1 項;第 5 項是第 3 項的 2 倍加上第 2 項…。
- 3.在m=1時,任何 1 項的前面第 2 項的兩倍加上這 1 項的前面第 3 項的和就是這 1 項,寫成公式:h(1,j)=2h(1,j-2)+h(1,j-3)。

表 4-1 三種兔子 ABC 的對數(紅色部份的數列和「至少間隔 1 個囚犯時,以囚犯編號計次的方法數」的數列相同)

1011440 211 1 7 4 4 7	不同月份之兔子											
A(幼兔)	B(未成熟的 成兔)	C(可生兔的 成兔)	不同月份之兔子 對數/不同項次 的方法數數列	方法數數列的項次値 h(1, j)								
1			1 _{h(1,1)}	h(1,1) = 1								
	1		1 _{h(1,2)}	h(1,2) = 1								
1 _{h(1,1)}		1 _{h(1,1)}	2 _{h(1,3)}	h(1,3) = 2h(1,1)								
1 _{h(1,2)}	1 _{h(1,1)}	1 _{h(1,2)}	3 _{h(1,4)}	h(1,4) = 2h(1,2) + h(1,1)								
$2_{h(1,3)}$	1 _{h(1,2)}	$2_{h(1,3)}$	5 _{h(1,5)}	h(1,5) = 2h(1,3) + h(1,2)								
3 _{h(1,4)}	2 _{h(1,3)}	3 _{h(1,4)}	8 h(1,6)	h(1,6) = 2h(1,4) + h(1,3)								
5 _{h(1,5)}	3 _{h(1,4)}	5 _{h(1,5)}	13 _{h(1,7)}	h(1,7) = 2h(1,5) + h(1,4)								
•••		•••	•••	•••								
	h(1, j) = 2h(1, j-2) + h(1, j-3)											

^{4.}目前兔子種類只有 3 種:「可生兔的成兔」、「未成熟的成兔」、「幼兔」。我在想如果「兔子種類」有 4 種、5 種、6 種又是如何呢?

^{5.}兔子種類有 4 種時,記成表 4-2,它的數列,正好與 $m = 2(\underline{x})$ 世間隔 2 人)以囚犯編號計次的方法數的數列(1、1、1、2、3、4、6、9、13、19、28、41、60、88、129…)相同,依前法推導,發現任何 1 項的前面第 3 項的兩倍加上前面第 4 項及第 5 項的和就是這 1 項,寫成公式:h(2,j) = 2h(2,j-3) + h(2,j-4) + h(2,j-5)。

表 4-2 四種兔子 ABCD 的對數(紅色部份的數列和「至少間隔 2 個囚犯時,以囚犯編號計次的方法數」的數列相同)

2441.5 4.4 (2.24)							
				不同月份之			
A兔	B兔	C兔	D兔	兔子對數/不	方法數數列的項次值 $h(2,j)$		
				同項次的方			
				法數數列			
1				$1_{h(2,1)}$	h(2,1) = 1		
	1			$1_{h(2,2)}$	h(2,2) = 1		
		1		$1_{h(2,3)}$	h(2,3) = 1		
1 _{h(2,1)}			$1_{h(2,1)}$	$2_{h(2,4)}$	h(2,4) = 2h(2,1)		
1 _{h(2,2)}	$1_{h(2,1)}$		$1_{h(2,2)}$	3 _{h(2,5)}	h(2,5) = 2h(2,2) + h(2,1)		
1 _{h(2,3)}	$1_{h(2,2)}$	$1_{h(2,1)}$	$1_{h(2,3)}$	4 h(2,6)	h(2,6) = 2h(2,3) + h(2,2) + h(2,1)		
2 _{h(2,4)}	$1_{h(2,3)}$	$1_{h(2,2)}$	$2_{h(2,4)}$	6 _{h(2,7)}	h(2,7) = 2h(2,4) + h(2,3) + h(2,2)		
3 _{h(2,5)}	$2_{h(2,4)}$	$1_{h(2,3)}$	$3_{h(2,5)}$	9 h(2,8)	h(2,8) = 2h(2,5) + h(2,4) + h(2,3)		
4 _{h(2,6)}	3 _{h(2,5)}	$2_{h(2,4)}$	$4_{h(2,6)}$	13 _{h(2,9)}	h(2,9) = 2h(2,6) + h(2,5) + h(2,4)		
•••	•••	•••	•••	•••			
h(2, j) = 2h(2, j-3) + h(2, j-4) + h(2, j-5)							

6.兔子種類有 5 種時,記成表 4-3,它的數列,正好與m=3 (至少間隔 3 人)以囚犯 編號計次的方法數的數列(1、1、1、1、2、3、4、5、7、10、14、19、26、36…) 相同,依前法推導,發現任何 1 項的前面第 4 項的兩倍加上前面第 5 項及第 6 項及第 7 項的和就是這 1 項,寫成公式:

$$h(3, j) = 2h(3, j-4) + h(3, j-5) + h(3, j-6) + h(3, j-7)$$

表 4-3 五種兔子 ABCDE 的對數(紅色部份的數列和「至少間隔 3 個囚犯時,以囚犯編號計次的方法數」的數列相同)

-12X/	1H1 3/						
A兔	B兔	C兔	D兔	E兔	不同月份之 鬼子對數/不 同項次的方 法數數列	方法數數列的項次值 h(3, j)	
1					1 _{h(3,1)}	h(3,1) = 1	
	1				1 _{h(3,2)}	h(3,2) = 1	
		1			1 _{h(3,3)}	h(3,3) = 1	
			1		1 _{h(3,4)}	h(3,4) = 1	
$1_{h(3,1)}$				1 _{h(3,1)}	2 _{h(3,5)}	h(3,5) = 2h(3,1)	
$1_{h(3,2)}$	1 _{h(3,1)}			1 _{h(3,2)}	3 _{h(3,6)}	h(3,6) = 2h(3,2) + h(3,1)	
$1_{h(3,3)}$	$1_{h(3,2)}$	1 _{h(3,1)}		1 _{h(3,3)}	4 _{h(3,7)}	h(3,7) = 2h(3,3) + h(3,2) + h(3,1)	
$1_{h(3,4)}$	1 _{h(3,3)}	1 _{h(3,2)}	1 _{h(3,1)}	1 _{h(3,4)}	5 _{h(3,8)}	h(3,8) = 2h(3,4) + h(3,3) + h(3,2) + h(3,1)	
$2_{h(3,5)}$	$1_{h(3,4)}$	1 _{h(3,3)}	1 _{h(3,2)}	$2_{h(3,5)}$	7 _{h(3,9)}	h(3,9) = 2h(3,5) + h(3,4) + h(3,3) + h(3,2)	
3 _{h(3,6)}	$2_{h(3,5)}$	1 _{h(3,4)}	1 _{h(3,3)}	3 _{h(3,6)}	10 _{h(3,10)}	h(3,10) = 2h(3,6) + h(3,5) + h(3,4) + h(3,3)	
4 _{h(3,7)}	$3_{h(3,6)}$	$2_{h(3,5)}$	1 _{h(3,4)}	4 _{h(3,7)}	14 _{h(3,11)}	h(3,11) = 2h(3,7) + h(3,6) + h(3,5) + h(3,4)	
•••				•••		•••	
h(3, j) = 2h(3, j-4) + h(3, j-5) + h(3, j-6) + h(3, j-7)							

7.兔子種類有 6 種時,記成表 4-4,它的數列,正好與 $m = 4(\underline{\mathbf{E}}\underline{\mathbf{V}}$ 間隔 4 人)以囚犯 編號計次的方法數的數列(1、1、1、1、1、2、3、4、5、6、8、11、15、20、26…) 相同,依前法推導,發現任何 1 項的前面第 5 項的兩倍加上前面第 6 項、第 7 項、第 8 項、第 9 項的和就是這 1 項,寫成公式:

h(4,j)=2h(4,j-5)+h(4,j-6)+h(4,j-7)+h(4,j-8)+h(4,j-9)8.最後我把 $m=1\sim 4$ (至少間隔 1~4 人)以囚犯編號計次方法數數列的公式匯集起來後,整理成規則三C的公式。

表 4-4 六種兔子 ABCDEF 的對數(紅色部份的數列和「至少間隔 4 個囚犯時,以囚犯編號計次的方								
法數」的數列相同)								
A 兔	B兔	C兔	D兔	E兔	F兔	不同月份之 兔子對數/不 同項次的方 法數數列	方法數數列的項次值 h(4, j)	
1						1 _{h(4,1)}	h(4,1) = 1	
	1					$1_{h(4,2)}$	h(4,2) = 1	
		1				1 _{h(4,3)}	h(4,3) = 1	
			1			1 _{h(4,4)}	h(4,4) = 1	
				1		1 h(4,5)	h(4,5) = 1	
1 _{h(4,1)}					1 _{h(4,1)}	2 _{h(4,6)}	h(4,6) = 2h(4,1)	
$1_{h(4,2)}$	$1_{h(4,1)}$				1 _{h(4,2)}	3 _{h(4,7)}	h(4,7) = 2h(4,2) + h(4,1)	
1 _{h(4,3)}	$1_{h(4,2)}$	$1_{h(4,1)}$			$1_{h(4,3)}$	4 h(4,8)	h(4,8) = 2h(4,3) + h(4,2) + h(4,1)	
1 _{h(4,4)}	1 _{h(4,3)}	1 _{h(4,2)}	1 _{h(4,1)}		1 _{h(4,4)}	5 _{h(4,9)}	h(4,9) = 2h(4,4) + h(4,3) + h(4,2) + h(4,1)	
1 _{h(4,5)}	1 _{h(4,4)}	1 _{h(4,3)}	1 _{h(4,2)}	1 _{h(4,1)}	1 _{h(4,5)}	6 _{h(4,10)}	h(4,10) = 2h(4,5) + h(4,4) $+ h(4,3) + h(4,2) + h(4,1)$	
2 _{h(4,6)}	1 _{h(4,5)}	1 _{h(4,4)}	1 _{h(4,3)}	1 _{h(4,2)}	2 _{h(4,6)}	8 _{h(4,11)}	h(4,11) = 2h(4,6) + h(4,5) $+ h(4,4) + h(4,3) + h(4,2)$	
3 _{h(4,7)}	2 _{h(4,6)}	1 _{h(4,5)}	1 _{h(4,4)}	1 _{h(4,3)}	3 _{h(4,7)}	11 _{h(4,12)}	h(4,12) = 2h(4,7) + h(4,6) $+ h(4,5) + h(4,4) + h(4,3)$	
•••	•••	(4 ;) 2	•••	···	•••	 4 : 7) + h	(A : 8) + I ₂ (A : 0)	

h(4, j) = 2h(4, j-5) + h(4, j-6) + h(4, j-7) + h(4, j-8) + h(4, j-9)

(四)

規則三D:以i代表囚犯編號計次的方法數列的項次,則

$$h(m, j) + h(m, j + m) = h(m, j + m + 1)$$

- 1.我的發現與分析:因爲m=1(至少間隔 1 人)以囚犯編號計次方法數的數列是費氏數列,而費氏數列有一個性質是這 1 項、下 1 項的和就是下第 2 項,即:
 - $(F_n + F_{n+1} = F_{n+2})$ 。那m = 1(至少間隔 1 人)以囚犯編號計次方法數的數列也可以寫成式子:h(1,j) + h(1,j+1) = h(1,j+2),咦!這不是跟在規則 1A 的公式:

f(1,n)+f(1,n+1)+1=f(1,n+2) 很像嗎? 只要把公式

f(1,n) + f(1,n+1) + 1 = f(1,n+2) 去掉「+1」就是h(1,j) + h(1,j+1) = h(1,j+2)。此 規則在m = 1(至少間隔 1 人)時成立,那 $m = 2 \sim 4$ (至少間隔 2~4 人)應該可以成立,所以我用同樣的方法試,結果成功了。

2.規則的歸納:

- (1)根據 $m=1\sim 4$ 中以囚犯編號計次的方法數列,若 j 是指此數列的項次,在m=1 的條件下,數列中的第 1 項加上第 2 項就是第 3 項。h(1,2)+h(1,3)=h(1,4) (這裡的 $2 \cdot 3 \cdot 4$ 就是指 j); $h(1,3)+h(1,4)=h(1,5) \cdots \Rightarrow h(1,j)+h(1,j+1)=h(1,j+2)$
- (2)在m = 2的條件下,數列中的第 1 項加上第 3 項就是第 4 項。

$$h(2,2) + h(2,4) = h(2,5)$$
, $h(2,3) + h(2,5) = h(2,6) \cdots$
 $\Rightarrow h(2,j) + h(2,j+1) = h(2,j+3)$

(3)在m = 3的條件下,數列中的第 1 項加上第 4 項就是第 5 項。 h(3,2) + h(3,5) = h(3,6) ,h(3,3) + h(3,6) = h(3,7) …

$$\Rightarrow h(3,j) + h(3,j+3) = h(2,j+4) \circ$$

(4)在m=4的條件下,數列中的第1項加上第5項就是第6項。

$$h(4,2) + h(4,6) = h(4,7)$$
, $h(4,3) + h(4,7) = h(4,8) \cdots$

$$\Rightarrow h(4, j) + h(4, j + 4) = h(4, j + 5)$$
 °

(5)推導出: h(m, j) + h(m, j + m) = h(m, j + m + 1)。

捌、結論

一、總方法數的分析

- (一)針對總方法數的數列進行分析,發現依照數列的規律性,可以從前面的項次的值,推導出後面項次的值,規則一 A: f(m,n) + f(m,n+m) + 1 = f(m,n+m+1),與規則一 B: f(m,1) + ... + f(m,n-m-2) + f(m,n-m-1) + n = f(m,n)都是這個樣子。
- (二)但是依照規則一 A 與規則一 B,我要找出答案只能一個一個加,慢慢求出答案,從目前發現的規則中,我還沒有足夠的線索,找出直接求值的公式,在對照費氏數列的公式,發現當至少間隔人數爲m=1時,可以直接算出它的方法數,規則一 $C: f(1,n) = \frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^{n+2}-(\frac{1-\sqrt{5}}{2})^{n+2}]-1;雖然有這樣子的結果,我想我還是應該從數列中慢慢推導出規則一 <math>C$ 的公式,才有可能推出m 不等於 1 的公式。

二、固定偵訊人數方法數的分析

- (一)規則二 A: g(k,l) + g(k,2) + ... + g(k,l-1) + g(k,l) = g(k+1,l)的發現,確認了表 1-1 至表 1-4 部份推論的數值。
- (二)規則二 B 提出了同時偵訊人數的條件限制;規則二 C、規則二 D、規則二 E 則 提出了固定偵訊人數方法數數列間有趣的關係及發現,讓我覺得這些數列間好 像藏了好多密碼,等待我去破解。

三、囚犯編號方法數的分析

- (一)從規則三 B 中,讓我知道以囚犯編號的計次的方法數,能直接轉換成總方法數,因此對囚犯編號方法數的規則進行分析就顯得很重要了。
- (二)從m=1(至少間隔 1 個囚犯)的情形中,以囚犯的編號計次的方法數剛好是費氏數列,讓我能推導出規則三 C,也就是找出以囚犯編號計次方法數 h(m,j) 的數值。這個發現讓我覺得很開心,也讓我對費氏數列有了更多的認識,也更想進一步的去研究它。
- (三)規則三 D 讓我們能從前二項的和推估到這一項,一方面確認了表 2-1 到表 2-4 的部份推論,另一方面我也發現其實它與總方法數的規則一 A 很相似。

四、心得與檢討

我是從去年十二月開始進行這個研究,剛開始我用劃記法解題,雖然費時費力,但是總算有了開始,之後我將結果整理出表格,試著看出一點兒端倪。那時候,看著整理出的表格,竟然有了一、二個特別的發現,我欣喜若狂,把發現的結果告訴爸爸,爸爸說他被我「嚇了三跳」呢!。

之後,我每發現一個規則,爸爸就幫我輸入電腦裡,我相信,只要持之以恆, 我一定可以找出更多的線索。隨著發現的規則一個個出現,我是愈做愈起勁。因此, 過年時別人吃豐盛的年菜,我則是在寫複雜的數字;別人放鞭炮、玩遊戲機,我則 在是寫公式,雖然如此,我還是樂此不疲。

規則雖然一個個找出來,可是我心裡最想的是能夠找出 f(m,n) 直接求值的公式,我參考由一元二次方程式求出來的費氏數列的公式,運用相同的方法,想辦法推導公式。不過現階段,因爲我的數學能力不足,還是沒有成功,我會繼續努力充實,相信遲早有一天我會找出答案的。

玖、參考資料

Ian Stewart (1995) Nature's Numbers: the unreal reality of mathematical imagination。葉 李華(譯), **大自然的數學遊戲。液滴、狐與兔、花瓣**。臺北市:天下。

白啓光(民91)。費氏數列及黃金分割。取自

http://xserve.math.nctu.edu.tw/people/cpai/carnival/fibonacci/index.htm

- 串供(民 95 年 6 月 6 日)。囚犯。**昌爸工作坊討論區**。民國 95 年 6 月 6 日,取自 http://www.mathland.idv.tw/
- 紀素雲等(民93)。從兔子繁殖問題到勾股數組。**枯井的啓示一數學的故事。**(76-80 頁)。臺北市:倚天文化。
- 紀素雲等(民93)。勤學善算的數學家一楊輝。**枯井的啓示一數學的故事。**(106-109 頁)。臺北市:倚天文化。
- 黄田奇、黄偉綸、鄭龍驊、林芳維、徐湘婷、許忠誠(民93)。**小朋友上樓梯一費 氏數列的推廣與應用。**中華民國第四十四屆中小學科學展覽會作品說明書(編號 080412)
- 黃敏晃(民 63)。漫談費布那齊數列。**科學月刊,5(7)**,64-66。
- 維尼哥哥開講29:巴斯卡三角形(民89年6月20日)。取自:

http://www.bud.org.tw/Winnie/Wshow29.htm

【評 語】 080406 聰明的審判—尋找避免囚犯串供問題的解答 研究中能找出選取囚犯方法數的算式以及分析數列的規則,尤其針對 不同間隔人數也能深入剖析。建議文中對於不同函數符號 f、F、g 以及 n、k、m、l 所代表的意義能更詳實清晰。