中華民國第四十六屆中小學科學展覽會 作品說明書

國中組 數學科

030412

國二 蕭舒瑜

Magic Poker—撲克牌遊戲分析

學校名稱: 臺中縣立潭子國民中學

關 鍵 詞:奇偶數、數列規律、二元一次聯立方程式

Magic Poker

研究摘要

利用撲克牌變魔術是這次的研究主題,先選出一張牌【以下稱**目標牌**】,然後將它和其他牌混合,再依順序排列,重複幾次,**目標牌**會出現在固定的張序中,試著找出規律。【遊戲玩法詳見本報告:肆、研究過程與方法】

依據不同的張數、堆數和疊合方式,**目標牌**會在不同的回合、張序中,這次的實驗就是 要找出這些數據和規律。

壹、研究動機:

有一次在學務處幫忙事情,突然有一個大哥哥來洽公,在辦理的時候他看到我們在 談論有關魔術的事,就要了一副撲克牌耍了一個小魔術,之後他教了我們方法,好奇的 我們就想研究一下其中的奧妙,而且運用國一數學學過的數量關係單元的知識,以及現 在國二正在學的二元一次聯立方程式的技巧,將相關數據的關係整理出來,於是這篇報 告就產生了。

貳、硏究目的:

- 一、找出這個撲克牌魔術**目標牌**出現的規則(回合數、張序),並更改張數(3的倍數、5的倍數)、堆數(3堆、5堆)找出其規律。
- 二、更改放置**目標牌**那一疊放入的順序〈原本是放在中間,現在換放在別堆〉,找出其規律。

參、研究設備與器材:

撲克牌、紙和筆、五個臭皮匠似的頭腦。

肆、研究過程與方法:

一、此撲克牌的玩法如下:

分 3 堆:表演者先從一副撲克牌中任意拿 21 張撲克牌,請一位觀眾選定一張牌(目標牌,只有觀眾知道花色和數字並記住),之後表演者將目標牌混入牌堆中洗勻,接著按順序發牌分成 3 疊每疊 7 張(正面朝上),並請觀眾確認目標牌在哪一疊,將含有目標牌的那疊放在 3 疊的中間依序疊合將牌收攏,以上稱爲一回合,重複三回合後就能準確找出目標牌(收攏後依序發到第 11 張就是答案)。實際操作,經過三回合後,都可找出目標牌,現場觀眾驚呼連連。

二、快速的數據產出方法:

總共有 n 張牌分成 3 疊或 5 疊,每一疊有 x 張($x = \frac{n}{3}$ 或 $\frac{n}{5}$),目標牌的位置在第 y 疊(由左而右依序爲 1~3 或 1~5),目標牌的位置在該疊由下往上數的第 z 張,則最後目標牌在第 k = x(y-1) + z 張,經過幾回合之後,k 會固定不變。

伍、研究結果:

一、原遊戲條件的分析

我們想知道爲什麼原遊戲一定要重複發牌的動作三次?如果張數不同,所需回合數就不 同嗎?所以我們把所有的結果都列出來:

〈一〉牌數爲3的奇數倍

張數(n)	3	9	15	21	27	33	39	45	51	57	63	67	75	81	87	93
所 回 合 數	1	2	3	3	3	4	4	4	4	4	4	4	4	4	5	5
最後在 第 k 張牌	2	5	8	11	14	17	20	23	26	29	32	35	38	41	44	47

律:經過所需的回合數之後,**目標牌**落在第幾張牌(k)跟牌的張數(n)有關。 規

若有 n 張牌 $(n=3\times(2m-1), m$ 爲正整數),最後**目標牌**落在第 $k=\frac{n+1}{2}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 3a+b=2\\ 9a+b=5 \end{cases}$$

所以
$$k = \frac{n+1}{2}$$

〈二〉牌數爲3的偶數倍

		20.0		4 11 420	*,,												
張數(n	n)	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96
	需數	2	2	2	3	4	4	4	4	4	4	4	4	4	4	4	5
最後 第k張	在牌	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48

律:若有 n 張牌 ($n = 3 \times 2m$, m 爲正整數),最後**目標牌**落在第 $k = \frac{n}{2}$ 張。 規

演算過程: 設
$$k = an + b$$

演算過程: 設
$$k = an + b$$

$$\begin{cases} 6a + b = 3 \\ 12a + b = 6 \end{cases}$$
 解得 $a = \frac{1}{2}$ 、 $b = 0$ 所以 $k = \frac{n}{2}$

所以
$$k = \frac{n}{2}$$

二、改變條件的分析

我們嘗試把放置目標牌的那一疊撲克牌放在收攏動作的第一疊或第三疊。

〈一〉放在第一疊:

1. 牌數爲3的奇數倍

張數(n)	3	9	15	21	27	33	39	45	51	57	63	69	75	81	87	93
所 需 回 合 數	1	2	3	4	3	4	5	5	5	4	5	4	5	4	5	4
最後在 第k張牌	1	3	4	6	7	9	10	12	13	15	16	18	19	21	22	24

規律一:若有 n 張牌 ($n=3\times(4m-3)$, m 爲正整數),最後**目標牌**落在第 $k=\frac{n+1}{4}$ 張。

演算過程:設
$$k = an + b$$

$$\begin{cases} 3a + b = 1 \\ 15a + b = 4 \end{cases}$$
 解得 $a = \frac{1}{4}$ 、 $b = \frac{1}{4}$ 所以 $k = \frac{n+1}{4}$

規律二:若有 n 張牌 ($n=3\times(4m-1)$, m 爲正整數),最後**目標牌**落在第 $k=\frac{n+3}{4}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 9a + b = 3 \\ 21a + b = 6 \end{cases}$$
 解得 $a = \frac{1}{4}$ 、 $b = \frac{3}{4}$ 所以 $k = \frac{n+3}{4}$

2. 牌數爲 3 的偶數倍

張數(n)	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96
所 需 回 合 數	2	2	2		3		3		3		4		4		4	
最後在 第k張牌	2	3. 4 循環	5	6. 7 循環	8	9. 10 循環	11	12. 13 循 環	14	15. 16 循環	17	18. 19 循 環	20	21. 22 循 環	23	24. 25 循 環

規律一:若有 n 張牌 ($n=3\times(4m-2)$, m 爲正整數), 最後**目標牌**落在第 $k=\frac{n+2}{4}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 6a + b = 2 \\ 18a + b = 5 \end{cases}$$
 解得 $a = \frac{1}{4} \cdot b = \frac{2}{4}$ 所以 $k = \frac{n+2}{4}$

規律二(循環):若有 n 張牌 $(n=3\times 4m, m)$ 馬正整數),最後目標牌在

第
$$\frac{n}{4}$$
與 $\frac{n}{4}$ +1張循環。

〈二〉放在第三疊

1. 牌數爲3的奇數倍

張數	3	9	15	21	27	33	39	45	51	57	63	69	75	81	87	93
(n)																
所需回	1	2	3	3	3	3	4	4	4	4	4	4	4	4	5	5
合數																
最後在	3	7	12	16	21	25	30	34	39	43	48	52	57	61	66	70
第k張																
牌																

規律一:若有 n 張牌 ($n=3\times(4m-3)$, m 爲正整數), 最後**目標牌**落在第 $k=\frac{3n+3}{4}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 3a + b = 3 \\ 15a + b = 12 \end{cases}$$
 解得 $a = \frac{3}{4}$ 、 $b = \frac{3}{4}$ 所以 $k = \frac{3n + 3}{4}$

規律二:若有 n 張牌 ($n=3\times(4m-1)$, m 爲正整數),最後**目標牌**落在第 $k=\frac{3n+1}{4}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 9a + b = 7 \\ 21a + b = 16 \end{cases}$$
 解得 $a = \frac{3}{4}$ 、 $b = \frac{1}{4}$ 所以 $k = \frac{3n + 1}{4}$

2. 牌數爲 3 的偶數倍

張數	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96
(n)																
所需	2		3		3		4		5		5		5		5	
回合數																
最後在	5	9.	14	18.	23	27.	32	36.	41	45.	50	54.	59	63.	68	72.
第k張		10		19		28		37		46		55		64		73
牌		循		循		循		循		循		循		循		循
		環		環		環		環		環		環		環		環

規律一:若有 n 張牌 ($n=3\times(4m-2)$, m 爲正整數),最後**目標牌**落在第 $k=\frac{3n+2}{4}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 6a + b = 5 \\ 18a + b = 14 \end{cases}$$
 解得 $a = \frac{3}{4}$ 、 $b = \frac{2}{4}$ 所以 $k = \frac{3n + 2}{4}$

規律二(循環):若有 n 張牌 $(n=3\times 4m, m)$ 爲正整數),最後目標牌在

第
$$\frac{3n}{4}$$
與 $\frac{3n}{4}+1$ 張循環。

三、5的倍數張牌原條件分析

我們突發奇想,原本是 3 的倍數張牌,如果換成 5 的倍數張牌不知會不會也有規律 (-) 牌數為 5 的奇數倍

張數(n)	5	15	25	35	45	55	65	75	85	95
所需回合數	2	2	2	3	3	3	3	3	3	3
最後在	3	8	13	18	23	28	33	38	43	48
第k張牌										

規 律:若有 n 張牌 ($n = 5 \times (2m-1)$, m 爲正整數), 最後**目標牌**落在第 $k = \frac{n+1}{2}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 5a + b = 3 \\ 15a + b = 8 \end{cases}$$
 解得 $a = \frac{1}{2} \cdot b = \frac{1}{2}$ 所以 $k = \frac{n+1}{2}$

〈二〉牌數爲5的偶數倍

張數 (n)	10	20	30	40	50	60	70	80	90	100
所需	2.3	2.3	3.4	2.3	3.4	3.4	3.4	3.4	3.4	3.4
回合數										
最後在	5.6	10.11	15.16	20.21	25.26	30.31	35.36	40.41	45.46	50.51
第k張牌	循環	循環	循環	循環	循環	循環	循環	循環	循環	循環

規 律(循環):若有n張牌($n=5\times 2m$,m爲正整數),最後目標牌在

第
$$\frac{n}{2}$$
與 $\frac{n}{2}+1$ 張循環。

四、5的倍數張牌改變條件分析

跟3的倍數張牌一樣,改變堆疊的順序,將放置**目標牌**的那一疊放在第一、二、四、 五疊試試看。

〈一〉放在第一疊,牌數爲5的倍數

張數 (n)	5	10	15	20	25	30	35	40	45
所需回合	2	2	3	3	3	2.3	2	2	2
答案在	1	2	3	4	5	5.6	6	7	8
第k張牌						循環			

張數(n)	50	55	60	65	70	75	80	85	90
所需回合	2	4	2.3	3	3	3	3	3	2.3
答案在	9	10	10.11	11	12	13	14	15	15.16
第k張牌			循環						循環

張數(n)	95	100
所需回合	3	3
答案在	16	17
第k張牌		

規律一:若有 n 張牌 ($n = 5 \times m$, m 爲正整數),且 $\frac{n}{30} = a$餘b, 最後**目標牌**在

第
$$k = \frac{n}{5} - a$$
 張。

演算過程:設k = an + b $\begin{cases} 5a + b = 1 \\ 10a + b = 2 \end{cases}$ 解得 $a = \frac{1}{5}$ 、b = 0 所以 $k = \frac{n}{5}$

但每增加 30 張會遇到循環,遇到一次循環 k 要減 1,n 張會遇到 $\frac{n}{30} = a$餘b

a 次循環(餘數不影響),所以修正 $k = \frac{n}{5} - a$ 。

規律二(循環):若有 n 張牌 $(n = 5 \times 6m , m$ 爲正整數),最後**目標牌**在

第
$$\frac{n}{6}$$
與 $\frac{n}{6}$ +1張循環。

〈二〉放在第二疊,牌數爲5的倍數

張數(n)	5	10	15	20	25	30	35
所需 回合數	1	2		3	3		3
最後在 第 k 張	2	4	5.6 循環	7	9	10.11 循環	12
張數(n)	40	45	50	55	60	65	70
所需 回合數	3		4	4		4	4
最後在 第 k 張	14	15.16 循環	17	19	20.21 循環	22	24

張數(n)	75	80	85	90	95	100
所需 回合數		4	4		4	4
最後在 第 k 張牌	25.26 循環	27	29	30.31 循環	32	34

規律一:若有 n 張牌 ($n = 5 \times (3m-2)$, m 爲正整數),最後**目標牌**落在第 $k = \frac{n+1}{3}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 5a + b = 2 \\ 20a + b = 7 \end{cases}$$
 解得 $a = \frac{1}{3}$ 、 $b = \frac{1}{3}$ 所以 $k = \frac{n+1}{3}$

規律二:若有 n 張牌 ($n=5\times(3m-1)$, m 爲正整數), 最後**目標牌**落在第 $k=\frac{n+2}{3}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 10a + b = 4 \\ 25a + b = 9 \end{cases}$$
 解得 $a = \frac{1}{3}$ 、 $b = \frac{2}{3}$ 所以 $k = \frac{n+2}{3}$

規律三 (循環): 若有 n 張牌 ($n = 5 \times 3m$, m 爲正整數), 最後**目標牌**在

第
$$\frac{n}{3}$$
與 $\frac{n}{3}+1$ 張循環。

〈三〉放在第四疊,牌數爲5的倍數

張數(n)	5	10	15	20	25	30	35	40	45
所需回合數	1	2	2.3	3	2	2.3	3	3	3.4
最後在	4	7	10.11	14	17	20.21	24	27	30.31
第k張牌			循環			循環			循環

張數 (n)	50	55	60	65	70	75	80	85	90	95	100
所需回合數	3	3	3.4	3	4	2.3	3	4	4	3	4
最後在	34	37	40.41	44	47	50.51	54	57	60.61	64	67
第k張牌			循環			循環			循環		

規律一:若有 n 張牌 ($n = 5 \times (3m - 2)$, m 爲正整數),最後**目標牌**落在第 $k = \frac{2n + 2}{3}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 5a + b = 4 \\ 20a + b = 14 \end{cases}$$
 解得 $a = \frac{2}{3}$ 、 $b = \frac{2}{3}$ 所以 $k = \frac{2n + 2}{3}$

規律二:若有 n 張牌 ($n = 5 \times (3m-1)$, m 爲正整數), 最後**目標牌**落在第 $k = \frac{2n+1}{3}$ 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 10a + b = 7 \\ 25a + b = 17 \end{cases}$$
 解得 $a = \frac{2}{3} \cdot b = \frac{1}{3}$ 所以 $k = \frac{2n + 1}{3}$

規律三(循環):若有 n 張牌 $(n = 5 \times 3m, m)$ 爲正整數),最後**目標牌**在

第
$$\frac{2n}{3}$$
與 $\frac{2n}{3}+1$ 張循環。

〈四〉放在第五疊,牌數為5的倍數

張數(n)	5	10	15	20	25	30	35	40	45	50	55	60
所需回合數	1	2	2	2	2	2.3	3	3	3	3	4	3.4
最後在	5	9	13	17	21	25.26	30	34	38	42	46	50.51
第k張牌						循環						循環

張數 (n)	65	70	75	80	85	90	95	100
所需回合數	3	3	3	4	4	3.4	3	3
最後在	55	59	63	67	71	75.76	80	84
第k張牌						循環		

規律一:若有 n 張牌 ($n = 5 \times m$, m 爲正整數),且 $\frac{n}{30} = a$餘b,最後**目標牌**在

第
$$k = \frac{4n+5}{5} + a$$
 張。

演算過程: 設
$$k = an + b$$

$$\begin{cases} 5a + b = 5 \\ 10a + b = 9 \end{cases}$$
 解得 $a = \frac{4}{5}$ 、 $b = \frac{5}{5}$ 所以 $k = \frac{4n + 5}{5}$

但每增加 30 張會遇到循環,遇到一次循環 k 要加 1,n 張會遇到 $\frac{n}{30}$ = a.........餘b

a 次循環(餘數不影響),所以修正
$$k = \frac{4n+5}{5} + a$$
。

規律二(循環):若有 n 張牌 $(n = 5 \times 6m \cdot m)$ 爲正整數),最後目標牌在

第
$$\frac{5n}{6}$$
與 $\frac{5n}{6}+1$ 張循環。

陸、結論:

一、分析結果製表如下:

(一) 牌數爲3的倍數

第一疊	1.			第三疊		
$n = 3 \times (4m - 3)$	$k = \frac{n+1}{4}$	$n = 3 \times (2m - 1)$	$k-\frac{n+1}{n}$	$n = 3 \times (4m - 3)$	$k = \frac{3n+3}{4}$	
$n = 3 \times (4m - 1)$	$k = \frac{n+3}{4}$	$n = 3 \times (2m - 1)$	k = -2	$n = 3 \times (4m - 1)$	$k = \frac{3n+1}{4}$	
$n = 3 \times (4m - 2)$	$k = \frac{n+2}{4}$			$n = 3 \times (4m - 2)$	$k = \frac{3n+2}{4}$	
$n = 3 \times 4m$	第 $\frac{n}{4}$ 與	$n = 3 \times 2m$	$k = \frac{n}{2}$	$n = 3 \times 4m$	第 $\frac{3n}{4}$ 與	
	n/4 +1 張 循環				3n + 1 張 循環	
	NH.W				NH W	
	$n = 3 \times (4m - 3)$ $n = 3 \times (4m - 1)$ $n = 3 \times (4m - 2)$	$n = 3 \times (4m - 1) k = \frac{n+3}{4}$ $n = 3 \times (4m - 2) k = \frac{n+2}{4}$	第一豐 $n = 3 \times (4m - 3) k = \frac{n+1}{4}$ $n = 3 \times (4m - 1) k = \frac{n+3}{4}$ $n = 3 \times (4m - 2) k = \frac{n+2}{4}$ $n = 3 \times 4m$ $n = 3 \times 4m$ $n = 3 \times 4m$ $n = 3 \times 2m$	第二疊 $n = 3 \times (4m - 3) k = \frac{n+1}{4}$ $n = 3 \times (4m - 1) k = \frac{n+3}{4}$ $n = 3 \times (4m - 2) k = \frac{n+2}{4}$ $n = 3 \times 4m$ $n = 3 \times 4m$ $n = 3 \times 4m$ $n = 3 \times 2m$ $n = 3 \times 2m$ $n = 3 \times 2m$ $n = 3 \times 4m$	第二疊	

※目標牌在第一疊與第三疊的分析結果類似。

(二) 牌數爲5的倍數

目標牌 位置 n與k		第一疊	第二疊	r de la companya de l	原條件第三疊	
n 爲 5 的 奇數倍					$n = 5 \times (2m - 1)$	$k = \frac{n+1}{2}$
n 爲 5 的 偶數倍					$n = 5 \times 2m$	第 $\frac{n}{2}$ 與 $\frac{n}{2}+1$ 張 循環
	$n = 5 \times m$	$k = \frac{n}{5} - a$	$n = 5 \times (3m - 2)$	$k = \frac{n+1}{3}$		
n 爲 5 的	$n = 3 \times m$	$\left(\frac{n}{30} = a \implies b\right)$	$n = 5 \times (3m - 1)$	$k = \frac{n+2}{3}$		
倍數 (不分)	$n = 5 \times 6m$	第 $\frac{n}{6}$ 與 $\frac{n}{6}$ +1 張循環	$n = 5 \times 3m$	第 $\frac{n}{3}$ 與 $\frac{n}{3}+1$ 張 循環		

目標牌 位置	第四疊		第五疊		
n 爲 5 的奇數倍					
n 爲 5 的偶數倍					
	$n = 5 \times (3m - 2)$	$k = \frac{2n+2}{3}$	$n = 5 \times m$	$k = \frac{4n+5}{5} + a$	
	$n = 5 \times (3m - 1)$	$k = \frac{2n+1}{3}$	n = 3×m	$\left(\frac{n}{30} = a \dots $	
n 爲 5 的倍數(不分)	$n = 5 \times 3m$	第 $\frac{2n}{3}$ 與 $\frac{2n}{3}+1$ 張 循環	$n = 5 \times 6m$	第 $\frac{5n}{6}$ 與 $\frac{5n}{6}$ +1 張循環	

※目標牌在第一疊與第五疊的分析結果類似;而第二疊與第四疊的分析結果也類似。

柒、未來展望(推廣):

- 一、本遊戲所使用的是一副 52 張的撲克牌,由於我們實驗的張數超過 52 張,所以遊戲可推廣到超過 52 張的遊戲設計(例如:數字 1~20、花色選 5 種水果,共 100 張牌)。
- 二、老師告訴我們上高中會學到「矩陣」的數學概念,本試驗規則的推導是否可以應用 矩陣的轉換方式,值得深入探討。

捌、參考資料:

- 一、歷屆科學展覽作品資料。
- 二、國中數學仁林版第一冊第4章數量關係。
- 三、國中數學仁林版第三冊第3章二元一次聯立方程式。

評 語

030412 Magic Poker-撲克牌遊戲分析

考慮一個有趣的撲克牌魔術,對分三疊和分五疊的情形作分析,是很有趣的問題,可惜的是,有部份的推論似乎過於仰賴實作,如果能對分三疊的情形作更詳盡的分析,找出潛藏於模式中的規則,應該可以推導出更一般化的結論。