中華民國第四十六屆中小學科學展覽會 作品說明書

國中組 理化科

第二名

031602

明察秋毫-金屬的熱膨脹

學校名稱: 臺北市立東湖國民中學

作者: 指導老師:

國二 臧韻雯 謝輝龍

國二 王捷莓

國一 謝智璿

國一 林珊珊

關 鍵 詞:明察秋毫、金屬的熱膨脹、自製金屬熱膨脹儀

壹、摘要

八上<u>自然與生活科技</u>6-5 節,曾簡單介紹金屬的熱膨脹,爲了進一步研究這課題, 我們組裝偵測熱膨脹的儀器,並希望儀器的靈敏度高,能推廣爲教學器材,經過我們 不斷努力與改良,終於有了令人愉悅的成果。

自製第四代熱膨脹儀的結構如圖 1,設計「角尺懸吊金屬棒」與「滾針及鏡面反射」是儀器的重要部份,利用滾針旋轉及鏡面反射雷射光,加乘放大熱膨脹的微量變化,這是我們主要的創意,以公厘(mm)為測量單位,儀器的精確值到小數第四位。

利用自製的熱膨脹儀,探討金屬熱膨脹的影響因素。分析實驗所得數據,**平均相對偏差在 1.0~1.8%**,而線膨脹係數的**相對誤差約-1.1~-4.0%**。

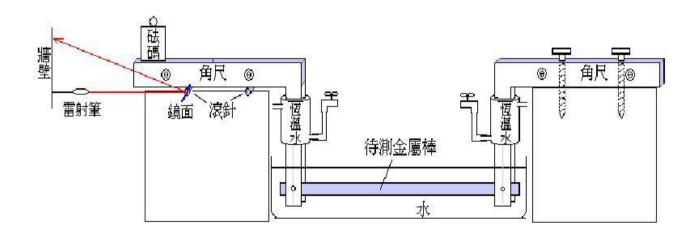


圖 1: 第四代熱膨脹儀的結構圖

貳、研究動機

我們之所以對這主題有興趣,是因爲八上的理化課,觀察**原本可通過**金屬圓環的 **銅球**,在**加熱後**便無法通過圓環,這現象引起我們的好奇心,老師告訴我們,因爲金 屬受熱溫度升高,金屬原子的震動範圍擴大導致金屬膨脹;在鐵軌接縫處會預留空隙, 也是根據這道理所做的措施。我們想深入了解熱膨脹的影響因素,在老師的鼓勵支持 下,我們決定以「**金屬的熱膨脹**」爲題參加科展。

叁、研究目的

- 一、設計出金屬熱膨脹的微量偵測儀器(主要的創意)
- 二、探討鐵管伸長量與溫度上升量的關係
- 三、探討**黃銅管**伸長量與溫度上升量的關係
- 四、探討鋁管伸長量與溫度上升量的關係
- 五、探討**不同長度的鋁管**與伸長量的關係
- 六、比較**鋁棒(實心)**與**鋁管(空心)**的熱膨脹
- 七、整理實驗數據得出平均相對偏差與相對誤差

肆、研究設備與器材

- 器材:鐵管(60cm)、黃銅管(60cm)、鋁管(60cm、40cm)、實心鋁棒(60cm)、針、 注射針(Φ0.90mm)、光碟片、量角器、雷射筆(3mW)、3號電池、電線、酒 精燈、不鏽鋼容器、鐵架、橡皮管、木心板(6分)、木條、螺絲、螺絲釘、鐵 釘、角尺、熱熔膠、牙籤盒、蓋玻片、玻璃片、潛水馬達、溫度計、壓克力管、 電磁爐、電湯匙(1000W)、磚塊、美工刀、砝碼、塑膠布。
- 工具:游標卡尺(0.05mm)、手提電鑽、鑽頭、鐵鎚、鋼鋸、折合鋸、水平儀、螺絲 起子、捲尺、透明塑膠管、剪刀、熱熔槍、工程計算機。

伍、研究過程與方法

爲探討金屬棒的受熱與長度變化的關係,我們自製熱膨脹的微量偵測儀器(以下簡稱**熱膨脹儀**),雖歷經多次的測試與失敗,但從失敗的經驗中加以改進,到**第四代**裝置終於有了令人滿意的成果,以下說明我們的研究過程與方法。

一、自製熱膨脹儀

(一)研究微量的偵測裝置

第一代簡易熱膨脹儀

在 30cm 銅棒下橫放一支縫衣針,將一支細竹籤插入縫衣針的穿線孔內作爲指針,以酒精燈加熱銅棒,觀察指針的變化。結果指針最大的旋轉角度約有 30 度,證實可利用細小滾針來偵測金屬棒的長度變化,但是這裝置無法做定量的實驗。(圖 2)。

圖 2:第一代簡易熱膨脹儀。

第二代熱膨脹儀【失敗】

將一支鐵棒折彎成如圖 3,以**水浴法加** 熱鐵棒。結果每上升 5℃,指針的**旋轉角度**, 起初角度小,後來角度變大且呈現**忽大忽小** 的現象。判斷不穩定因素,可能是**鐵棒折彎** 較具彈性,以及單支滾針支撐鐵棒,導致實 驗失敗。

圖 3:第二代熱膨脹儀。

第三代熱膨脹儀

檢討第二代裝置的失敗原因,我們再修正出第三代裝置(圖4)。

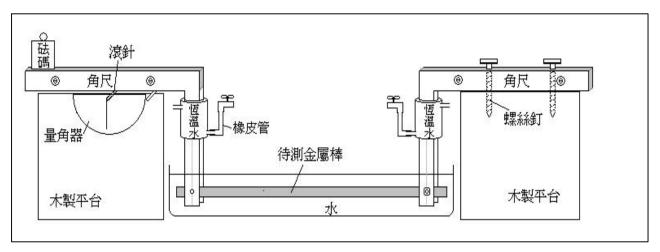


圖 4: 第三代熱膨脹儀的結構圖

第三代的製作過程:

1.金屬管鑽孔:

金屬管的兩頭鑽孔(兩孔間距離即爲金屬管的實驗長度),兩孔的方向要平行且 垂直金屬管(圖 5)。

2.金屬管兩端,各用一段兩頭磨尖的螺絲 鎖緊(圖5)。

圖 5:金屬管兩端各鎖緊一段螺絲。

3.角尺鑽孔:

取四支同型角尺,在寬度較小的角尺上,距離末端1公分,取中央位置點鑽孔(圖6)。

圖 6: 角尺末端的中央位置鑽孔。

4.組合角尺懸吊臂:

兩角尺的中間合夾一支木條,以螺絲鎖緊合 併成一支角尺懸吊臂(圖7),共組合兩支角 尺懸吊臂。

5.製作熱量隔絕裝置:

角尺末端以酒精燈加熱,趁熱插入牙籤容器中,以熱熔膠封閉縫隙,用塑膠管裝置入水口與出水口,再以橡皮管連接至水龍頭,以流動的自來水帶走熱量,防止角尺的熱傳導,以免角尺的熱傳導影響實驗誤差(圖 7)。

圖 7: 角尺懸吊臂及隔熱裝置。

6.懸吊待測金屬管:

用角尺懸吊臂下端兩個小孔洞,利用彈 性夾住兩頭磨尖螺絲,夾住的力量使連 接處**沒有間隙,才能精準測量**金屬棒的 長度變化(圖8)。

圖 8: 以懸吊臂夾住金屬管。

7. 支撐台:

以木板釘製兩個支撐台,支撐台底 加裝可調整高低的螺絲,底座內放 置兩塊磚,以增加重量來穩固支撐 台(圖9)。

圖 9: 以磚塊的重量穩固支撐台。

- 8.將兩支角尺懸吊臂各置於兩個支撐台上,將其中一支固定在支撐台上;另一支則平放在兩支滾針上(圖 10)。
- 9.滾針與量角器:以**兩支點滴用注射針** (**半徑 0.45mm**)作爲滾針,以砝碼加 重角尺末端,使角尺能自然平放在兩支 滾針上,使用量角器觀察滾針的旋轉角 度(圖 10)。

圖 10: 第三代裝置以量角器觀察滾針旋轉。

第三代的精確值:

因使用的量角器最小刻度爲 **1 度角**,以量角器觀察滾針的旋轉角度,儀器的精確 值爲 **0.016mm**,但對於熱膨脹的微量變化,這樣的精確度我們並**不滿意**。

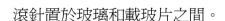
第四代熱膨脹儀

改良第三代裝置,我們決定**不以量角器直接測量**滾針的旋轉角度,而是**在注射針 末端貼上鏡片**,以光束不易散開的**雷射光水平入射鏡面**,利用鏡面的**反射原理**,將反 射光**投射在牆壁**上,**觀察牆壁上光點位置**的變化,經**計算**可得金屬棒的伸長量。

第四代的製作過程:

1.製作鏡面:

小心刮除光碟背面上的漆,露出內層光亮材質,以剪刀裁剪一小片,插入注射針尾端的塑膠孔內,固定後作爲反射的鏡面(圖 11)。


圖 11: 刮除光碟片背面的漆, 作為反射的鏡面。

2. 裝配雷射光:

安裝雷射光(3mW)裝置,用附滴定管夾的鐵架, 夾住木板,便於調整雷射光的高低與方向(圖 12)。

3.滾針的接觸面:

支撐台上放置一塊玻璃,而角尺底部黏貼載玻片,將

4.以鉛直的牆壁,作爲鏡面反射的投射區(圖 13)。

5.水平測試裝置:

用水平儀調整支撐台水平;用連通管標定水平高度,使滾針、牆壁上的原點等高,並調整入射鏡面的雷射光成水平(圖 13)。

圖 12:雷射光裝置。

圖 13:滾針上的鏡面,將入 射光反射至牆上。

第四代的精確值:

第四代裝置的測量,利用雷射光的鏡面反射,當**滾針旋轉** θ 角,**反射光**則**旋轉**200,再利用光的**直線傳播**性質,**拉大**鏡面與牆壁間的**距離**,提高測量的靈敏度;若鏡面與牆壁距離 200cm 時,以最小刻度 1mm 的捲尺量測光點位置的變化,則儀器的精確值爲 0.00022mm。

(二)加熱金屬棒的水槽

不鏽鋼水槽

使用長方形不鏽鋼水槽,以電磁爐加熱,電磁爐的震動會造成牆上光點的晃動, 而且電磁爐附近的水溫明顯偏高,以人工攪動水面維持均溫,容易碰觸金屬管,造成 實驗失敗。

自製T型水槽

第二代水槽製作過程:

- 1.以木板釘製一座 T 型水槽,內面舖 設防水塑膠布。
- 2.加熱器改以不會震動的電湯匙取代 電磁爐。
- 3.水槽內鋪設塑膠管,連接潛水馬達,並在塑膠管上相隔固定距離鑽孔,但鑽孔的方位應避開水柱衝擊金屬管。潛水馬達將電湯匙加溫過

圖 14: T 型水槽

的水送入塑膠管內,經由塑膠管上的孔洞噴出,使熱水平均分佈於水槽內,而 水的流動循環,可均勻加熱金屬管的水溫(圖 14)。

二、儀器的測量原理

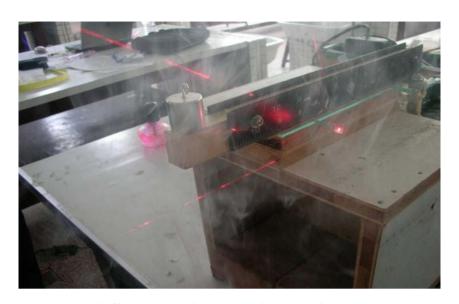


圖 15:施放煙霧下,清楚可見入射光與反射光的路徑。

光碟鏡面固定於注射針末端,鏡面反射水平入射的雷射光,當金屬熱膨脹時推動角尺,角尺帶動注射針滾動,故鏡面會旋轉,觀察反射光的旋轉角度,可計算出金屬棒的伸長量,詳細說明如下:

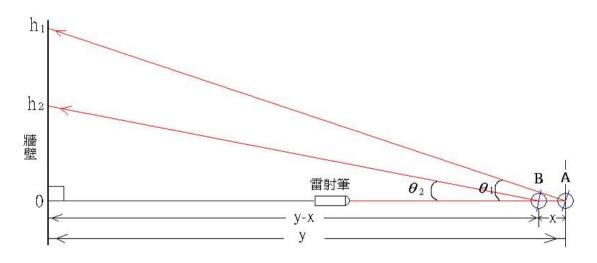


圖 16: 雷射光的鏡面反射示意圖

- (一)如圖 16,入射光維持不變,滾針由 A 點滾動至 B 點,令滾針逆時鐘旋轉 θ,
 入射光與反射光的夾角由 θ 1 變成 θ 2,依反射定律,反射光旋轉角度(θ 1 θ 2)等於滾針旋轉角度的兩倍,即 2 θ = θ 1 θ 2......(1)
- (二)如圖 16,滾針在 A 點時與牆壁距離爲 y,牆上光點座標 h_1 ;滾針滾動至 B 點時,令滾動距離 x,則滾針與牆壁距離爲 y-x,牆上光點座標 h_2 。依據三角函數可

得:

$$\tan\theta_1 = h_1/y$$
, $\theta_1 = \tan^{-1}(h_1/y)$ (2)

$$\tan \theta_2 = h_2/(y-x)$$
, $\theta_2 = \tan^{-1} (h_2/(y-x))$(3)

(2)、(3) 代入(1),得
$$2\theta = tan^{-1}(h_1/y) - tan^{-1}[h_2/(y-x)]$$
(4)

(三) 滾針的滾動距離
$$X=2\pi r (\theta/360^\circ) = \pi r (2\theta/360^\circ) \cdots (5)$$

(4)代入(5),得
$$\mathbf{X} = \frac{\pi r \times (\tan^{-1}(h/y) - \tan^{-1}(h/y))}{360^{\circ}}$$
…… (6)

(6) 式中的 $r \cdot y \cdot h_1 \cdot h_2$ 可以量測,並使用工程計算機運算(或以電腦 Excel 運算), 求滾動距離 X,解法如下:

步驟 1: 先忽略(6) 式中 X, 得滾針滾動距離的近似值 X

$$X_{1} = \frac{\pi r \times (tan^{-1} (h/y) - tan^{-1} (h/y))}{360'}$$

(X:誤差值,在mm單位小數第5位)

步驟 2:以 X1代入(6)式,得滾針滾動距離的近似值 X2

$$X_2 = \frac{\pi r \times (tan^{-1} (h/y) - tan^{-1} (h/y))}{360^{\circ}}$$

(X2 誤差値,在mm 單位小數第9位)

(四)如圖 17,金屬棒的伸長量=2 倍滾針的滾動距離= $2X_2$ 。

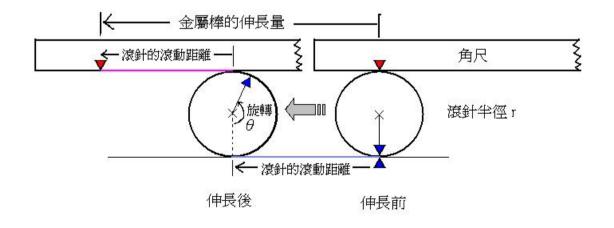


圖 17:滾針與角尺的運動示意圖

三、實驗步驟

- (一)以第四代裝置(滾針半徑 0.45mm)實驗 60cm 鐵管,水溫 10°C時,標記牆上光點位置,並測量反射鏡面與牆壁間距離,緩慢加熱,水溫上升爲 15°C、20°C、25°C、30°C、35°C、40°C、45°C、50°C時,標記牆上光點位置(圖 18)。
- (二)以捲尺測量牆上各光點的位置坐標(圖 19),分別代入公式,計算水溫上升 5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃時,鐵管熱膨脹的伸長量,並填寫表格及畫出關係圖。
- (三)更換以下待測金屬管:黃銅管(60cm)、鋁管(60cm)、鋁管(40cm)、實心鋁棒(60cm), 操作如步驟(一)、步驟(二)。

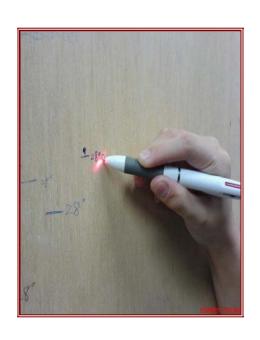
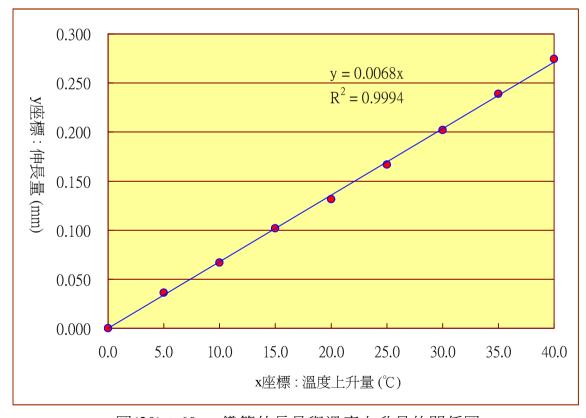


圖 18: 標記牆上光點的位置。

圖 19: 捲尺量測標記點的座標。

陸、研究結果

一、研究一:探討 60cm 鐵管伸長量與溫度上升量的關係


控制變因: 鐵管 (60cm)、水溫上升範圍 (10~50°)。

操縱變因:水溫上升 5° 、 10° 、 15° 、 20° 、 25° 、 30° 、 35° 、 40° 。

(一)實驗結果:

表(一): 60cm 鐵管伸長量與溫度上升量的關係 (四捨五入至小數第三位)

溫度上升量(℃)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
第一次實驗(mm)	0.037	0.068	0.103	0.133	0.168	0.201	0.238	0.272
第二次實驗(mm)	0.036	0.065	0.099	0.129	0.162	0.196	0.231	0.265
第三次實驗(mm)	0.036	0.068	0.103	0.133	0.171	0.209	0.248	0.287
平均值 (mm)	0.036	0.067	0.102	0.131	0.167	0.202	0.239	0.274

圖(20):60cm 鐵管伸長量與溫度上升量的關係圖

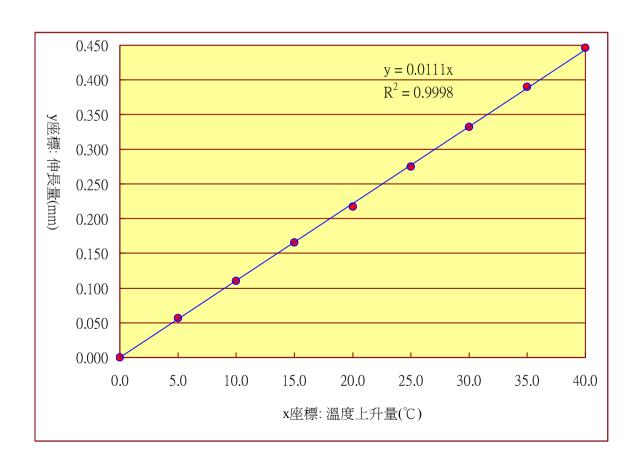
(二)說明:

- 1.利用電腦 EXCEL 作圖,線性趨勢線過原點,相關係數(R²=0.9994),為高度正相關,由圖(20)推論:鐵管伸長量與溫度上升量成正比。
- 2.趨勢線方程式:y=0.0068x,x 爲溫度上升量,y 爲伸長量,故每上升 1 $^{\circ}$,鐵管平均伸長量= $0.0068(mm/^{\circ})$ 。
- 3.實驗值相對於趨勢線的偏差,如下表(二)。

表(二):實驗值的偏差

溫度	度上升量 (℃)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
伸長量	實驗値	0.036	0.067	0.102	0.131	0.167	0.202	0.239	0.274
量 (mm)	趨勢線 y=0.0068x	0.034	0.068	0.102	0.135	0.169	0.203	0.237	0.271
絶	對偏差(mm)	0.002	0.001	0.000	0.004	0.002	0.001	0.002	0.003
相	對偏差(%)	6.3	0.7	0.0	2.9	1.4	0.4	0.8	1.3
平均	7相對偏差(%)				1	.7			

二、研究二:探討 60cm 黃銅管伸長量與溫度上升量的關係


控制變因: 黃銅管 (60cm)、水溫上升範圍 (10~50℃)。

操縱變因:水溫上升 5° 、 10° 、 15° 、 20° 、 25° 、 30° 、 35° 、 40° 。

(一)實驗結果:

表(三): 60cm 黃銅管伸長量與溫度上升量的關係 (四捨五入至小數第三位)

溫度上升量(℃)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
第一次實驗(mm)	0.052	0.110	0.161	0.218	0.277	0.336	0.397	0.457
第二次實驗(mm)	0.059	0.110	0.166	0.216	0.272	0.327	0.384	0.440
第三次實驗(mm)	0.061	0.111	0.169	0.218	0.276	0.333	0.388	0.444
平 均 値 (mm)	0.057	0.110	0.166	0.217	0.275	0.332	0.390	0.447

圖(21):60cm 黃銅管伸長量與溫度上升量的關係圖

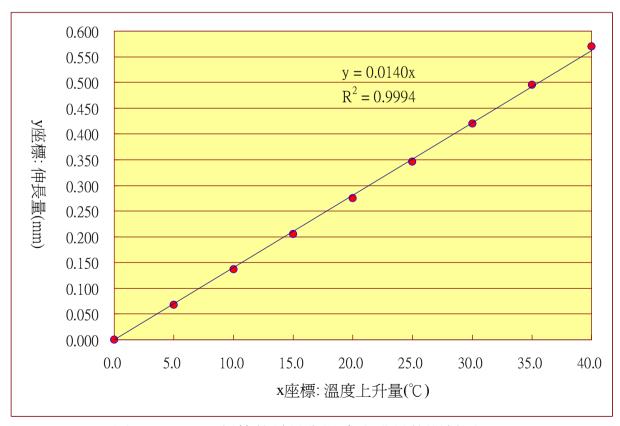
(二)說明:

- 1.利用電腦 EXCEL 作圖,線性趨勢線過原點,相關係數(R²=0.9998),為高度正相關,由圖(21)推論:黃銅管伸長量與溫度上升量成正比。
- 2.趨勢線方程式:y=0.0111x,x 爲溫度上升量,y 爲伸長量,故每上升 1 ℃,黃銅管 平均伸長量=0.0111(mm/ ℃)。
- 3.實驗值相對於趨勢線的偏差,如下表(四)。

表(四):實驗值的偏差

温度	使上升量 (°C)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
伸長量	實驗値	0.057	0.110	0.166	0.217	0.275	0.332	0.390	0.447
量 (mm)	趨勢線 y=0.0111x	0.055	0.111	0.166	0.222	0.277	0.332	0.388	0.443
絶	i對偏差(mm)	0.002	0.001	0.001	0.004	0.002	0.000	0.002	0.004
相	 對偏差(%^)	3.1	0.5	0.4	1.9	0.7	0.0	0.5	8.0
平均	神對偏差(%)				1.	0			

三、研究三:探討 60cm 鋁管伸長量與溫度上升量的關係


控制變因:鋁管(60cm)、水溫上升範圍(10~50°)。

操縱變因:水溫上升量 5° 、 10° 、 15° 、 20° 、 25° 、 30° 、 35° 、 40° 。

(一)實驗結果:

表(五): 60cm 鋁管伸長量與溫度上升量的關係 (四捨五入至小數第三位)

溫度上升量(℃)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
第一次實驗(mm)	0.068	0.138	0.208	0.279	0.350	0.422	0.499	0.574
第二次實驗(mm)	0.067	0.137	0.202	0.271	0.342	0.416	0.493	0.567
第三次實驗(mm)	0.069	0.137	0.206	0.275	0.346	0.421	0.496	0.569
平 均 値 (mm)	0.068	0.137	0.205	0.275	0.346	0.420	0.496	0.570

圖(22):60cm 鋁管伸長量與溫度上升量的關係圖

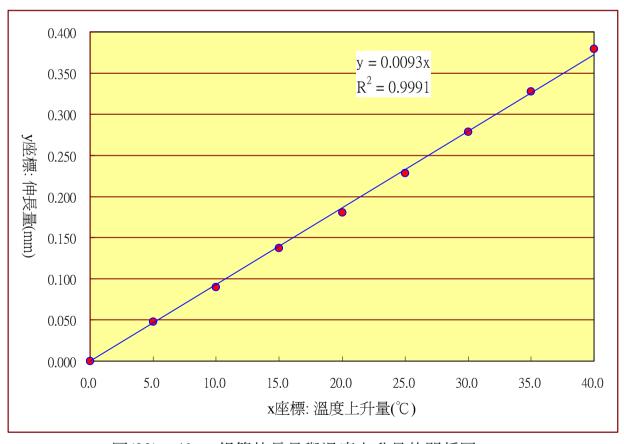
(二)說明:

- 1.利用電腦 EXCEL 作圖,線性趨勢線過原點,相關係數(R²=0.9994),為高度正相關, 由圖(22)推論:鋁管伸長量與溫度上升量成正比。
- 2.趨勢線方程式:y=0.0140x,x 爲溫度上升量,y 爲伸長量,故每上升 1℃,鋁管平均伸長量=0.0140(mm/℃)。
- 3.實驗值相對於趨勢線的偏差,如下表(六)。

表(六):實驗値的偏差

温度	度上升量 (℃)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0		
伸長量	實驗値	0.068	0.137	0.205	0.275	0.346	0.420	0.496	0.570		
量 (mm)	趨勢線 y = 0.0140x	0.070	0.140	0.210	0.280	0.350	0.420	0.490	0.560		
絶	善對偏差(mm)	0.002	0.002	0.005	0.005	0.004	0.000	0.006	0.011		
相	對偏差(%)	2.8	1.7	2.2	1.6	1.1	0.0	1.3	1.9		
平均	 相對偏差(%)		1.6								

四、研究四:探討 40cm 鋁管伸長量與溫度上升量的關係


控制變因:鋁管(40cm)、水溫上升範圍(10~50℃)。

操縱變因:溫度上升量 5° 、 10° 、 15° 、 20° 、 25° 、 30° 、 35° 、 40° 。

(一)實驗結果:

表(七): 40cm 鋁管伸長量與溫度上升量的關係(四捨五入至小數第三位)

溫度上升量(℃)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
第一次實驗(mm)	0.049	0.093	0.143	0.187	0.237	0.289	0.339	0.392
第二次實驗(mm)	0.048	0.088	0.133	0.176	0.222	0.273	0.322	0.373
第三次實驗(mm)	0.046	0.089	0.136	0.179	0.227	0.274	0.322	0.373
平均值(mm)	0.048	0.090	0.137	0.180	0.229	0.279	0.328	0.379

圖(23): 40cm 鋁管伸長量與溫度上升量的關係圖

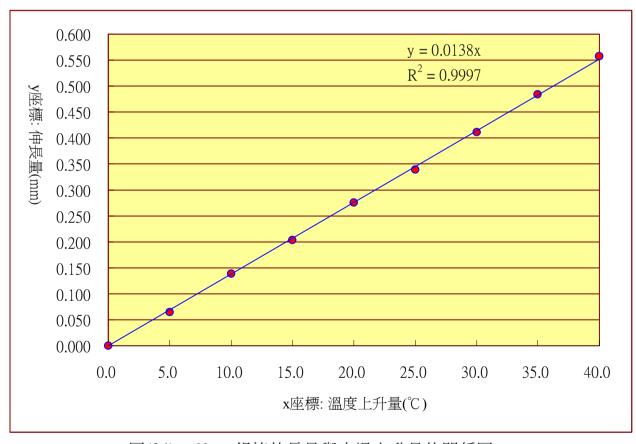
(二)說明:

- 1.利用電腦 EXCEL 作圖,線性趨勢線過原點,相關係數(R²=0.9991),為高度正相關, 由圖(23)推論: 40cm 鋁管伸長量與溫度上升量成正比。
- 2.趨勢線方程式:y=0.0093x,x 爲溫度上升量,y 爲伸長量,故每上升 1 ℃,40cm 鋁管的平均伸長量=0.0093(mm/℃)。
- 3.實驗値相對於趨勢線的偏差,如下表(八)。

表(八):實驗值的偏差

溫度」	上升量(℃)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
伸長量	實驗值	0.048	0.090	0.137	0.180	0.229	0.279	0.328	0.379
重 (mm)	趨勢線 y=0.0093x	0.047	0.093	0.140	0.186	0.233	0.279	0.326	0.372
絶對	対偏差(mm)	0.001	0.003	0.002	0.006	0.004	0.000	0.002	0.007
相對	討偏 <u>差</u> (%)	2.5	3.0	1.6	3.0	1.7	0.2	0.7	2.0
平均相	泪對偏 <u>差</u> (%)	*			1	.8	ž		•

五、研究五:探討 60cm 實心鋁棒伸長量與溫度上升量的關係


控制變因:實心鋁棒(60cm)、水溫上升範圍(10~50°)。

操縱變因:水溫上升量 5° 、 10° 、 15° 、 20° 、 25° 、 30° 、 35° 、 40° 。

(一)實驗結果:

表(九): 60cm 鋁棒伸長量與溫度上升量的關係(四捨五入至小數第三位)

溫度上升量(℃)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
第一次實驗(mm)	0.069	0.144	0.208	0.281	0.344	0.416	0.491	0.564
第二次實驗(mm)	0.063	0.133	0.200	0.272	0.336	0.411	0.480	0.555
第三次實驗(mm)	0.062	0.139	0.202	0.274	0.339	0.407	0.482	0.554
平均值(mm)	0.065	0.139	0.203	0.276	0.340	0.411	0.485	0.558

圖(24):60cm 鋁棒伸長量與水溫上升量的關係圖

(二)說明:

- 1.利用電腦 EXCEL 作圖,線性趨勢線過原點,相關係數(R²=0.9997),為高度正相關,由圖(24)推論:60cm實心鋁棒伸長量與溫度上升量成正比。
- 2.趨勢線方程式:y=0.0138x,x 爲溫度上升量,y 爲伸長量,故每上升 1 ℃,60cm 實 心鋁棒平均伸長量=0.0138(mm/°C)。
- 3.實驗值相對於趨勢線的偏差,如下表(十)。

表(十):實驗值的偏差

維對	対偏差(mm)	0.004	0.001	0.003	0.001	0.004	0.001	0.003	0.007
里 (mm)	趨勢線 y=0.0138x	0.069	0.138	0.206	0.275	0.344	0.413	0.481	0.550
伸長量	實驗値	0.065	0.139	0.203	0.276	0.340	0.411	0.485	0.558
血/支二	上升量(℃)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0

六、研究六:實驗數據的歸納與分析

表(六):數據的分析

金屬種類與規格 分析項目	鐵管 (60cm)	黄銅管 (60cm)	鋁管 (60cm)	鋁管 (40cm)	鋁棒 (實心) (60cm)
每1℃的平均伸長量 (mm/℃)	0.0068	0.0111	0.0140	0.0093	0.0138
平均相對偏差(%)	1.7	1.0	1.6	1.8	1.4
線膨脹係數實驗値 α (×10 ⁻⁶ /℃)	11. 33	18.50	23. 33	23. 25	23.00

說明:

- (一)依據毎1℃的平均伸長量,60cm 鋁管與40cm 鋁管的數據關係(0.0140:0.0093≒60:40),推論:相同溫度上升量,鋁管的長度比=伸長量比。
- (二)由上表知 60cm 空心鋁管與 60cm 實心鋁棒,每 1℃的平均伸長量並沒有顯著 差異,故推論:鋁棒爲實心或空心,熱膨脹的伸長量不受影響。
- (三)平均相對偏差在1.0%~1.8%之間,表示實驗值的精密度高。
- (四)線膨脹係數 α (x10°/°C) = (1/L)x(Δ L/ Δ T)

= (1/L) x (每1℃的平均伸長量)

L: 金屬管長度, $\Delta L:$ 伸長量, $\Delta T:$ 溫度上升量

1.線膨脹係數的實際値 α (x10 $^{\circ}$ /℃): 鐵(11.8);黃銅(19);鋁(23.6)。

(資料來源:拾、參考資料三、四)

2.以 60cm 鐵管、黃銅管、鋁管爲例,實驗值的線膨脹係數與實際值比較,相 對誤差如下:

鐵管的相對誤差=〔(11.33-11.8)/11.8〕×100% =-3.98%

黃銅管的相對誤差=〔(18.50-19)/19〕×100% =-2.63%

鋁管的相對誤差=〔(23.33-23.6)/23.6〕×100% =-1.14%

柒、討論

- 一、**第一代簡易熱膨脹儀**的器材簡單,操作容易,指針的旋轉也明顯,可用來證明金屬棒受熱會伸長,**適合教學上的操作觀察**。
- 二、第一代簡易熱膨脹儀,酒精燈一開始加熱銅棒時,常發生指針倒轉(順時鐘方向),似乎銅棒受熱發生縮短的現象,我們判斷因金屬棒受熱不均勻,使金屬棒彎曲,把兩端往中間拉,兩端距離反而縮短,所以指針有點倒轉;若以噴燈上下均勻加熱測試,則指針不會有倒轉的現象。
- 三、小心刮除光碟片背面的外層塗料,使光亮材質露出表面,再以剪刀裁剪下一小片, 一端削尖,插入注射針尾端的塑膠孔內,用**露出表面**的光亮材質反射光線,**效果 良好**。
- 四、**第四代熱膨脹儀**,靈敏度極高,由於實驗地點位於三樓,發現**人靠近**裝置時,牆上**光點會往下滑**,人遠離裝置,光點又回到原來位置,體重越大,光點下滑距離越大,證實**體重會使樓地板發生些微彎曲**。爲解決此困擾,**將裝置移至天花板的樑柱下方**,因此位置的地板**位於樑柱上**,**抗壓性大**,才解決觀察者的體重影響實驗。
- 五、運轉中的**潛水馬達**,因震動造成**牆上光點晃動**,爲降低馬達震動波的傳遞,在馬達的下方**墊置氣球**,並以**橡皮管**連接馬達出水口和塑膠管,才解決牆上光點晃動的困擾。
- 六、**第四代熱膨脹儀**靈敏度高,**用水浴法加熱**,加熱溫度範圍 10~50℃即可,實驗也較爲安全。
- 七、**儀器**是我們的**特色**,由於靈敏度高,金屬棒伸長一點點,牆上光點便下滑一段很長的距離,所以儀器**功能**在於**放大伸長量,便於觀察與測量。**鏡面至牆壁的距離 **200cm** 時,放大倍數約 **4.546** 倍,而兩者是正比關係。
- 八、滾針的**接觸面性質**影響摩擦力,**摩擦力過大阻止滾針移動**,**過小可能導致滾針滑動**,因此我們設計實驗,分別以玻璃和紙張做為滾針的接觸面,測試並分析結果。
- (一)實驗設計:**前、後兩滾針都貼上鏡面**,以兩支雷射筆分別向兩滾針的鏡面射入雷射光, 以**兩滾針同時偵測金屬管的伸長量**。
- (二)實驗結果:兩滾針的接觸面爲玻璃或紙張,**結果有很大的差異**。

- 1. 玻璃使兩滾針所偵測到的伸長量極爲接近,僅約 0.02% 的偏差;而紙張卻使兩滾針的測量值差異大,約有 4% 的偏差。
- 2. 而且相同的溫度上升量,紙張的測量值遠低於玻璃的測量值。

(三)討論:

- 1. 理論上兩滾針同時值測伸長量,應有相同的測量值。
- 2. 分析與推論:紙張材質較**鬆軟**,使得滾針有**些許移位而沒有滾動**,又兩滾針承載角尺 重量不一,滾針作用於紙張上壓力不同,使兩滾針移位情形不同,故測量值不一致; 還有紙張的測量值遠低於玻璃的測量值,更加印證上述推論。
- (四)結論:(1)在**玻璃材質下,滾針應當沒有滑動**。(2)**紙張因鬆軟,導致滾針滑動**。(3) 所以我們選用玻璃作爲滾針的接觸面。

捌、結論

一、研究一結論:

鐵管伸長量與溫度上升量成正比。

二、研究二結論:

黄銅管伸長量與溫度上升量成正比。

- 三、研究三、四結論:
 - (一) 鋁管伸長量與溫度上升量成正比。
 - (二)相同的溫度上升量,鋁管的長度與伸長量成正比。

四、研究五結論:

- (一)實心鋁棒伸長量與溫度上升量成正比。
- (二) 鋁棒爲實心或空心,熱膨脹的伸長量不受影響。
- 五、根據第四代熱膨脹儀實驗所得數據,歸納如下:
 - (一) 平均相對偏差在 1.0% ~1.8% 之間,表示實驗值的精密度高。
 - (二)比較鐵、黃銅、鋁的線膨脹係數 α (×10⁻⁶/°C),鋁(23.33)>黃銅(18.50) >鐵(11.33)。
 - (三)實驗値的相對誤差爲:鋁(-1.14%);黃銅(-2.63%);鐵(-3.98%)。

玖、後續研究方向

- 一、研究金屬合金的線膨脹係數與成份比例的關係。
- 二、本實驗裝置應用於其他固體物質的熱膨脹研究,例如塑膠、玻璃等。

拾、參考資料

- 一、姚珩等編著(民94)。國中自然與生活科技(2上)。台南市:翰林。
- 二、賴耿陽編著(民89)。非鐵金屬材料。台南市:復漢。
- 三、陳龍英、郭明賢著(民93)。普通物理(上)。台北市:三民。
- 四、陳文照等譯(民91)。材料科學與工程導論。台北縣:高立。
- 五、葉家棟。科學活動與近代化學的發展。民 89 年 4 月 5 日,取自: http://www.isst.edu.tw/s57/res.html

評 語

- 031602 明察秋毫-金屬的熱膨脹
- 本作品自製改良儀器提高熱膨脹係數量測,其中設計「滾針及鏡面反射」之應用頗有創意。
- 惟本實驗之數值表達需符合科學表示精確度之要求,並於 迴歸分析,之物理意義應予陳述,而在圖表中適應表示。
- 3. 建議思考如何改進自製儀器於量測短線圓狀材質之量測。