中華民國第四十六屆中小學科學展覽會 作品說明書

國中組 理化科

第三名

031612

再接再厲-翻滾車的奧秘

學校名稱: 臺北縣立福和國民中學

作者: 指導老師:

國二 黄毓圃 張炳南

李秀真

關 鍵 詞:翻滾車、機器人、速度

壹、 摘要

廣義的機器人沒有一定形體,依個別需要而有不同的設計,使用範圍非常廣泛,翻滾車也算是機器人的一種。研究發現以下幾種因素會影響直線行走及翻滾效果:(一)輪子越大,平地行走速度越快,但爬坡力越差。(二)車輪增加磨擦力,有助翻滾。(三)路面平坦又能吸震者翻滾效果最好。(四)車蓋高度須在一定範圍內,才能順利翻滾,且在這範圍內,車蓋越高翻滾效果越好。(五)輪子外緣應和車蓋板形成順滑圓弧,翻滾效果較好。(六)車身短較能忍受偏斜角度,翻滾效果較好。(七)想要翻得好,重心應偏前,但不能過重。(八)車子翻回時,後輪著地的撞擊力及反彈力,影響車身偏斜很大,斷電裝置,對翻滾有幫助。

貳、 研究動機

幾年前我參加全國少年科技創作競賽,獲全國總冠軍,因而有機會去<u>日本</u>,參觀在<u>神奈</u> <u>川縣</u>舉辦的全國機器人大展,引起了我對機器人的興趣。之後又因參觀<u>師大</u>舉辦的全國青少年科技競賽,其中翻滾車翻滾的模樣非常可愛,引起我濃厚的興趣。 機器人現在被運用得十分廣泛,像是醫療用機器人、娛樂用機器人、探測用機器人,工業上機器手臂更是不可或缺。而我們小學起即對簡單機械原理及動力已有基本認識,又因參加過全國少年科技創作競賽,對馬達的組裝也不陌生,在國中自然與生活科技第四冊第一章更有提到相關的知識,因此著手研究翻滾車的翻滾原理。

參、 研究目的

- 一、探討各種可能影響翻滾車翻滾效果的變因。
- 二、比較車輪大小對直線行進速度和爬坡的影響。
- 三、探討不同路面對翻滾的影響。
- 四、研究車輪磨擦力對翻滾的影響。
- 五、研究車蓋板高度對翻滾的影響。
- 六、研究車身長短對翻滾的影響。
- 七、研究車輪位置對翻滾的影響。
- 八、研究車子重心分佈對翻滾的影響。
- 九、研究斷電裝置對翻滾的影響。
- 十、製作一部翻滾效果不錯的翻滾車。

肆、 研究器材及設備

手搖鑽、電動鑽、鋸子、螺絲起子、老虎鉗、尖嘴鉗、槌子、尺、熱熔槍、鐵釘、螺絲、螺帽、電池、鋁板、木棍、木板、帶洞塑膠地墊、毛巾布地墊、砂紙、粉彩紙、3M 地墊、材料包(鐵棍、馬達、齒輪組、冰棒棍、密集板、電線、電池盒)、攝影器材、電腦。

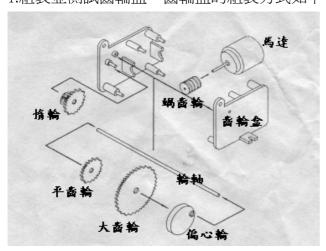
伍、 研究方法及過程

第一部份:實地參觀與心得

一、日本神奈川縣舉辦的全國機器人大展

幾年前我參加全國青少年科技創作競賽,獲全國總冠軍,因而有機會去<u>日本</u>,參觀在<u>神</u> <u>奈川縣</u>舉辦的全國機器人大展,在那裡我真是大開眼界,日本人對機器人的研發竟是這樣的投入,不只大商社投入大量資金人力研發機器人,各大學也都設攤位展示他們的研究成果,各式各樣的機器人,應付各種各樣的需求,有的只是純粹的研究,有的已進入 實用價值,真是嘆爲觀止,也引起了我對機器人的興趣。從中我更了解機器人,對人類可能產生的影響及貢獻。

二、台北「2006機器人教育博覽會」


今年元月起,<u>台北</u>也舉辦了「2006機器人教育博覽會」,內容雖沒有日本那麼豐富,但 也有一些有趣的束西,更重要的,似乎我們也開始重視機器人了,是否機器人與我們人 類的關係更密切了呢?

第二部份:翻滾實驗

一、車子的基本製作方法:

1.組裝並測試齒輪盒,齒輪盒的組裝方式如下:

- 2. 畫車身尺寸在密集板上,並用線鋸把它鋸下來。
- 3.以圓規在密集板上畫出四個車輪尺寸,線鋸鋸下,並用砂紙磨過,使車輪順滑,並在圓心 點用手工鑽鑽孔。
- 4. 為兩個齒輪盒配置電線和電池盒,並測試輪軸轉動的方向是否一致。
- 5.用熱熔槍把兩個齒輪盒黏到車身板上。
- 6.用鐵鎚在輪軸兩測各打上一個平齒輪,用來固定車輪。
- 7.用熱熔槍把車輪黏到平齒輪上固定。
- 8.固定電池盒在車身板上,裝上電池測試、調整、完成。

二、標準翻滾測試台:

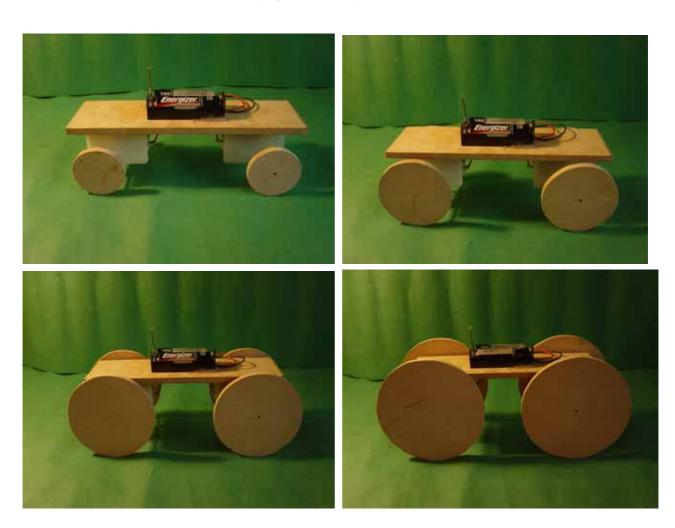
用木板作出一個長 60 公分寬 40 公分高 30 公分的 L 型架子,另作一個底 6 公分高 6 公分的等 腰直角三角柱,放在 L 型架直角處,做一個 45 度角的斜面,上面鋪上綠色塑膠帶洞地墊,使 坡面產生弧度,並在裝置上標上起跑線。

三、研究過程

研究一、車輪大小對直線行進速度與爬坡之影響:

一、實驗設計:

車身:長18cm,寬6cm。

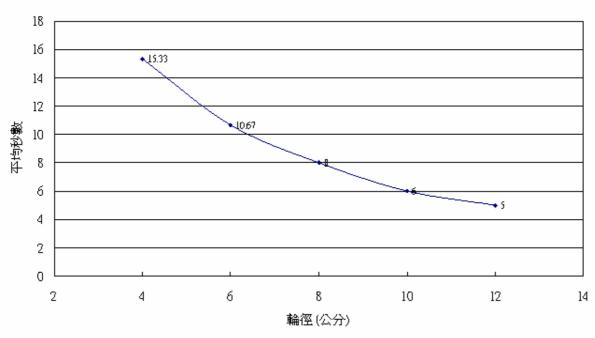

車輪: 直徑分別為 4、6、8、10、12 cm

電池盒位置: 車身正中央

馬達盒位置:馬達盒外緣距車身外緣 1cm

測試環境:(一)直線跑道:長3公尺磁磚地

(二)爬坡坡道:標準翻滾測試台(如上列照片)



二、實驗結果:

表一之一:直線行走速度

秒 次 第 輸 徑	第一次實驗	第二次實驗	第三次實驗	平均	名次
4 cm	16 秒	15 秒	15 秒	15.33 秒	第5名
6.cm	11 秒	10 秒	11 秒	10.67 秒	第4名
8 cm	8秒	8秒	8秒	8秒	第3名
10.cm	6秒	6秒	6秒	6 秒	第2名
12.cm	5 秒	5秒	5 秒	5 秒	第1名

圖一:直線行走速度測試

表一之二:爬坡能力

で 次 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	第一次實驗	第二次實驗	第三次實驗	總結
4.cm	町	町	可	可
6 cm	可	町	可	可
8.cm	不可	不可	不可	不可
10 cm	不可	不可	不可	不可
12.cm	不可	不可	不可	不可

三、發現討論:

- (一) 從表一之一中發現直線行走速度:直徑 $12 \text{ cm} > 10 \text{ cm} > 8 \text{ cm} > 6 \text{cm} > 4 \text{cm} \circ 輪$ 子越大直線行走速度越快。
- (二)輪直徑越大,圓周就越大。在同樣動力下,軸心轉動一周也帶動輪子轉一周。大輪的 周長比較長,軸心同樣轉一周下,大輪所走的距離比較遠,因此速度就比較快。
- (三)從表一之二中發現,直徑 4 cm 和 6 cm 都可以爬坡成功, 8 cm、10 cm、12 cm 都不能爬上坡,尤其 4 cm 爬坡最輕鬆,12 cm 最費力。輪子越小爬坡力越好。
- (四)直徑小圓周就小,爬同樣坡度時,小輪子要比大輪子轉更多圈才爬上去。輪子轉幾圈, 馬達就轉幾圈,所以小輪的馬達轉較多圈,因此較不費力,爬坡力自然較好。若大輪子 子想爬上去,則需加強馬力。就像汽車爬坡時須換低檔,加強馬力,才能爬上去。

研究二、不同路面對翻滾之影響:

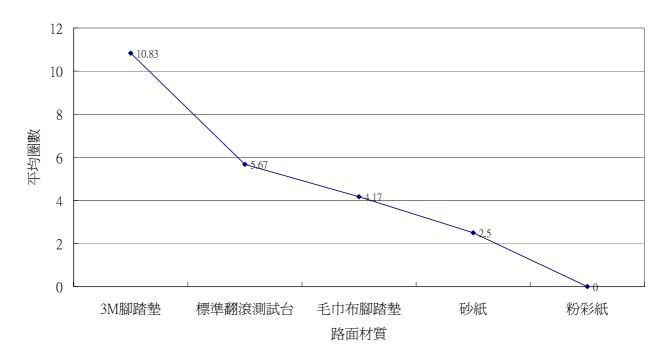
一、實驗設計:

車身:長18cm, 寬6cm


車輪:直徑6cm

車輪凸出車身 0.5 cm 車蓋板高:9 cm (車長一半) 電池盒位置:距車前橫桿 1cm

跑道: 3M 腳踏墊、粉彩紙、毛巾布腳踏墊、砂紙、標準翻滾測試台



三、 實驗結果:

表二: 不同路面對翻滾之影響

型 次 數 跑 道	第 一 次	第二次	第三次	第 四 次	第 五 次	第 六 次	平均	名次
標準翻滾測試台	9	9	2	7	2	5	5.67	2
粉彩紙	0	0	0	0	0	0	0	5
3M. 腳踏墊	5	18	5	7	16	14	10.83	1
毛巾布腳踏墊	4	6	2	4	2	7	4.17	3
砂紙	2	3	3	2	2	3	2.5	4

圖二:不同路面材質對翻滾的影響

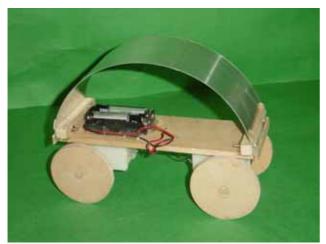
三、發現討論:

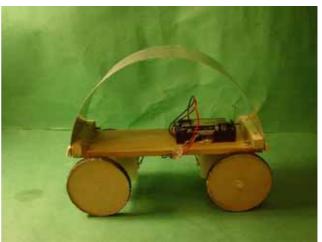
- (一) 由表二發現: 翻滾圈數, 3M 腳踏墊 >標準翻滾測試台 >毛巾布腳踏墊 >砂紙 > 粉 彩紙
- (二) 3M 腳踏墊又平又軟,因爲它平,所以跑的時候較不易跑歪,因爲它軟,翻回著地時,可 吸收一些反彈力,所以不致彈得太歪,因此翻滾圈數最多。
- (三)標準翻滾測試台雖然有洞,沒有 3M 腳踏墊那麼平坦,但它的塑膠材質可以稍微吸震, 所以效果還不錯。
- (四) 毛巾布腳踏墊因爲路面有些地方凸起,不夠平坦,容易跑歪,但因毛毛的有些許彈性可以吸震,所以是第三名
- (五)砂紙完全沒有彈性,翻下來時無法吸震,反彈力很大,容易撞歪,翻滾圈數不理想,但 是因爲它磨擦力夠,還爬得上去。
- (六) 粉彩紙路面過於平滑,磨擦力太小,以致根本就爬不上去。
- (七)不同路面材質確實對翻滾效果有影響,路面平坦又能吸震者翻滾得最好。

研究三、車輪磨擦力對翻滾之影響

一、實驗設計:

車身:長18cm, 寬6cm

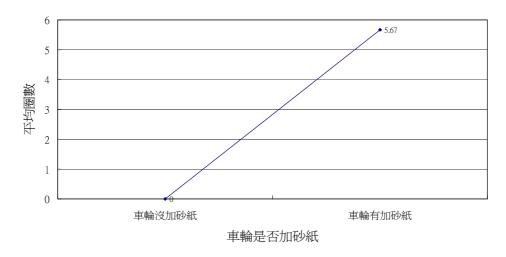

車輪: 直徑 6 cm (一台貼砂紙,一台不貼砂紙)


車輪凸出車身 0.5 cm

蓋板高:9 cm (車長一半)

電池盒位置:距車前橫桿 1cm

跑道:粉彩紙



二、實驗結果:

表三:車輪磨擦力對翻滾之影響

圏 次 第 類 別	第一次	第二次	第三次	第四次	第五次	第六次	平均	名次
沒加砂紙	0	0	0	0	0	0	0	2
有加砂紙	2	3	11	5	11	2	5.67	1

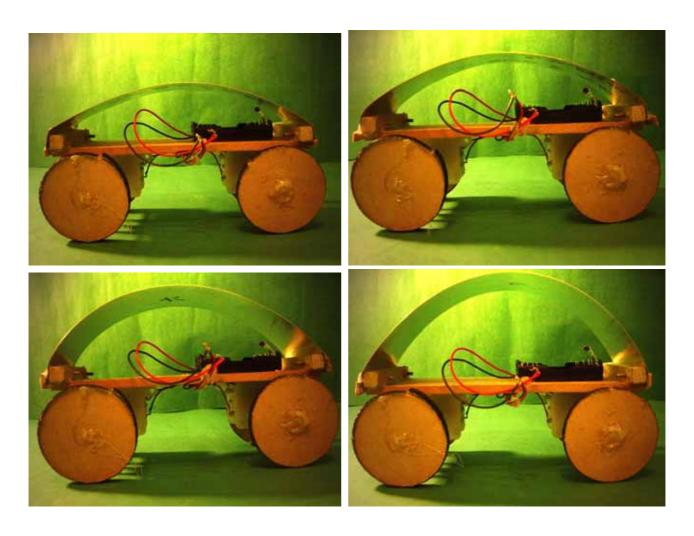
圖三:車輪磨擦力對翻滾之影響

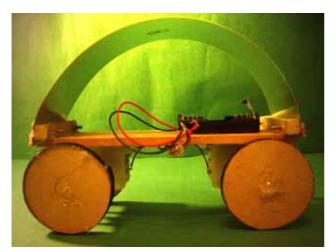
三、發現討論:

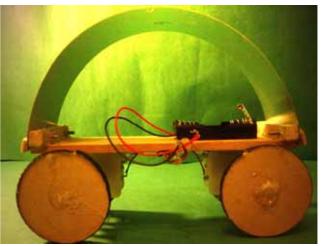
- (一) 由研究二發現,粉彩紙路面太過光滑,以至車子無法爬上去,所以假設增加車輪的磨擦力應可爬上去。
- (二) 由表三發現:翻滾圈數,車輪有加砂紙 > 車輪沒加砂紙
- (三) 沒加砂紙之前,完全無法爬上去。加砂紙之後便可輕易的爬坡且翻滾。 增加車輪磨擦力,確實對爬坡進而對翻滾有幫助。

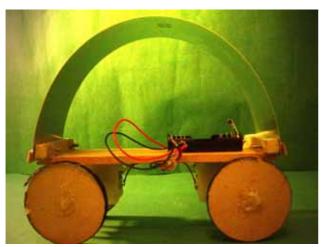
研究四、車蓋板高度對翻滾之影響

一、實驗設計:

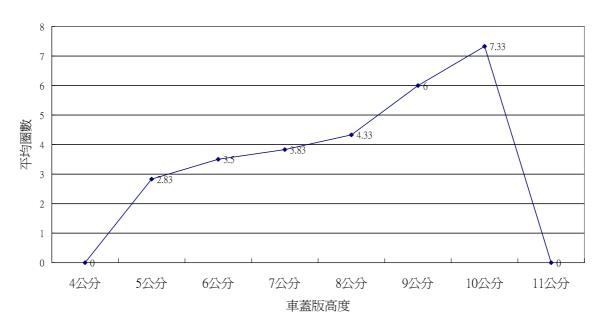

車身:長18 cm,寬6 cm 車輪:直徑6 cm(貼砂紙)


車輪凸出車身 0.5 cm


蓋板高:4、5、6、7、8、9、10、11公分


電池盒位置:距車前橫桿 1cm


跑道:標準翻滾測試台



二、實驗結果:

表四:車蓋板高度對翻滾之影響

圏 次 第	第一次	第二次	第三次	第四次	第五次	第六次	平均	名次
4.cm	0	0	0	0	0	0	0	7
5.cm	2	2	2	5	3	3	2.83	6
6.cm	5	3	2	3	2	6	3.5	5
7.cm	6	2	5	6	2	2	3.83	4
8.cm	2	3	9	3	6	3	4.33	3
9.cm	5	2	7	9	5	8	6	2
10 cm	14	4	2	7	6	11	7.33	1
11.cm	0	0	0	0	0	0	0	7

圖四:車蓋板高度對翻滾之影響

三、發現討論:

- (一) 由表四發現: 翻滾圈數, 蓋板高 10 cm >9 cm>8 cm > 7 cm>6 cm >5 cm >4 cm = 11 cm
- (二) 蓋板高 4 cm, 因蓋板太低無法發揮作用,雖爬得上去,但下來時車蓋在下,整台車在原地搖來搖去,像不倒翁爬不起來;蓋板高 11 cm 翻回時翻滾半徑太長,到最後沒力氣爬起來,而倒向一邊。
- (三) 車蓋高度必須在一定的範圍內才能順利翻滾,對這部 6×18cm 車身而言,蓋板高必須控制在 5 cm 到 10 cm 範圍內。且蓋板越高翻滾效果越好。
- (四)蓋板越高,輪子落地所需時間較久,可以讓車身慢慢減速再落地,輪子所受的衝擊相形減少;相對的,蓋板越低,輪子落地較快,輪子所受的衝擊較大,反彈大,所以易使車身偏折,無法直線前進,因此翻滾圈數變少。

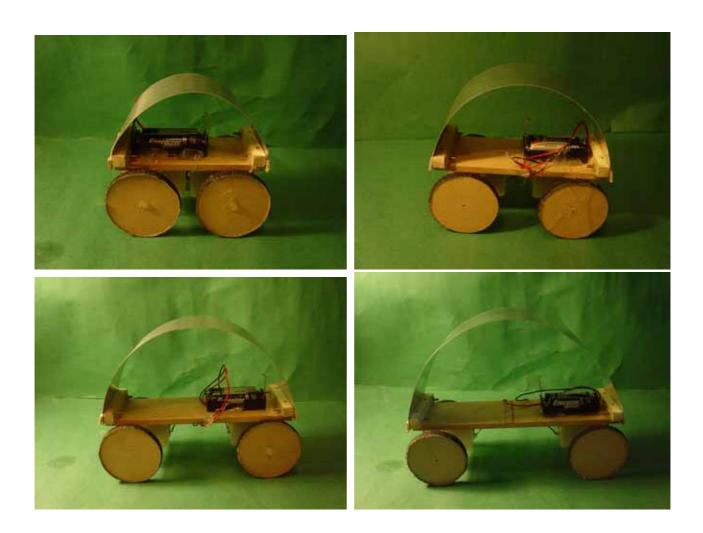
研究五、車身長短對翻滾之影響

一、實驗設計:

車身:12 cm, 寬 6 cm, 蓋高 6 cm (車長一半)

15 cm, 寬 6 cm, 蓋高 7.5 cm (車長一半)

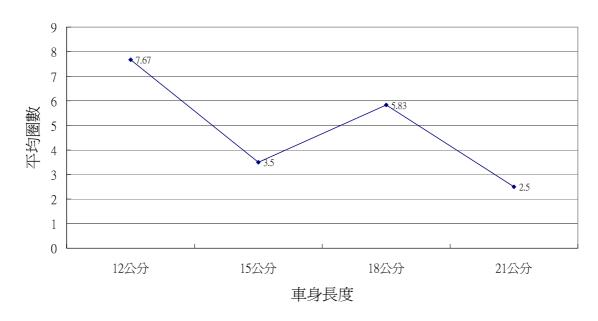
18 cm, 寬 6 cm, 蓋高 9 cm (車長一半)


21 cm, 寬 6 cm, 蓋高 10.5 cm (車長一半)

車輪: 直徑 6 cm (貼砂紙)

車輪凸出車身 0.5 cm

電池盒位置:距車前橫桿 1cm


跑道:標準翻滾測試台

二、實驗結果:

		表	五:車身:	長短對翻落	艺影響			
園 次 第 東	第一次	第二次	第三次	第四次	第五次	第六次	平均	名次
12 cm	4	18	2	6	7	9	7.67	1
15.cm	3	5	5	1	6	1	3.5	3
18 cm	5	1	7	9	5	8	5.83	2
21 cm	3	2	2	2	4	2	2.5	4

圖五:車身長短對翻滾之影響

三、發現討論:

- (一). 由表五發現:翻滾圈數,車身長 12 cm > 18 cm > 15 cm > 21 cm
- (二).研究發現,車身短更能忍受偏斜角度。最短的 12cm 重量最輕,最靈活,翻回時如稍有偏斜,碰斜坡時,它會稍微調整車頭,然後順利翻下,即使靠三輪著地,也能順利上坡。但若偏斜角度過大,就無法發揮作用。
- (三).車身長相對的車蓋太大,翻回時容易搖晃,車身不穩,容易偏折,且重量重,不靈活, 對偏折的忍耐度不高,因此只要稍有歪斜,就無法順利翻滾。
- (四).車長 15cm 的翻滾車,發現當它翻回來,後輪落地時,發生兩次彈跳,嚴重影響偏斜,這是因爲這個長度和重量,後輪落地時的力,正好讓地面給輪子的反彈力發揮到極致,因而產生較多彈跳,使車偏斜,進而無法順利翻滾。

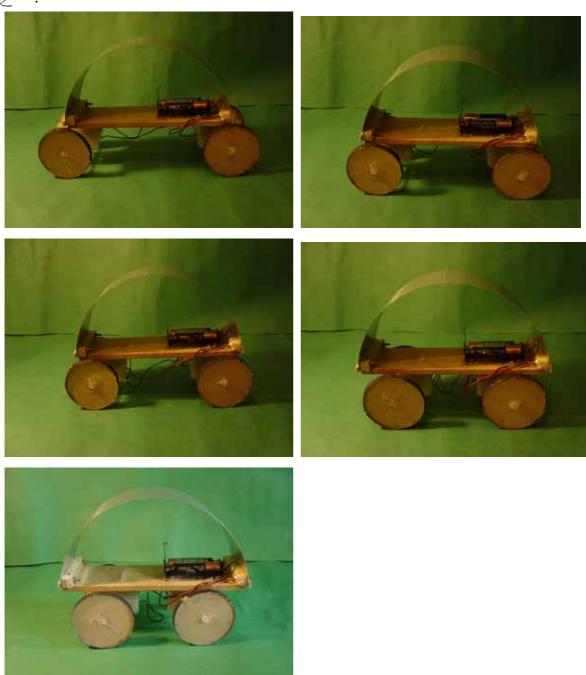
研究六、車輪位置對翻滾之影響

一、實驗設計:

車身:長18cm, 寬6cm

車輪:直徑6cm

輪子位置:實驗六之一:輪外緣凸出車身分別爲3公分、2公分、1公分、0公分


、及縮1公分

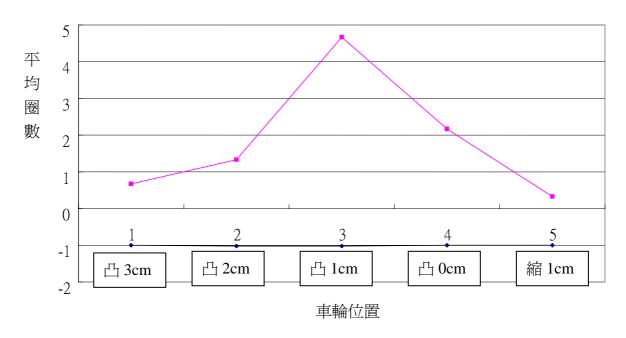
實驗六之二:輪外緣凸出車身分別爲 0.5 公分、1 公分、1.5 公分

車蓋板高:9 cm (車長一半) 電池盒位置:距車前橫桿 1 cm

跑道:標準翻滾測試台

六之一:

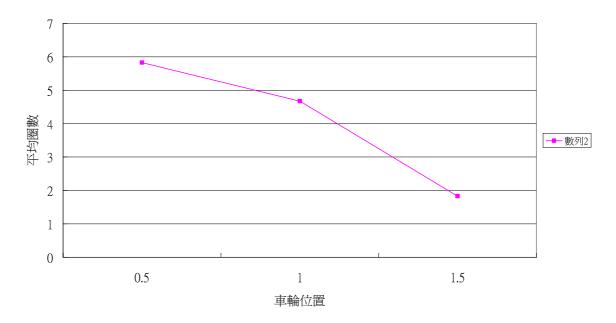
六之二:



二、實驗六之一結果:

表六之一:車輪位置對翻滾之影響

盟教	第1次	第2次	第3次	第4次	第5次	第6次	平均	名次
凸 3 cm	1	0	1	1	1.	0	0.67	4
<u> </u>	1	1	2	2	1	1	1.33	3
凸 1 cm	3	6	5	3	4	7	4.67	1
凸 0 cm	2	3	4	2	1	1	2.17	2
縮1cm	1	1	0	0	0	0	0.33	5


圖六之一:車輪位置對翻滾之影響

三、實驗六之二結果:

		表六之	二:車輪	合位置對額	翻滾之影	響		
型 次 輸 位 數	第1次	第2次	第3次	第4次	第5次	第6次	平均	名次
凸 0.5 cm	5	3	9	6	7	5	5.83	1
<u>凸 1 cm</u>	3	6	5	3	4	7	4.67	2
凸 1.5 cm	1	1	1	2	3	3	1.83	3

圖六之二:車輪位置對翻滾之影響

四、發現討論:

- (一) 由表六之一發現:翻滾圈數,凸1cm >凸0cm>凸2cm>凸3cm>縮1cm
- (二)輪子凸3cm,使得車身變長,爬坡時顯得很費力,齒輪盒一直嘎嘎作響,且翻回時因輪凸出太多,前輪抵住地面,以致翻不回來。
- (三)輪子內縮 1cm,重量住中間移,翻回時前輪後甩的力不夠,且因輪內縮車身板抵住地面,增加阻力,以致翻不回來。
- (四)由表六之一發現輪子凸 1 cm 翻滾效果最好,但由前面研究三、四、五,均發現輪子凸 0.5 cm 效果更好,於是用同一部車,以凸 1 cm 為中心加減 0.5 cm,再試凸 0.5 cm 和凸 1.5 cm 效果。

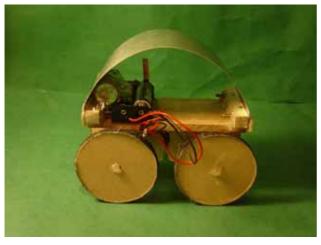
- (六) 輪子凸出車身,翻回時前輪後甩的重力加速度較有利於翻滾,但不能凸出太多,凸太多 則前輪抵住地面,會使翻滾費力;也不能太內縮,太內縮後甩力量不夠,且車身板會抵 到地面。好的翻滾效果車蓋板應和輪子外緣形成順滑圓弧。

研究七、車子重心分佈對翻滾之影響

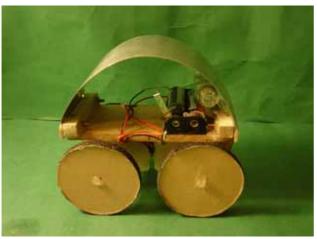
一、實驗設計:

車身:長12cm,寬6cm

車輪:直徑6cm,貼砂紙。

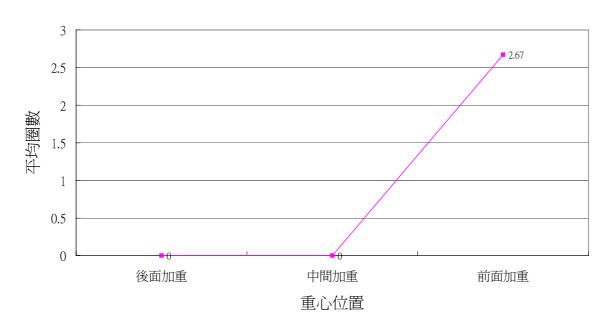

車輪凸出車身 0.5 cm

車蓋板高:6cm(車長一半)


重心設計:用電池盒重量加上一個螺絲和三個螺帽重量,置於車子最後面、中間、及最

前面。

跑道:標準翻滾測試台



二、實驗結果:

表七:車子重心分佈對翻滾之影響

園 次第	第一次	第二次	第三次	第四次	第五次	第六次	平均	名次
後面加重	0	0	0	0	0	0	0	2
中間加重	0	0	0	0	0	0	0	2
前面加重	4	3	1	3	3	2	2.67	1

圖七:車子重心分佈對翻滾之影響

三、發現討論:

- (一) 由表七發現:翻滾圈數,前面加重>中間加重 >後面加重
- (二)後面加重時,因爲後方太重,以致於翻回要站起時,後輪被重量壓回去,前輪碰不到地, 所以根本站不起來。
- (三) 中間加重,翻回時前輪可觸地,但仍無法站起來。
- (四) 前面加重,則翻得更快。但向後甩的力道過大,雖然翻的速度更快,但落地時的撞擊力太大,所以會不穩定,翻滾圈數也較研究五不加重量者差。所以想要翻得好,重心應偏前,但不能過重。

研究八、斷電裝置對翻滾之影響

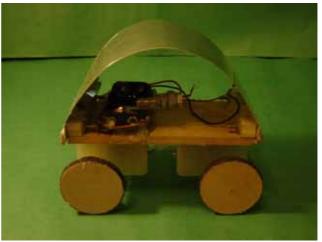
一、實驗設計:

車身:長12cm, 寬6cm

輪子:直徑4公分,貼砂紙。

車輪凸出車身 0.5 cm

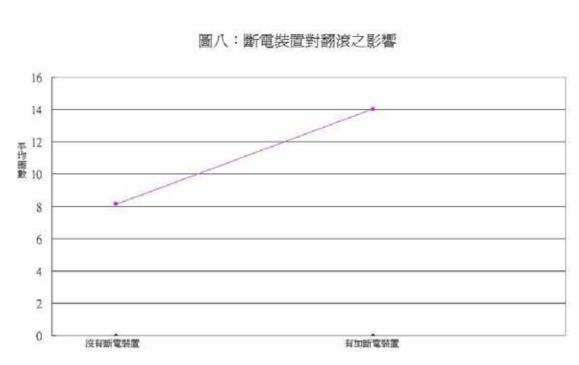
車蓋高:6公分(車身長的一半)


斷電裝置:如下列照片,改裝電池盒,使通電裝置非固定,當車子直行或爬坡時,負責通電

的按把,因螺絲垂重而落下,造成通電,當車子翻滾時,螺絲因地心引力垂下, 脫離電池盒,造成斷電,如此車子翻滾時是在斷電狀態,一直到車子站好的一刹 那,螺絲再度垂下,造成通電,繼續前行,進行第二次翻滾,如此可避免後輪落

地時,撞擊力加上車輪滾動的力,而造成車身歪斜,影響翻滾圈數。

跑道:標準翻滾測試台



二、實驗結果:

表八:斷電裝置對翻滾之影響

型 数 類 別	第 一 次	第二次	第三次	第 四 次	第 五 次	第 六 次	平均	名次
沒加斷 電裝置	4	10	14	9	4	8	8.17	2
有加斷 電裝置	15	17	15	10	9	18	14	1

三、發現討論:

- (一) 由表八發現:翻滾圈數,有加斷電裝置 >沒有加斷電裝置
- (二)沒有斷電裝置翻回時,地面會給車身衝擊,再加上撞擊地面的後輪還在轉動,所以車身偏折角度就會比較大;相反的,加上斷電裝置,翻回時車輪不轉動,這樣可以讓車身偏折角度變小,翻滾圈數就自然增加了。
- (三)實驗發現:車子翻回時,後輪著地的撞擊力及反彈力,影響車身偏斜很大,進而影響翻滾圈數。所以想要翻滾得好,必須使這撞擊力及反彈力減至最小。

陸、研究心得

- 一、機器人的使用範圍越來越廣,廣義的機器人沒有一定的形體,依個別的需要有不同的設計,每一種機器人要克服的難題各有不同,也正因爲如此,更增加了研究的挑戰和樂趣。
- 二、翻滾車到底能被實際應用在哪一方面,也許我們現在並不知道,研究的本身並不一定立即要被實用。但在研究的過程裡,不只充滿了挑戰和樂趣,更可以從中發現一些科學原理,從做中學得的知識更紮實而有意義。
- 三、研究的過程難免碰到挫折,難免氣餒,但也給人機會,訓練不屈不撓,鍥而不捨的生活 態度和科學精神。
- 四、這個研究過程充滿一連串的問題解決。不只在實驗的設計、研究的難題,更有材料的取得、製作、與人交涉的生活學習,甚至寫作方法,是一個很完整而全面性的學習,但願很多人都有這樣的學習機會。

- 五、本實驗使用的材料,包括齒輪盒、密集板,均購自設於<u>師大</u>的<u>中華創意發展協會</u>(舉辦青少年科技創作競賽單位)。
- 六、手工做車不如機器精細,難免會有些微誤差,爲控制變因,同一實驗均採用同一部車, 而不沿用前面實驗記錄,故有同樣車身條件,實驗出不同結果,但平均翻滾圈數均近似, 不影響結論,可見其準確度還是頗高。
- 七、感謝在這個過程裡一直陪伴我的師長和親人,沒有他們的幫助與支持,我的收獲不會這 麼豐盛。

柒、 結論

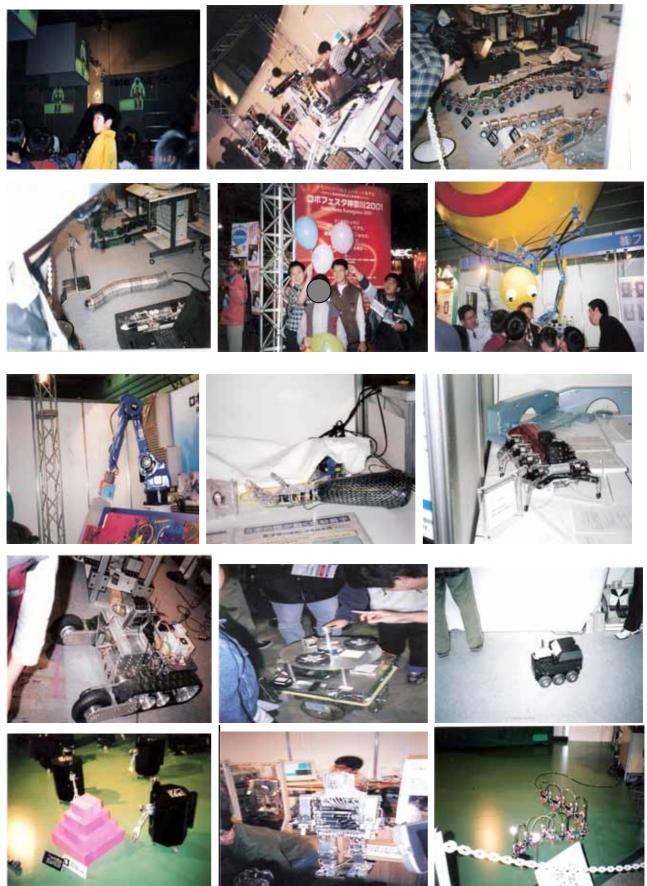
- 一、輪子越大直線行走速度越快。因爲大輪的周長較長,在軸心同樣轉一周下,大輪所走的 距離較遠,因此速度較快。
- 二、輪子越小爬坡力越好。小輪圓周小,同樣的坡度,小輪比大輪轉更多圈才爬上去,所以 馬達也轉較多圈,因此較不費力,爬坡力也較好。
- 三、不同路面材質對翻滾效果有影響,路面平坦又能吸震者翻滾得最好。本實驗翻滾圈數,3M 腳踏墊 >標準翻滾測試台 >毛巾布腳踏墊 >砂紙 > 粉彩紙。
- 四、車輪增加磨擦力,對爬坡進而對翻滾有幫助。本實驗車輪加上砂紙後,翻滾圈數增加。
- 五、車蓋高度必須在一定範圍內,才能順利翻滾。對 6×18cm 車身而言,蓋板高須控制在 5 公分到 10 公分之間。且蓋板越高翻滾效果越好。蓋板高,較久時間輪子才落地,可以讓車身慢慢減速,輪子所受的衝擊較小,較不會使車身歪斜。
- 六、車身短的翻滾車較能忍受偏斜角度。 車身短,重量輕而靈活,翻回時,如稍有偏斜,碰到斜坡,會稍微調整車頭,順利翻下,即使靠三輪著地,也能順利上坡。車身長,車蓋大,翻回時容易搖晃,不靈活,只要稍有歪斜,就無法順利翻滾。
- 七、好的翻滾效果,車蓋板應和輪子外緣形成順滑圓弧。輪子凸出車身,翻回時前輪後甩的 重力加速度有利於翻滾,但凸太多前輪抵住地面,使翻滾費力;太內縮則後甩力量不夠, 且車身板抵到地面,增加阻力。
- 八、翻滾車的重心應偏前,但不能過重。 本實驗後面和中間加重,車子均無法翻回。前面加重,則翻得更快,但向後甩的力道過大,落地撞擊力太大,造成不穩定,翻滾圈數變差。
- 九、車子加上斷電裝置,對翻滾有幫助。沒有斷電裝置,翻回來時,地面會給車身衝擊,再 加上撞擊地面的後輪還在轉動,所以車身偏折角度就更大。

十、車子翻回時,後輪著地的撞擊力及反彈力,影響車身偏斜很大,進而影響翻滾圈數。所以想要翻滾得好,必須使這撞擊力及反彈力減至最小。

捌、參考資料

一、網站:

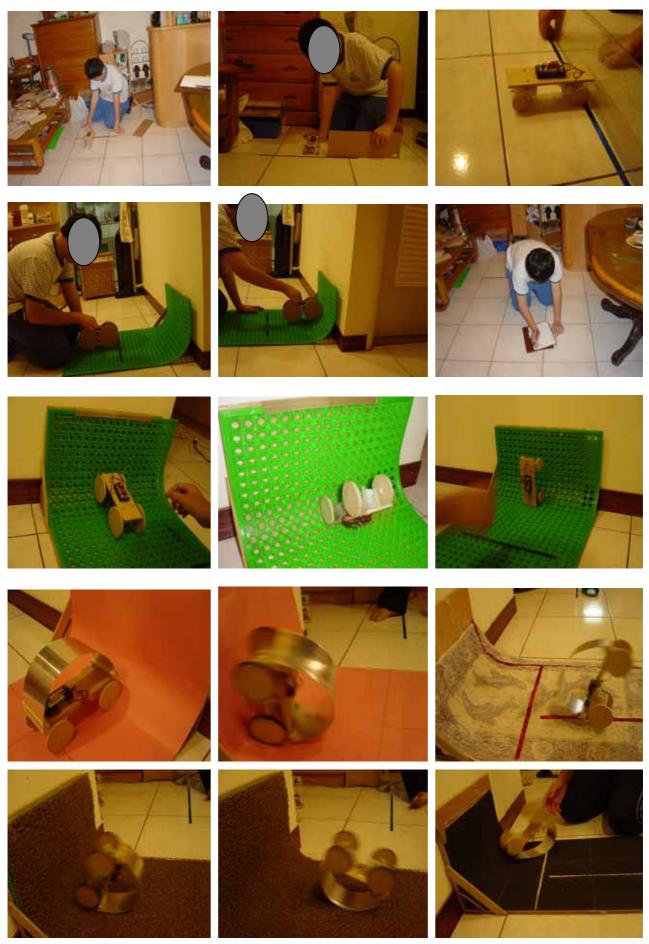
http://www.ccda.org.tw/pt/main/main.html(全國少年科技創作競賽資訊網)


http://www.erobot.com.tw/ (eRobot 機器人學院) http://www.playrobot.com/ (標機器人專屬網站)

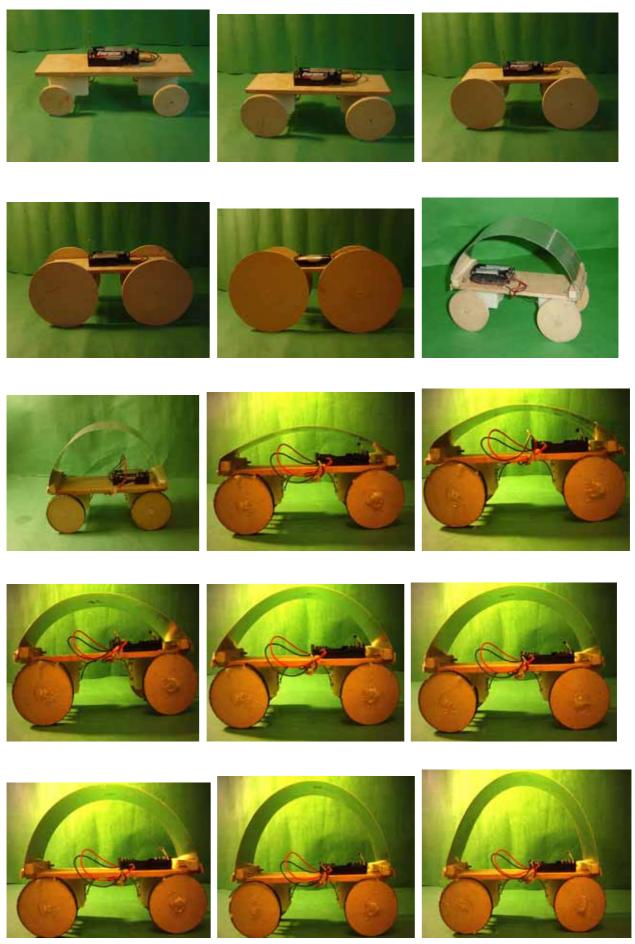
http://www.aitw.biz/ (ATTW 機器人專賣店)

- 二、<u>林彥宏</u>譯,2001年,全面來臨的機器人時代,牛頓雜誌,221期,p24~p85
- 三、機器人教育博覽會-導覽手冊
- 四、全國青少年科技創作競賽-競賽手冊
- 五、國中南一版自然與生活科技課本第四冊第一章

附錄:


一、我參觀日本神奈川縣舉辦的全國機器人大展:

二、我參觀<u>台北</u>國際機器人大展



三、我的實驗過程:

四、實驗車全覽:

評 語

031612 再接再厲-翻滾車的奧秘

主題及活動生動有趣,適合國中學生程度。能對一些變因的 影響加以探討。唯對相關物理原理的探究尚可加強。