中華民國第四十六屆中小學科學展覽會 作品說明書

國中組 理化科 最佳團隊合作獎

031601

威『振』八方、不同凡『響』

學校名稱: 臺北市立民生國民中學

作者: 指導老師:

國二 高翊凱 蘇恭彥

國二 林依柔 楊弘源

國二 楊鵑蔚

國二 戴敬珈

關鍵詞:音叉、音箱、響度

作品名稱:威『振』八方、不同凡『響』

摘要

本研究是延伸課本有關音叉<mark>振動</mark>實驗,進一步了解如何使音叉及所配合的音箱振動更持久、**響度**更大。本研究所有數據,相關係數均達高度相關。

首先在研究一中,我們確定音叉應擺在木箱正中央,振動效果最佳。

接著在研究二中,發現音箱木板厚度越薄時,聲音越持久,但敲擊音叉後所產生的聲音響度較小。

在研究三中,若不考慮音箱內空氣柱的共振,則以音箱孔徑越小,聲音越不易衰變。

在研究四中,我們成功驗證,若能引起箱內空氣柱的共振,則聲音越不容易衰變。

在研究五中,發現音箱採橫式隔間時,隔間數愈多,聲音衰變較小,初始響度愈大,且 隔間方式明顯影響研究結果。

在研究六中,發現音箱材質,會影響發聲時間。

最後在研究七中,發現音叉股數越多,振動時間越久。

壹、研究動機

本學期在八年級自然課本介紹聲音有關的知識,對於音叉放在音箱的發聲響度爲何會響 亮且持續一段時間?極感興趣,希望以課本的知識爲基礎進一步改良實驗,使整個音叉可以 產生振動持久,且更加響亮的聲音。

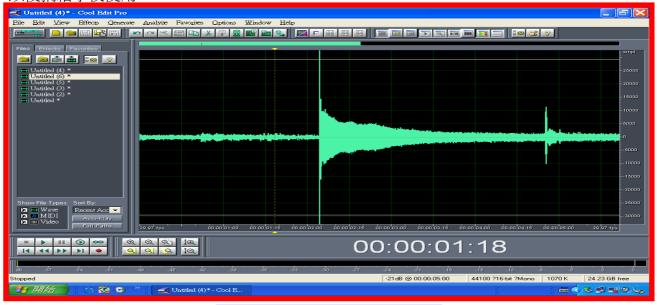
圖 1: 研究器材

貳、研究目的

- 一、在研究一中研究音叉固定在音箱的不同位置對發聲時間的影響。
- 二、在研究二中研究音箱木板厚度對響度衰變的影響。
- 三、在研究三中討論音箱口徑大小對響度及發聲時間的影響。
- 四、在研究四中討論音箱長度對響度衰變的影響。
- 五、在研究五中討論音箱隔間數對響度及發聲時間的影響。
- 六、在研究六中討論音箱材質對響度的影響。
- 七、在研究七中討論音叉股數對響度及發聲時間的影響。

參、研究設備及器材

電腦、cool editor軟體、木材、厚紙、白膠、鐵架、分貝計、音叉、碼表、AB 膠、鐵條、鐵絲、剪刀、銼刀、美工刀、溫度計、砂紙、凡士林、橡皮筋、筆、相機、膠帶、腳墊、鑽孔機、鑽子、敲擊棒、塑膠軟墊、檔案夾、扳手、自黏標籤、鋸子、線鋸機(生科教室提供)、點焊機(學校花燈社提供)、三秒膠、量角器、尺


肆、研究過程或方法

我們做的實驗主要是測量聲音的響度,於是我們上網找,找到一個試用軟體 Cool Editor (如圖 2 所示),但是使用的結果,發現這個軟體適合用來測頻率,卻不適合用來測響度。因此我們就借用學校實驗室裡的分貝計,經過多次實驗的結果,知道這個分貝計的缺點有兩個:一、數值跳動很快,不穩定。二、無法有效測出精準的響度。

就在大家束手無策,不知如何是好時,大夥兒又集合起來開會討論,我們想出三個辦法:

- (一)可否向大學裡的相關科系實驗室借?
- (二)可否向環保局借?
- (三)上網找分貝計。

經分析後認爲我們的實驗從九月開始已進行四個月,未來不知要進行多久?如果用借的,可能不方便,因此我們朝第三個方法進行,在網路上找相關的分貝計。找到賣分貝計的公司,由於之前的經驗,知道分貝計有不同種類,不敢貿然馬上買,所以請他們的業務員,先拿來讓我們操作試試,最後確定一台符合我們需要的分貝計(如圖 3 所示,可以記錄到時間 0.1 秒),每人集資約兩千元左右,買下這台分貝計(附分析軟體,如圖 4 所示),並決定以後捐給學校使用。

圖 2: Cool Editor 試用軟體

圖 3:分貝計

圖 4:分析響度的軟體

接著我們必須製造簡易的音叉敲擊器,歷經四代的改善(如圖 5-1 至 5-4 所示)。整個實驗的儀器架設如圖 6 所示。

圖 5-1 第一代敲擊器

圖 5-2 第二代敲擊器

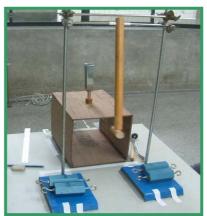


圖 5-3 第三代敲擊器

圖 5-4 第四代自製敲擊器

一、研究一:研究音叉固定在音箱的不同位置對 發聲時間的影響

- (一) 製作長 60.00cm、正方形口徑 6.50cm ×6.50cm 的中空音箱,並以鑽孔機每 隔 6.00cm 打一個洞(如圖 7 所示), 共 9 個孔。
- (二)在音箱的第一孔裝上學校實驗 室音叉進行實驗,如圖8所示。
- (三)將分貝計接在腳架上(如圖9所示), 並接上電腦(類似圖6所示),每隔 0.1 秒記錄數據一次,並以 excel 存 檔,接著分析分貝數與發聲時間的 關係。

圖 6: 儀器架設圖

圖7:打了9孔的音箱

圖 8:在音箱上裝上音叉

圖9:分貝計接上腳架

二、研究二:研究音箱木板厚度對響度衰變的影響

(一) 製作(如圖 10 所示) 厚度分別為 0.30cm、0.50cm、0.70cm、0.90cm 及 1.10cm,口 徑為 15.00cm×15.00cm ,長度為 30.00cm 的木音箱共五個。

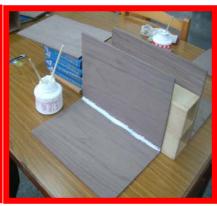


圖 10:製作木音箱

(二)在音箱上方正中央處鑽孔,並利用同一支音叉依序裝在音箱上(如圖 11 所示)

圖 11: 五個木板厚度不同的音箱

(三)將分貝計接在腳架上(如圖9所示),並接上電腦(類似圖6所示),每隔0.1秒記錄數據一次,並以 excel 存檔,接著分析木板厚度對分貝數及發聲時間的影響。

三、研究三:討論音箱口徑大小對響度及發聲時間的關係

(一)利用文具店買的厚紙板製作長度均為 24.00cm、口徑為 4.00cm×4.00cm、5.00cm× 5.00cm× 5.00cm×6.00cm×6.00cm×7.00cm×7.00cm×8.00cm×9.00cm×9.00cm 的紙音箱,並在上方黏上一木塊,用來架設音叉(如圖 12 所示)。

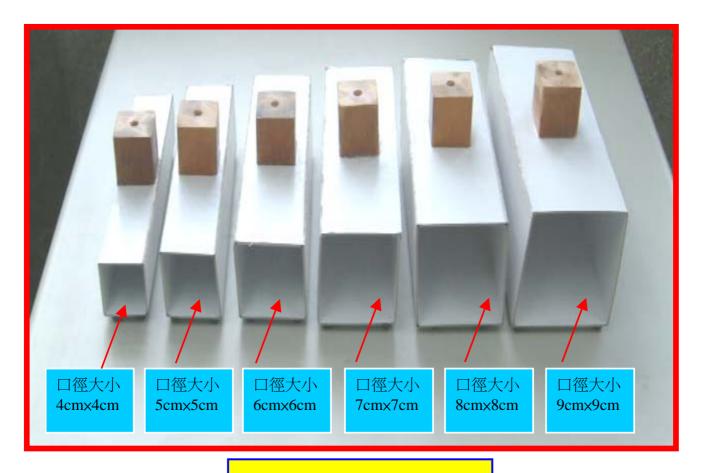


圖 12: 六個不同口徑的紙音箱

(二)將分貝計接在腳架上(如圖9所示),並接電腦(類似圖6所示),每隔0.1秒記錄 數據一次,以 excel 存檔,接著分析音箱口徑大小與分貝數及發聲時間的關係。

四、研究四:討論音箱長度對響度衰變的影響

(一)研究四之一:

- 1、製作長度爲 17.00cm、18.00cm、19.00cm、20.00cm、21.00cm、22.00cm、23.00cm、24.00cm、25.00cm、26.00cm 的木音箱。(如圖 13 所示)
- 2、將分貝計接在腳架上(如圖 9 所示),並接上電腦(類似圖 6 所示),每隔 0.1 秒記錄數據一次,並以 excel 存檔,接著分析音箱長度對聲音衰變的影響。

圖 13: 自製十個不同長度的木音箱

(二)研究四之二:

- 1、製作可調式音箱(中空音箱,內裝一推進器,如圖14所示)
- 2、每次往前推進 1.00cm 以減少音箱內空氣 柱的長度。
- 3、將分貝計接在腳架上(如圖9所示),並 接上電腦(類似圖6所示),每隔0.1秒 記錄數據一次,並以 excel 存檔,接著分 析音箱長度對響度衰變的關係。

圖 14: 附推進器的可調式音箱

五、研究五:討論音箱隔間數對響度及發聲時間的影響

- (-) 利用文具店買的厚紙板製作隔間數為 $1 \cdot 2 \cdot 3 \cdot 4$ 及 5 的紙音箱(如圖 15 所示)。
- (二)將分貝計接在腳架上(如圖9所示),並接上電腦(類似圖6所示),每隔0.1秒記錄數據一次,並以 excel 存檔,接著分析音箱隔間數對響度及發聲時間的影響。

圖 15:製作隔間數不同的音箱

六、研究六:討論音箱材質對響度的影響

(一)製作音箱材質爲花梨木、山毛櫸、赤楊木、白松木、栓木、胡桃木、櫻桃木、楓木、 柚木、橡木及夾板的音箱共 11 個(如圖 16 所示)。

圖 16:不同材質的音箱

(二)將分貝計接在腳架上(如圖9所示),並接上電腦(類似圖6所示),每隔0.1秒記錄數據一次,並以 excel 存檔,接著分析音箱材質對分貝數及發聲時間的關係。

七、研究七:討論音叉股數對響度及發聲時間的影響

- (一)先以鐵絲製作音叉雛型(焊接工具由學校花燈社協助),如圖 17 所示。已有初步的 結果,但現象不穩定。
- (二)繪出音叉設計圖,至後火車站尋找材質較硬的不銹鋼,並請打鐵師父協助焊接。

圖 17: 鐵絲材質的音叉

圖 19: 不同股數的音叉

- (三)回學校後,再用鋼鋸、銼刀(如圖 18 所示)及 砂磨機調整每股長度。(完成品如圖 19 所示)
- (四)將音叉分別接在自製紙音箱上(如圖 20 所示), 進行實驗。
- (五)將分貝計接在腳架上(如圖9所示),並接上電腦(類似圖6所示),每隔0.1秒記錄數據一次,並以 excel 存檔,接著分析音叉股數與分貝數及發聲時間的關係。

圖 18: 利用銼刀調整音叉長

圖 20:將不同股數的音叉接在音箱上進行研究

伍、研究結果

一、在研究一:研究音叉固定在音箱的不同位置時對響度的影響

表一:音叉固定於不同位置時對聲音響度與發聲時間的影響(y表示響度、x表示時間)

孔的位置	實驗次序	趨勢線方程式	初始響度 (分貝)	發聲時間 (秒)	相關係數 R
第二 刀	第一次實驗	y = -4.7298x + 88.623	101.4	5.7	$R^2 = 0.8774$
第一孔	第二次實驗	y = -6.7938x + 93.94	99.4	4.9	$R^2 = 0.9158$
第二孔	第一次實驗	y = -9.9071x + 88.911	101.8	2.7	$R^2 = 0.8082$
¥ 1 —1⊓	第二次實驗	y = -9.719x + 91.202	103.9	3.1	$R^2 = 0.7698$
第三孔	第一次實驗	y = -16.181x + 101.9	104.2	2.4	$R^2 = 0.9849$
₩-1L	第二次實驗	y = -13.073x + 101.86	104.1	3.0	$R^2 = 0.978$
第四孔	第一次實驗	y = -3.2666x + 89.865	98.3	8.3	$R^2 = 0.9133$
24 ET J L	第二次實驗	y =-3.6883x + 90.844	100.5	7.8	$R^2 = 0.8808$
第五孔	第一次實驗	y = -2.3925x + 88.047	94.3	10.1	$R^2 = 0.9672$
(正中央)	第二次實驗	y = -2.3643x + 89.671	100.1	10.8	$R^2 = 0.9648$
第六孔	第一次實驗	y = -3.6255x + 96.832	103.9	9.0	$R^2 = 0.9701$
347 / J L	第二次實驗	y = -3.9383x + 95.712	103.5	8.2	$R^2 = 0.9497$
第七孔	第一次實驗	y = -9.6582x +93.377	104.8	3.2	$R^2 = 0.8956$
₩ C.1.	第二次實驗	y = -8.9404x + 99.887	104.9	4.2	$R^2 = 0.9421$
第八孔	第一次實驗	y = -11.347x +96.939	104.5	3.1	$R^2 = 0.9205$
第八九 	第二次實驗	y = -11.496x +97.068	104.6	3.0	$R^2 = 0.9367$
第九孔	第一次實驗	y = -10.025x + 100.65	102.5	3.9	$R^2 = 0.9722$
247 LU L	第二次實驗	y = -8.3514x + 104.23	104.6	5.7	$R^2 = 0.945$

[※]發聲時間是指當敲擊器敲擊後到聲音分貝數降至 65 分貝爲止。

[※]趨勢線方程式是我們記錄響度(y 值)與時間(x 值)後分析所得。原始數據眾多記載在實驗日誌中。

[※]我們定義趨勢線方程式: y=ax+b 中, x 項的係數 a 値爲聲音衰變係數。

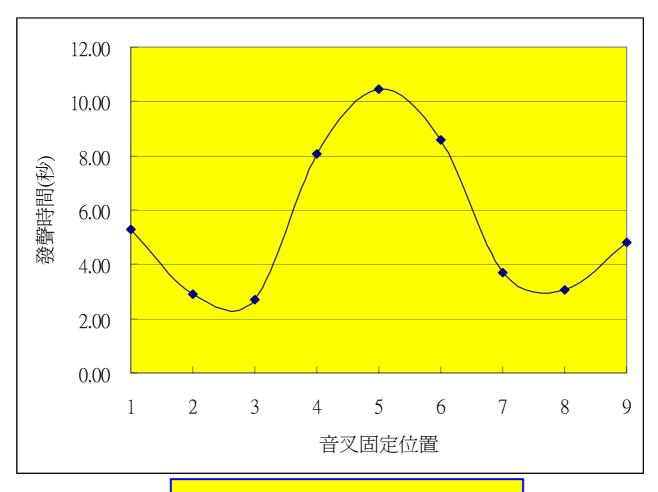


圖 21:音叉擺放位置與發聲時間關係圖

※發聲時間是指當敲擊音叉後聲音響度降至65分貝爲止。

- (一) 研究數據經電腦 excel 軟體分析, 聲音響度與時間的相關係數均為 高度相關(絕對値大於 0.75)。
- (二)研究發現音叉固定位置不同,則聲音衰變的情形不同,以正中央第 5 孔最不易衰變。
- (三)當音叉在第5孔時發聲時間平均値 爲10.45秒(爲最大値),約爲全部九 孔的平均時間5.51秒的2倍。

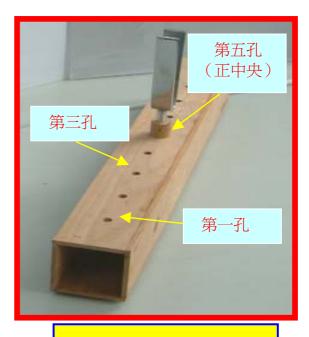


圖 22:調整音叉擺放位置

二、研究二:研究音箱木板厚度對響度衰變的影響

表二:不同厚度的音箱,聲音響度與時間的關係數據(y表示響度、x表示時間)

音箱 木板 厚度 (cm)	音箱 口徑 (cm× cm)	原始數據整 理後所得	第一次測量	量 第二次測量 第三次測量		平均
		趨勢線 方程式	y = -1.2169x + 94.713	y = -1.2291x + 95.518	y = -1.2752x + 95.695	y=-1.24x+95.31
0.30	15×15	初始響度 (分貝)	98.8	99.2	99.6	99.2
		發聲後降至 80dB 所需時 間(秒)		13.2	12.7	12.8
		趨勢線 方程式	y = -1.5595x + 97.937	y = -1.5017x + 98.379	y = -1.5589x + 99.299	y=-1.54x+98.54
0.50	15×15	初始響度 (分貝)	100.2	100.4	100.8	100.47
		發聲後降至 80dB 所需時 間(秒)	11.6	12.4	12.4	12.1
		趨勢線 方程式	y = -4.2979x + 102.14	y = -4.2912x + 103.11	y = -4.099x + 102.85	y=-4.23x+102.70
0.70	15×15	初始響度 (分貝)	103.1	109.4	103.4	105.3
		發聲後降至 80dB 所需時 間(秒)		5.6	5.6	5.5
		趨勢線 方程式	y = -8.6257x + 100.22	y = -9.4091x + 102.91	y = -8.6077x + 99.305	y=-8.88x+100.81
0.90	15×15	初始響度 (分貝)	103.2	109.6	105.0	105.93
		發聲後降至 80dB 所需時		2.7	2.5	2.6
		趨勢線 方程式	y = -12.578x + 106.9	y = -11.466x + 107.61	y = -12.531x + 109.99	y=-12.19x+108.17
1.10	15×15	初始響度 (分貝)	118.2	111.6	118.9	116.23
		發聲後降至 80dB 所需時 間(秒)	2.3	2.5	2.5	2.4

- (一)音箱厚度愈厚時,衰變係數絕對値愈大,表示衰變情況愈明顯,發聲時間愈短。
- (二)音箱厚度愈厚時,振動時所發出的聲音愈大。

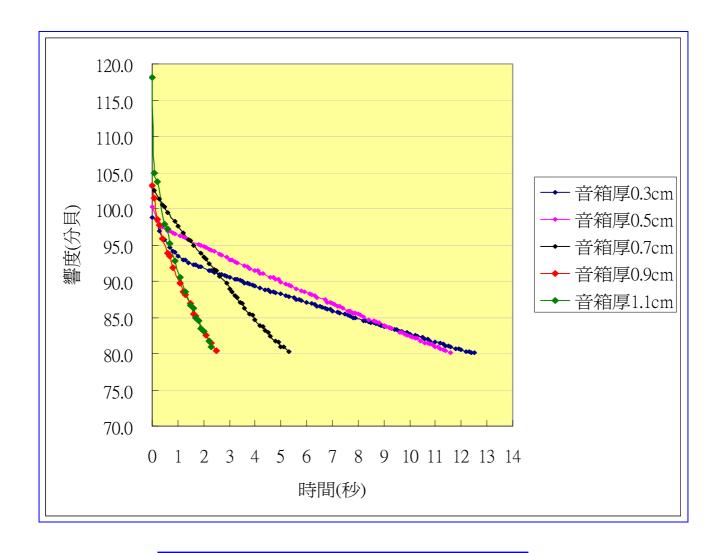


圖 23-1:分析響度(降至 80 分貝)與時間的關係圖

- (一)研究數據經電腦 excel 軟體分析,聲音響度與時間的相關係數均達 0.9 以上(為高度相關)。
- (二)由 23-1 圖可知音箱厚度 1.10cm 的斜率絕對値(即衰變係數絕對値)最大,響度 隨時間變化明顯。
- (三)由 23-1 圖可知音箱厚度 0.30cm 的斜率絕對値最小,響度時間變化最不明顯,因此發聲時間最久,爲厚度 1.10cm 的 5.3 倍。

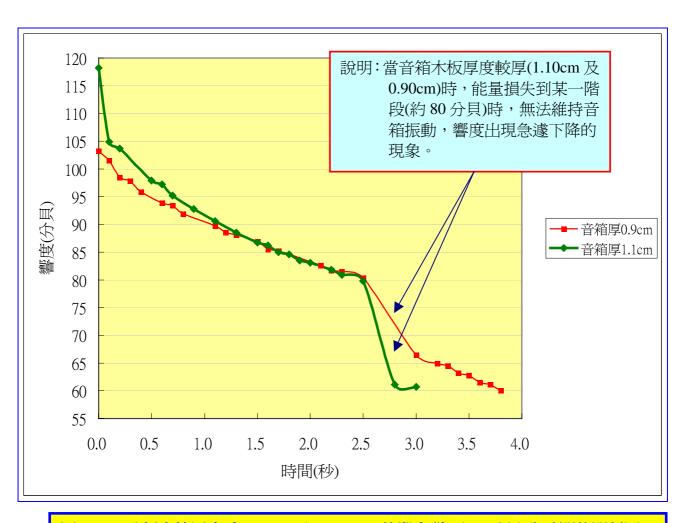


圖 23-2:分析音箱厚度為 0.90cm 及 1.10cm, 其響度(降至 60 分貝)與時間的關係圖

圖 24: 厚度不同的五個自製音箱

三、研究三:討論音箱口徑大小對響度及發聲時間的關係

表三:已經由電腦處理後的音箱口徑對響度衰變、初始響度及發聲時間的數據(y 表示響度、x 表示時間)

紙音箱(長度 24.00cm) 口徑大小 (cmxcm)	趨勢線方程式 (y=ax+b)	初始 響度 (dB)	發聲 時間 (秒)	相關係數 R
4.00×4.00	y = -1.7266x + 73.152	78.7	8.5	$R^2 = 0.9541$
5.00×5.00	y = -2.8003x + 80.513	83.3	7.5	$R^2 = 0.9894$
6.00×6.00	y = -3.6784x + 79.526	85.6	5.8	$R^2 = 0.9329$
7.00×7.00	y = -4.7432x + 84.998	87.4	5.6	$R^2 = 0.984$
8.00×8.00	y = -5.2656x + 83.959	94.1	5.5	$R^2 = 0.8203$
9.00×9.00	y = -1.8189x + 88.638	101.0	16.6	$R^2 = 0.9691$

※ 發聲時間是指當敲擊音叉後聲音降至 60 分貝爲止。

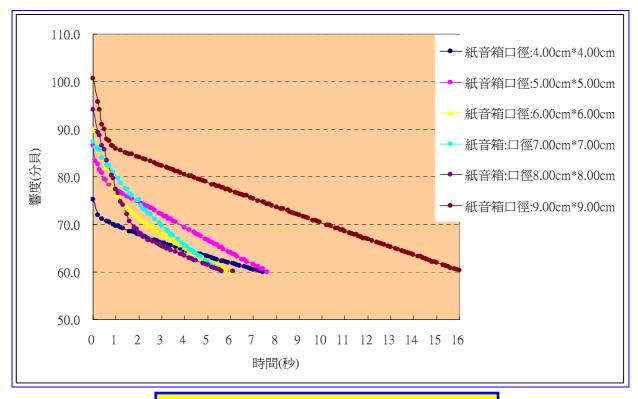


圖 25:不同口徑的紙音箱,響度與時間的關係

- (一)從紙音箱口徑 4.00cm×4.00cm、5.00cm×5.00cm、6.00cm×6.00cm、7.00cm×7.00cm、8.00cm×8.00cm研究發現:
 - 1、由趨勢線方程式中 x 項的係數 a 値可知口徑愈小聲音的衰變愈小,聲音愈持久。
 - 2、由初始響度可知,口徑愈小聲音的敲擊後 聲音響度較小。
- (二)由表三數據中發現口徑 9.00cm×9.00cm 的音箱,在衰變係數絕對値突然變小。

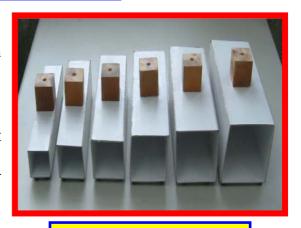


圖 26:不同口徑的紙音箱

四、研究四:討論音箱長度對響度衰變的影響

(一)研究四之一:研究木音箱長度(如 p.7:圖 13 所示)對響度衰變的影響

表四:已經由電腦處理後**木音箱長度**與響度的數據(y表示響度、x表示時間)

長度 (cm)	趨勢方程式 1	相關係數	趨勢方程式 2	相關係數	趨勢方程式3	相關係數
17.00	y = -7.3148x + 79.639	$R^2 = 0.9609$	y = -7.9146x + 81.494	$R^2 = 0.9395$	y = -7.9921x + 79.047	$R^2 = 0.9777$
18.00	y = -8.1407x + 80.771	$R^2 = 0.9253$	y = -5.8855x + 77.185	$R^2 = 0.9584$	y = -7.2876x + 83.126	$R^2 = 0.8919$
19.00	y = -6.1092x + 81.56	$R^2 = 0.9838$	y = -7.0004x + 83.539	$R^2 = 0.9502$	y = -5.693x + 81.861	$R^2 = 0.9754$
20.00	y = -7.4311x + 90.806	$R^2 = 0.9913$	y = -7.0903x + 88.927	$R^2 = 0.9883$	y = -6.8746x + 90.658	$R^2 = 0.9890$
21.00	y = -5.4083x + 83.882	$R^2 = 0.9701$	y = -5.7197x + 82.541	$R^2 = 0.9866$	y = -5.3489x + 82.679	$R^2 = 0.9803$
22.00	y = -8.2605x + 93.753	$R^2 = 0.9717$	y = -7.8197x + 93.401	$R^2 = 0.9873$	y = -7.5938x + 91.912	$R^2 = 0.9685$
23.00	y = -9.603x + 97.534	$R^2 = 0.9865$	y = -8.593x + 91.151	$R^2 = 0.9659$	y = -8.3226x + 91.049	$R^2 = 0.9885$
24.00	y = -11.743x + 93.724	$R^2 = 0.9606$	y = -10.435x + 89.739	$R^2 = 0.9362$	y = -10.074x + 87.408	$R^2 = 0.9601$
25.00	y = -6.1657x + 86.45	$R^2 = 0.988$	y = -6.0805x + 82.84	$R^2 = 0.9913$	y = -6.215x + 83.433	$R^2 = 0.9836$
26.00	y = -13.702x + 85.176	$R^2 = 0.9299$	y = -11.993x + 82.624	$R^2 = 0.9266$	y = -10.258x + 79.785	$R^2 = 0.9658$

說明:

- (一)趨勢方程式所分析爲響度與時間的關係。
- (二)長度 21.00cm 的音箱衰變係數絕對值最小,表示發聲時間會較久。
- (三)分析上述結果,是因爲引起箱內空氣柱的共振。

(二)研究四之二:研究可調式音箱長度(如 p.7:圖 14 所示)對響度衰變的影響

表五:已經由電腦處理後**可調式音箱**長度與響度的數據(y表示響度、x表示時間)

可調式音箱長度	趨勢方程式	衰變係數 R	備註
14.00	y = -18.667x + 84.625	$R^2 = 0.967$	
15.00	y = -12.546x + 83.138	$R^2 = 0.901$	
16.00	y = -10.712x + 83.38	$R^2 = 0.882$	
17.00	y = -9.0936x + 80.206	$R^2 = 0.8964$	
18.00	y = -9.9284x + 83.306	$R^2 = 0.9193$	
19.00	y = -7.939x + 82.614	$R^2 = 0.9212$	
20.00	y = -9.1691x + 85.001	$R^2 = 0.9485$	
21.00	y = -7.4596x + 84.58	$R^2 = 0.9208$	響度最不易衰變
22.00	y = -9.712x + 87.67	$R^2 = 0.9405$	
23.00	y = -15.97x + 90.169	$R^2 = 0.9637$	
24.00	y = -16.828x + 86.1	$R^2 = 0.9793$	
25.00	y = -15.53x + 85.032	$R^2 = 0.9685$	
26.00	y = -19.879x + 86.244	$R^2 = 0.9373$	
27.00	y = -19.423x + 84.74	$R^2 = 0.9359$	
28.00	y = -14.593x + 74.248	$R^2 = 0.9739$	
29.00	y = -16.639x + 84.446	$R^2 = 0.9849$	
30.00	y = -18.049x + 85.075	$R^2 = 0.9697$	
31.00	y = -16.913x + 86.318	$R^2 = 0.966$	
32.00	y = -16.818x + 89.258	$R^2 = 0.9756$	
33.00	y = -15.865x + 90.851	$R^2 = 0.9877$	

- (一) 趨勢方程式所分析爲響度與時間的關係。
- (二)利用可調式音箱亦得到,當長度 21.00cm 時聲音的衰變係數絕對値最小。(與研究 四之一的結果相同)
- (三)分析上述結果,是因爲引起箱內空氣柱的共振。

五、研究五:討論音箱隔間數對響度衰變的影響

表六:由電腦分析後音箱隔間數不同時響度與時間的數據(y表示響度、x表示時間)

音箱隔間	趨勢線方程式	衰變係數	相關係數 R	初始響度(分貝)	發聲後降至 60dB 所需時間 (秒)
1間(無隔間)	y = -4.6714x + 70.517	-4.6714	$R^2 = 0.9439$	72.1	2.4
2間(橫)	y = -1.8962x + 70.663	-1.8962	$R^2 = 0.8752$	74.6	6.4
3間(橫)	y = -0.9166x + 74.008	-0.9166	$R^2 = 0.9933$	76.1	15.9
4間(橫)	y = -0.8945x + 77.622	-0.8945	$R^2 = 0.9978$	79.0	19.7
5間(横)	y = -0.8785x + 79.472	-0.8785	$R^2 = 0.9992$	79.9	22.6

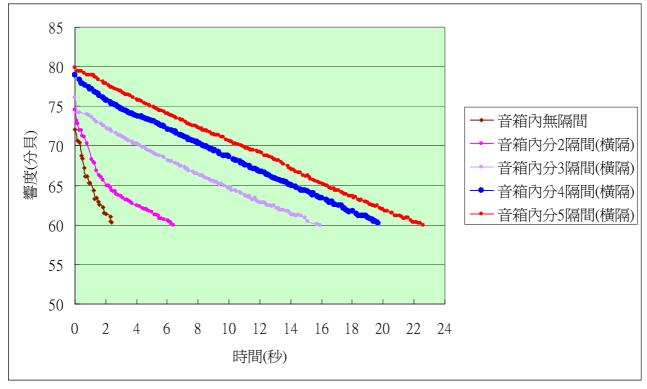


圖 27:音箱隔間與響度的衰變關係圖

- (一)音箱採橫式隔間時,隔間數愈 多,初始響度愈大且衰變係數 絕對値較小表示可以振動時間 較久,五隔間音箱振動時間約 爲單口音箱的 9.5 倍。
- (二)音箱採橫式隔間時,隔間數愈多,初始響度愈大。

圖 28: 紙音箱(五個)横式隔間圖

六、研究六:討論音箱材質與響度的關係

表七:由電腦分析不同材質音箱的響度及發聲時間的數據(y表示響度、x表示時間)

音箱木板材質	趨勢線方程式	相關係數 R	初始響度(分貝)	備註
花梨木	y = -19.488x + 98.394	$R^2 = 0.9917$	99.8	衰變最大
山毛櫸	y = -7.5207x + 97.548	$R^2 = 0.9328$	108.7	
赤楊木	y = -6.4257x + 95.527	$R^2 = 0.9222$	108.7	
白松木	y = -4.271x + 87.085	$R^2 = 0.9434$	94.9	衰變最小
栓木	y = -7.4418x + 106.1	$R^2 = 0.9697$	119.1	
胡桃木	y = -7.5175x + 108.03	$R^2 = 0.9878$	111.4	
櫻桃木	y = -8.1072x + 110.09	$R^2 = 0.982$	112.6	
楓木	y = -7.2353x + 106.15	$R^2 = 0.991$	107.8	
柚木	y = -9.1171x + 108.62	$R^2 = 0.9686$	119.8	
橡木	y = -6.5373x + 106.96	$R^2 = 0.9887$	111.1	
夾板	y = -13.23x + 102.54	$R^2 = 0.9435$	106.3	衰變第二大

圖 29: 各種不同材質的音箱

- (一)材質對響度是有影響的。
- (二)以花梨木衰變最爲明顯,夾板次之。
- (三)白松木的衰變係數爲花梨木的 1/5 左右,振動時間最久。

七、研究七:討論音叉股數與響度及發聲時間關係

表八:由電腦分析後音叉股數與響度及發聲時間的數據(y表示響度、x表示時間)

雙股	音叉	3 股	音叉	4股	音叉	5 股	音叉
發聲時間	響度	發聲時間	響度	發聲時間	響度	發聲時間	響度
(秒)	(分貝)	(秒)	(分貝)	(秒)	(分貝)	(秒)	(分貝)
0.0	82.6	0.0	83.2	0.0	89	0.0	90.5
0.1	77.9	0.1	80.5	0.1	81.4	0.2	84.1
0.2	72.5	0.3	77.6	0.3	78.6	0.4	77.5
0.3	71.7	0.5	76.1	0.4	78.1	0.6	73.4
0.4	70.5	0.8	73.5	0.6	76.9	0.9	70.9
0.5	70.3	1.0	71.9	0.7	74.7	1.2	69.5
0.6	69.4	1.2	70.3	0.8	74.5	1.3	68.8
0.9	67.7	1.3	69.9	0.9	73.5	1.5	68.1
1.0	66.8	1.4	68.7	1.0	73.1	1.6	67.6
1.1	66.4	1.5	68.3	1.1	72.1	1.7	67.5
1.2	65.3	1.6	67.1	1.3	70.9	1.8	66.9
1.4	63.9	1.8	65.6	1.4	70.6	2.0	66.4
1.5	63.6	1.9	65.2	1.5	69.9	2.2	65.7
1.6	62.6	2.0	64	1.8	68.5	2.3	65.6
1.8	61.3	2.1	63.6	1.9	67.7	2.5	64.9
1.9	61	2.2	62.5	2.1	66.7	2.6	64.4
2.0	60	2.3	62.1	2.2	66.5	2.7	64.3
		2.4	61	2.3	65.9	2.8	63.8
		2.5	60.6	2.4	65.6	2.9	63.6
				3.0	63	3.4	61.6
				3.1	62.4	3.5	61.4
				3.2	62.2	3.6	60.8
				3.4	61.3	3.7	60.7
				3.5	60.8	3.8	60.1
				3.7	60	3.9	60

表九:已經由電腦分析後音叉股數與初始響度及發聲時間的數據(y表示響度、x表示時間)

音叉股數	趨勢線方程式	衰變係數	初始響度 (dB)	發聲時間 (秒)	相關係數 R
2	y = -8.6582x + 76.256	-8.6582	82.6	2.0	$R^2 = 0.882$
3	y = -8.3926x + 80.919	-8.3926	83.2	2.5	$R^2 = 0.9888$
4	y = -6.0305x + 80.445	-6.0305	89.0	3.7	$R^2 = 0.9195$
5	y = -5.514x + 79.321	-5.514	90.5	3.9	$R^2 = 0.8131$

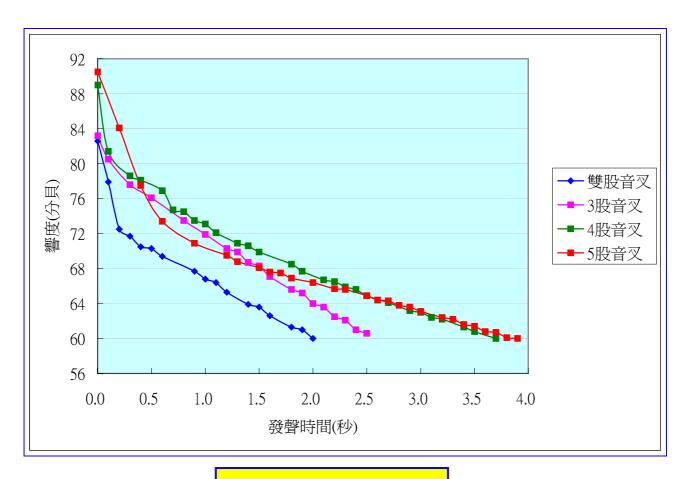


圖 30:音叉股數與響度關係圖

說明:

- (一)音叉股數愈多,衰 變係數絕對値較 小,振動時間愈 々。
- (二)音叉股數愈多,初 始響度也愈大。

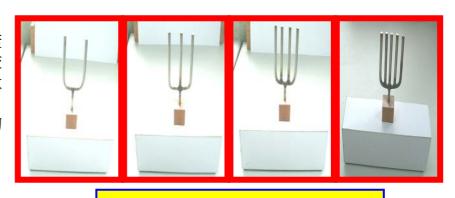


圖 31:不同股數的音叉

陸、討論

- 一、在研究一中我們發現音叉擺設位置越對稱,共振現象越明顯。
- 二、在研究二中,我們發現音箱:
 - (一)薄木板較易引起振動,但振動時所引起的聲音響度相對較小。
 - (二) 音箱木板厚度較厚時, 聲音衰變較明顯, 但振動時聲音響度較大。
 - (三)音箱木板厚度爲 1.10cm 及 0.90cm 時,振動需較大能量,當能量損失到某一階段 (約 80 分貝)時,音箱無法持續振動,響度出現急遽下降的現象(如 p.14:圖 23-2)。
- 三、在研究三中,我們發現口徑越大,衰變並非較大,若尺吋引起箱內空氣共振,則衰變明 顯變小。
- 四、在研究四中,我們發現音箱長度約為 1/4 的聲音波長時,聲音衰變較小,但與理論値有 差異,推測聲波的最大振幅,應在箱口外。
- 五、在研究五中,發現隔間的方式(如圖 32 所示),明顯影響振動時間。
 - (一)五橫隔間紙音箱:
 - 1 趨勢線方程式: y = -0.8785x + 79.472
 - 2 相關係數R: $R^2 = 0.9992$
 - 3 振動時間: 22.6 秒(響度算至 60 分貝)
 - (二)五直隔間紙音箱:
 - 1 趨勢線方程式: y = -15.859x + 81.786
 - 2 相關係數R: $R^2 = 0.9907$
 - 3 振動時間: 1.4 秒(響度算至 60 分貝)

振動時間相差 21.2 秒,衰變係數相差 18.05 倍,明顯 影響振動時間。

- 六、在研究六中發現,並非價錢昂貴的材質,聲音振動維持時間愈持久。
- 七、在研究七中我們發現:
 - (一)音叉兩股若不等長(如圖 33 所示),振動時間明顯變小。

(二) 音叉股數愈多時(如圖34所示),振動時間愈久,表示共振愈佳。

圖 32:音箱橫隔與縱隔

圖 33: 兩股音叉不等長

圖 34: 五股音叉

柒、結論

- 一、在研究一中發現音叉需固定在音箱的正中央,聲音響度隨時間的衰變最小,且發聲時間 為平均值的 2 倍。
- 二、在研究二中發現音箱厚度愈厚時,振動時所發出的聲音愈大,但衰變情況愈明顯,發聲時間愈短;厚度 0.30cm 的音箱聲音持續 12.8 秒(80 分貝以上)是厚度 1.10cm 的 5.3 倍。
- 三、在研究三中發現若未引起音箱內空氣共振時,口徑愈小的音箱,聲音的衰變愈小,聲音 愈持久,但敲擊後聲音響度較小。
- 四、在研究四中發現若音箱在特定長度時衰變最小,發聲時間較久。原因推測與引起空氣共 振有關。
- 五、在研究五中發現音箱採橫式隔間時,隔間數愈多,聲音衰變較小,且初始響度愈大。
- 六、在研究六中發現音箱材質對響度是有影響。
- 七、在研究七中發現音叉股數愈多,振動愈不易衰變,發聲時間維持愈久,且初始響度愈大。

捌、參考資料

- 一、郭重吉主編。國中自然與生活科技 第三冊。臺南市:南一書局; p.50~p.51。(民 94)
- 二、連坤德等編著。高級中學物理上冊,91年8月再版。臺南市:翰林出版社;p.6~p.68。(民91)
- 三、管傑雄編著。高級中學物理上冊,92年7月再版。臺北市:三民書局;p.4~p.25。(民 92)
- 四、林明瑞主編。高級中學 基礎物理,92年8月再版。臺南市:南一書局;p.112~p.129。(民92)
- 五、管傑雄、孫允武等編著。高級中學物質科學物理篇,90年2月初版。臺北市:三民書局; p.213~p.236。(民 90)
- 六、褚德三主編。物理上冊,93 年 8 月再版。臺北縣:龍騰文化事業股份有限公司; p.2~p.28。(民 93)

評 語

031601 威『振』八方、不同凡『響』

- 團隊的合作默契極佳,表達流暢,為探究響度主題能設計 各種變因來驗證結果,實驗精神值得鼓勵。唯實驗各項變 因的探究不夠深入、完整,數據的處理可以再嚴謹一些。
- 2. 道具設計可從生活中取材,俾使研究結果的應用價值再提高。