中華民國第四十五屆中小學科學展覽會 作品說明書

國中組 理化科

佳作

031615 『極』有不同

基隆市立中正國民中學

作者姓名:

國二 王培寧 國二 張嘉耘 國二 楊立群

指導老師:

王世宏 石長明

中華民國第45屆中小學科學展覽會

作品說明書

科 別:**理化科**

組別:國中組

作品名稱:『極』有不同

關鍵詞: 電解水、電極、顯微攝影法

編號:

「極」有不同

摘要

本研究的主要目的在於探討不同的電極材料在電解水實驗中之影響,透過「複式顯微鏡+數位相機」(我們稱之為「顯微攝影法」)清楚地將電解反應前後的電極表面情形觀察清楚與紀錄,並歸納所學物質的物性與化性,以了解電解水的正負極氣體產量體積比,從而試圖找出電解水時,符合理論值正負極氣體體積比為1:2的反應條件。

綜合研究結果,在本研究的實驗設計下,所探討出的用來**電解水**時,欲達到符合理論值 正負極氣體體積比「氧氣:氫氣 = 1:2」的**最佳反應條件**如下:

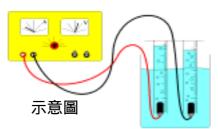
- 一、輸入直流電壓值=9伏特(最好電源供應器較穩定)。
- 二、使用「不鏽鋼」電極(正負極相同)時:在(NaOH) = 0.5M。 使用「碳棒」電極(正負極相同)時:在 $(H_2SO_4) = 0.5M$ 。
- 三、其它控制變因的條件:兩電極距 3cm、兩電極面積均同、兩電極與外接銅線須絕緣 (可用 AB 膠效果最好,其它像快乾膠、Silicone、絕緣膠帶,我們試過都不好用)。

壹、 研究動機

在八年級上學期的自然與生活科技課程中,南一版在第五章中提到化合物可透過普通的化學方法如通電加以分解,又恰巧正好校內科展,我們三個志同道合的同學,便以「電解水」為興趣的研究主軸。我們首先以三年級學長的課本實驗裝置出發,即用迴紋針當電極,去電解 0.1M 的氫氧化鈉水溶液,實驗後發現試管內的氣體體積比根本沒有符合課本內容所提到的 2:1,且燒杯的底部有一些暗紅色像鐵鏽的物質沉澱,我們求教於老師接受建議嘗試改用碳棒去做看看,所得到的結果類似。於是接著我們去查看全國科展有關電解水的得獎作品,發現似乎沒有深入探討電極材料對電解水的影響。因此激起了我們的研究興趣,難道是電極材料影響電解水的實驗結果嗎?

貳、 研究目的

- 一、探討在電壓 9V 時,不同電極材料下,電解水的正負極氣體產率。
 - (一)在使用不同濃度電解質的影響。
 - (二)在分別不同種類電解質的影響。
- 二、探討在電壓 3V 時,不同電極材料下,電解水的正負極氣體產率。
 - (一)在使用不同濃度電解質的影響。
 - (二)在分別不同種類電解質的影響。
- 三、探討電解水時,符合理論值正負極氣體體積比為1:2的反應條件。


參、 研究器材及藥品

- 一、器材:直流電源供應器、燒杯、25ml 量筒、量瓶、碳棒電極、銅棒電極、鋁棒電極、 鋅棒電極、不鏽鋼電極、鱷魚夾、碼錶、電子秤、複式顯微鏡、數位相機。
- 二、藥品:氫氧化鈉(NaOH)、硫酸(H2SO4) 、硫酸鈉(Na2SO4)、醋酸(CH3COOH)、蒸餾水

肆、 研究過程與方法

- 一、探討在電壓 9V 時,不同電極材料下,電解水的正負極氣體產率:
 - (一)準備電極材料: 鐵片、銅片、鋁片、鋅片、不鏽鋼片、碳棒 ,為了控制各電極材料在反應時的接觸面積均相同,前面五項金屬片為長 4cmx寬 1cmx厚 0.05cm ,而碳棒為長 4.5 cmx直徑 0.5 cm。分別纏上外覆絕緣橡膠皮的單芯銅線,再用 AB 膠將銅線與電極接觸的地方封住,待其凝固,使銅線與空氣隔絕,以免漏電。
 - (二)在電解反應前,先紀錄正負電極的質量,並透過複式顯微鏡(<u>15x4 倍</u>)利用數位相機,把電解前電極的表面情形拍攝下來,以作為電解後的情形之比較。

- (三)配置電解液:用量瓶配置氫氧化鈉水溶液(NaOH)=0.5M。
- (四) 先在 500ml 燒杯中倒入步驟(三)的溶液 200ml,與裝滿兩支 25ml 的量筒,然 後將這兩支裝滿步驟(三)溶液的量筒,倒置入前述的 500ml 燒杯中,注意務 必確使裝置好的量筒內完全充滿步驟(三)的溶液,不能有空氣跑入。
- (五)將正負電極放入上述的量筒內,並用試管夾把量筒稍微架高,讓電極完全與電 解液接觸,且固定兩電極的距離 3cm。裝置如圖所示。

- (六)利用直流電源供應器,調整電壓為 9V,電解 20 分鐘,並每隔 4 分鐘紀錄一次 正負極的氣體生成量,直到 20 分鐘為止。
 - 1.檢驗正負極的氣體產物:點燃火柴,試驗氣體的燃燒性。
 - 2.反應後,透過複式顯微鏡(<u>15x4 倍</u>)利用數位相機,把電解後電極的表面情形拍攝下來,並與電解前的情形之比較。
 - 3.將電極烘乾稱重,求出**電極質量變化量**=電解後電極質量-電解後電極質量。 4.將結果紀錄,並求正負極的產率(體積比)。
- (七)將步驟(三)電解液的濃度配成 0.1M、0.01M。重複步驟(四)到(六)。
- (八)完成步驟(七)後,將結果整理,並作時間與氣體體積比關係圖。
- (九)重複步驟(三)將電解液分別改為硫酸、硫酸鈉、醋酸、蒸餾水。重複步驟(四) 到(八)。
- 二、探討在電壓 3V 時,不同電極材料下,電解水的正負極氣體產率:完成上述實驗後, 接續調整電壓為 3V,重複第一部分實驗之步驟(三)到(九)。
- 三、探討電解水時,符合理論值正負極氣體體積比為1:2的反應條件:綜合上述兩部分的實驗結果,歸納整理出最佳電解水的反應條件。

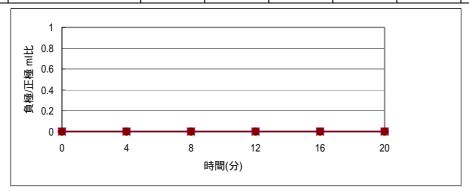
伍、 研究結果

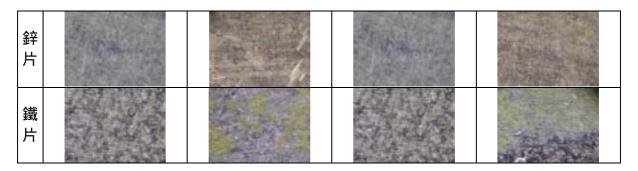
- 一、在電壓 (9V), 不同電極材料下, 電解水的正負極氣體產率:
 - (一)用不同電極材料電解「蒸餾水」:

表 1-1 在 9V 下用不同電極材料電解「蒸餾水」之正負極體積比的情形

電極材	時間(分)	0	4	8	12	16	20
С	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
碳棒	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
14火作士	負極/正極 (ml 比)	0.00	0.00	0.00	0.00	0.00	0.00
	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
不鏽鋼	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
	負極/正極 (ml 比)	0.00	0.00	0.00	0.00	0.00	0.00
Cu	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
銅片	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
和47/二	負極/正極 (ml 比)	0.00	0.00	0.00	0.00	0.00	0.00
Al	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
日	正極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
11日11日	負極/正極 (ml 比)	0.00	0.00	0.00	0.00	0.00	0.00

Zn	負極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
业十八	負極/正極 (ml 比)	0.00	0.00	0.00	0.00	0.00	0.00
Fe	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
鐵片	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
业 以 / 一	負極/正極(ml 比)	0.00	0.00	0.00	0.00	0.00	0.00




圖 1-1 在 9V 下用不同電極材料電解「蒸餾水」之正負極體積比的情形表 1-1-2 在 9V 下,電解前後各電極正負極的質量變化情形

電極質	正	極的質量情	形	負極的質量情形			
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)	
碳棒	2.85	2.83	-0.02	2.94	2.92	-0.02	
不鏽鋼	2.18	2.17	-0.01	2.02	2.02	+0.00	
銅片	2.55	2.52	-0.03	2.49	2.51	+0.02	
鋁片	1.38	1.35	-0.03	1.25	1.24	-0.01	
鋅片	2.10	2.08	-0.02	2.30	2.27	-0.03	
鐵片	2.39	2.41	+0.02	2.68	2.71	+0.03	

註:「變化量」=電解後電極質量-電解前電極質量

表 1-1-3 在 9V 下電解前後各電極正負極表面影像的變化情形

電	正極表面	的情形	負極表面	面的情形
極	電解前影像	電解後影像	電解前影像	電解後影像
碳棒				
不鏽鋼				
銅片				
鋁片				

(二)用不同電極材料電解「氫氧化鈉」為電解質時,不同濃度下電解的反應情形:

1. (NaOH) = 0.5M 的電解情形

表 2-1 在 9V 不同電極材料下 $\{NaOH\}=0.5M$ 的電解之正負極體積比的情形

	T 0. 113-617-1311	• •				2011XVOA	U 11.U.1.
電極材	時間(分)		4	8	12	16	20
С	負極(ml)	0.00	4.40	8.00	13.8	19.00	24.20
碳棒	正極 (ml)	0.00	1.30	2.40	3.40	5.00	6.20
14火作	負極/正極(ml 比)	0.00	3.38	3.33	4.06	3.80	3.90
	負極 (ml)	0.00	3.60	7.00	12.2	17.20	23.40
不鏽鋼	正極 (ml)	0.00	1.40	3.40	6.00	8.40	11.60
	負極/正極(ml 比)	0.00	2.57	2.06	2.03	2.05	2.02
Cu	負極 (ml)	0.00	3.00	5.40	7.40	10.0	13.60
銅片	正極 (ml)	0.00	1.40	2.60	3.80	4.80	6.60
到四人	負極/正極(ml 比)	0.00	2.14	2.08	1.95	2.08	2.06
Al	負極 (ml)	0.00	0.40	1.60	2.80	3.80	5.00
品片	正極 (ml)	0.00	0.50	1.60	2.80	3.80	4.60
単口/	負極/正極(ml 比)	0.00	0.80	1.00	1.00	1.00	1.09
Zn	負極 (ml)	0.00	0.00	2.00	2.80	3.60	5.00
辞片	正極 (ml)	0.00	0.00	0.60	0.80	1.00	1.40
□ 业十 / □	負極/正極(ml 比)	0.00	0.00	3.33	3.50	3.60	3.57
Fe	負極 (ml)	0.00	0.60	1.20	2.60	3.40	4.20
鐵片	正極 (ml)	0.00	0.40	0.50	0.80	1.00	1.20
¥≠X, /	負極/正極(ml 比)	0.00	1.50	2.40	3.25	3.40	3.50

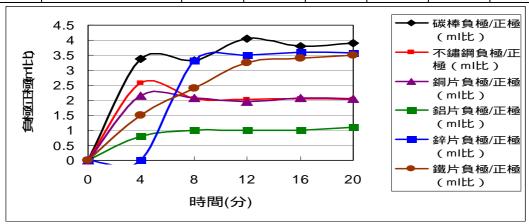


圖 2-1 在 9V 不同電極材料下 $\{NaOH\} = 0.5M$ 的電解之正負極體積比的情形表 2-1-1 在 9V 下 $\{NaOH\} = 0.5M$,電解前後各電極正負極的質量變化情形

電極質量	正極的質量情形	負極的質量情形
電極材料	電解前(g)電解後(g)變化量(g)	電解前(g)電解後(g)變化量(g)

碳棒	2.57	2.52	-0.05	2.63	2.60	-0.03
不鏽鋼	2.12	2.11	-0.01	2.01	1.99	-0.02
銅片	2.45	2.41	-0.04	2.31	2.34	+0.03
鋁片	1.21	1.13	-0.08	1.16	1.11	-0.05
鋅片	2.32	2.22	-0.10	2.53	2.47	-0.06
鐵片	2.27	2.38	+0.11	2.40	2.43	+0.03

表 2-1-2 在 9V 下 (NaOH) = 0.5M, 電解前後各電極正負極表面影像的變化情形

電	正極表面			面的情形
極	電解前影像	電解後影像	電解前影像	電解後影像
碳棒				
不鏽鋼				
銅片				
鋁片				
鋅片	344		3 W. L.	
鐵片				

2. (NaOH) = 0.1M 的電解情形

表 2-2 在 9V 不同電極材料下 (NaOH) = 0.1M 的電解之正負極體積比的情形

電極材	時間(分)	0	4	8	12	16	20
С	負極 (ml)	0.00	0.50	1.20	1.60	2.00	2.60
碳棒	正極 (ml)	0.00	0.20	0.50	0.70	0.90	1.20
1/X1 =	負極/正極(ml 比)	0.00	2.50	2.40	2.29	2.22	2.17
	負極 (ml)	0.00	1.00	1.80	2.60	3.40	4.60
不鏽鋼	正極 (ml)	0.00	0.40	0.80	1.20	1.60	2.20
	負極/正極(ml 比)	0.00	2.50	2.25	2.17	2.13	2.09
Cu	負極 (ml)	0.00	0.70	1.30	2.00	2.60	3.10
銅片	正極 (ml)	0.00	0.30	0.60	1.00	1.30	1.50
) 기의	負極/正極(ml 比)	0.00	2.33	2.17	2.00	2.00	2.07
Al	負極 (ml)	0.00	0.30	0.80	1.30	1.80	2.60

鋁片	正極(ml)	0.00	0.20	0.50	0.80	0.70	0.90
	負極/正極(ml 比)	0.00	1.50	1.60	1.63	2.57	2.89
Zn	負極 (ml)	0.00	0.10	0.50	1.20	2.00	2.70
至 鋅片	正極 (ml)	0.00	0.00	0.10	0.20	0.50	0.80
亚十/二	負極/正極(ml 比)	0.00	0.00	5.00	6.00	4.00	3.38
Fe	負極 (ml)	0.00	0.00	0.20	0.60	1.00	1.60
鐵片	正極 (ml)	0.00	0.00	0.00	0.20	0.30	0.50
业我 /一	負極/正極(ml 比)	0.00	0.00	0.00	3.00	3.33	3.20

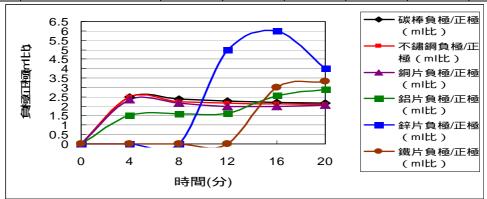
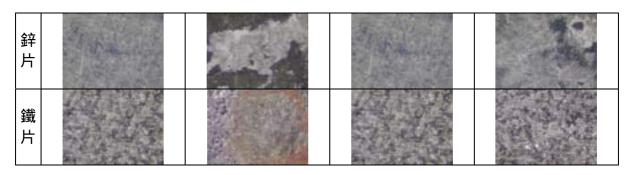



圖 2-2 在 9V 不同電極材料下 (NaOH) = 0.1M 的電解之正負極體積比的情形表 2-2-1 在 9V 下 (NaOH) = 0.1M,電解前後各電極正負極的質量變化情形

電極質量	正	極的質量情	形	負極的質量情形		
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)
碳棒	2.97	2.93	-0.04	2.80	2.78	-0.02
不鏽鋼	2.20	2.12	-0.08	2.06	2.04	-0.02
銅片	2.46	2.42	-0.04	2.53	2.55	+0.02
鋁片	1.24	1.12	-0.12	1.31	1.18	-0.13
鋅片	2.31	2.28	-0.03	2.16	2.18	+0.02
鐵片	2.39	2.51	+0.12	2.44	2.47	+0.03

表 2-2-2 在 9V 下 (NaOH) = 0.1M, 電解前後各電極正負極表面影像的變化情形

			負極表面的情形				
電		面的情形					
極	電解前影像	電解後影像	電解前影像	電解後影像			
碳棒							
不鏽鋼							
銅片							
鋁片							

3. (NaOH) = 0.01M 的電解情形

表 2-3 在 9V 不同電極材料下 (NaOH) = 0.01M 的電解之正負極體積比的情形

nter (A)							
電極材	時間(分) 電極材料		4	8	12	16	20
С	負極 (ml)	0.00	0.00	0.40	0.50	0.60	0.80
碳棒	正極 (ml)	0.00	0.00	0.10	0.10	0.20	0.20
14火1干	負極/正極(ml 比)	0.00	0.00	4.00	5.00	3.00	4.00
	負極 (ml)	0.00	0.00	0.30	0.40	0.60	0.70
不鏽鋼	正極 (ml)	0.00	0.00	0.10	0.10	0.20	0.20
	負極/正極(ml 比)	0.00	0.00	3.00	4.00	3.00	3.50
	負極 (ml)	0.00	0.00	0.00	00	0.10	0.20
Cu	正極 (ml)	0.00	0.00	0.00	00	微量	微量
銅片	負極/正極(ml 比)	0.00	0.00	0 00	0.00	0.00	0.00
Al	負極 (ml)	0.00	0.00	0.10	0.10	0.10	0.20
部片	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
亚口厂	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Zn	負極 (ml)	0.00	0.00	微量	微量	微量	0.10
至II 鋅片	正極 (ml)	0.00	0.00	0.00	0.00	0.00	00
业十八	負極/正極(ml 比)	0.00	0.00	0.00	0.00	0.00	0.00
Fe	負極 (ml)	0.00	0.00	0.00	微量	微量	微量
g re 鐵片	正極 (ml)	0.00	0.00	0.00	0.00	0.00	00
业我, 厂	負極/正極(ml 比)	0.00	0.00	0.00	0.00	0.00	0.00

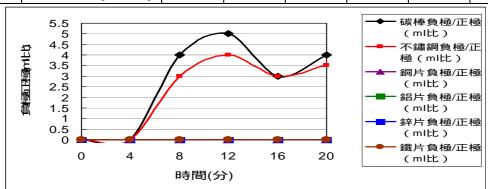


圖 2-3 在 9V 不同電極材料下(NaOH) = 0.01M 的電解之正負極體積比的情形表 2-3-1 在 9V 下(NaOH) = 0.01M,電解前後各電極正負極的質量變化情形

電極質量	正極的質量情形			負極的質量情形		
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)
碳棒	2.91	2.87	-0.04	3.03	2.92	-0.05
不鏽鋼	2.24	2.15	-0.09	2.09	2.13	+0.04

銅片	2.50	2.43	-0.07	2.39	2.48	+0.09
鋁片	1.28	1.19	-0.09	1.14	1.07	-0.07
鋅片	2.28	2.34	+0.06	2.19	2.26	+0.07
鐵片	2.52	2.46	-0.06	2.57	2.60	+0.03

表 2-3-2 在 9V 下 (NaOH) = 0.01M, 電解前後各電極正負極表面影像的變化情形

電	正極表面	面的情形		面的情形
極	電解前影像	電解後影像	電解前影像	電解後影像
碳棒				
不				
鏽				
鋼	以及自己的	THE STREET	以及自己的	11 321
銅片				
鋁片				
鋅片	314		30	
鐵片				

(三)用不同電極材料電解「硫酸」為電解質時,不同濃度下電解的反應情形: $1. (H_2SO_4) = 0.5M$ 的電解情形

表 3-1 在 9V 不同電極材料下 $[H_2SO_4] = 0.5M$ 的電解之正負極體積比的情形

電極材料	時間(分) 電極材料		4	8	12	16	20
С	負極(ml)	0.00	0.00	6.20	11.60	15.20	18.40
し 碳棒	正極 (ml)	0.00	0.00	3.20	5.20	7.20	8.80
11/火作士	負極/正極(ml比)	0.00	1.94	2.23	2.11	2.09	2.03
	負極 (ml)	0.00	6.80	13.40	18.00	22.00	24.60
不鏽鋼	正極 (ml)	0.00	1.60	3.20	5.00	6.40	7.60
	負極/正極 (ml比)	0.00	4.25	4.19	3.60	3.44	3.24
Cu	負極 (ml)	0.00	2.00	2.60	3.80	4.60	6.20
」	正極 (ml)	0.00	0.00	0.00	0.20	0.30	0.40
业吗 <i>厂</i>	負極/正極(ml比)	0.00	0.00	0.00	19.00	15.33	15.50
Al	負極 (ml)	0.00	2.80	4.20	5.20	6.00	7.00
鋁片	正極 (ml)	0.00	0.40	0.40	0.40	0.40	0.60

	負極/正極(ml比)	0.00	7.00	10.50	13.00	15.00	11.67
Zn	負極 (ml)	0.00	0.10	0.10	0.10	0.10	0.10
至II 鋅片	正極 (ml)	0.00	0.00	0.00	0.00	微量	微量
业十八	負極/正極 (ml 比)	0.00	0.00	0.00	0.00	0.00	0.00
Fe	負極 (ml)	0.00	4.00	8.20	13.50	16.80	20.20
鐵片	正極 (ml)	0.00	0.80	1.50	2.20	4.00	5.20
业主以 /一	負極/正極(ml比)	0.00	5.00	5.47	6.14	4.20	3.88

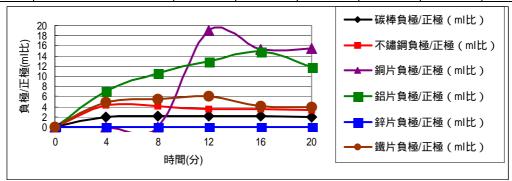
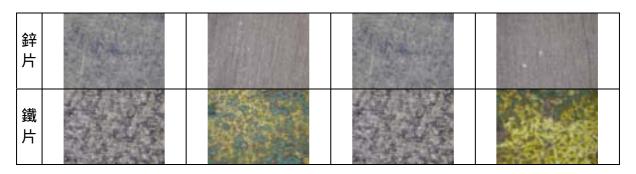



圖 3-1 在 9V 不同電極材料下 $(H_2SO_4) = 0.5M$ 的電解之正負極體積比的情形表 3-1-1 在 9V 下 $(H_2SO_4) = 0.5M$,電解前後各電極正負極的質量變化情形

電極質量	正極的質量情形			負極的質量情形		
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)
碳棒	2.98	2.95	-0.03	2.80	2.74	-0.06
不鏽鋼	2.21	2.24	+0.03	2.14	2.15	+0.01
銅片	2.23	2.25	+0.02	2.44	2.38	-0.06
鋁片	1.12	1.22	+0.10	0.99	1.03	+0.04
鋅片	2.15	2.20	+0.05	2.01	2.09	+0.08
鐵片	2.48	2.31	-0.17	2.46	2.35	-0.11

表 3-1-2 在 9V 下 $(H_2SO_4) = 0.5M$,電解前後各電極正負極表面影像的變化情形

電	で に	面的情形	身極表面的情形				
極	電解前影像	電解後影像	電解前影像	電解後影像			
碳棒							
不鏽鋼							
銅片							
鋁片							

2. $(H_2SO_4) = 0.1M$ 的電解情形表 3-2 在 9V 下不同電極材料下 $(H_2SO_4) = 0.1M$ 的電解之正負極體積比的情形

電極材	時間(分)	0	4	8	12	16	20
С	負極(ml)	0.00	3.00	6.00	9.40	12.40	15.80
碳棒	正極 (ml)	0.00	0.40	1.10	1.50	1.90	2.40
10次1年	負極/正極(ml比)	0.00	7.50	5.45	6.27	6.53	4.23
	負極 (ml)	0.00	2.00	4.60	6.40	8.70	11.00
不鏽鋼	正極 (ml)	0.00	0.50	1.00	1.50	1.80	2.60
	負極/正極(ml比)	0.00	4.00	4.60	4.27	4.83	4.23
Cu	負極 (ml)	0.00	0.00	0.00	0.00	0.30	1.80
」	正極(ml)	0.00	0.00	0.00	0.00	0.00	微量
到9 <i>7</i> つ	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Al	負極 (ml)	0.00	1.00	1.60	2.40	2.90	3.40
日 名 日 日	正極(ml)	0.00	0.00	0.00	0.00	微量	微量
平口/一	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Zn	負極 (ml)	0.00	0.00	0.00	0.10	0.40	0.70
ZII 鋅片	正極 (ml)	0.00	微量	微量	微量	微量	微量
业十八	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
E ₀	負極 (ml)	0.00	2.00	3.80	5.40	6.80	8.20
Fe 鐵片	正極 (ml)	0.00	0.30	0.30	0.40	0.50	0.60
	負極/正極(ml比)	0.00	6.67	12.67	13.50	13.60	13.67

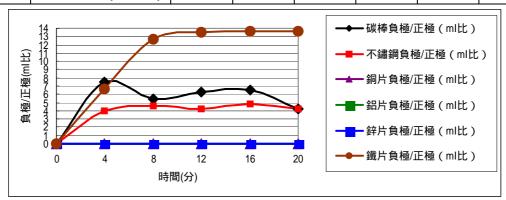


圖 3-2 在 9V 下不同電極材料下 $(H_2SO_4) = 0.1M$ 的電解之正負極體積比的情形表 3-2-1 在 9V 下 $(H_2SO_4) = 0.1M$,電解前後各電極正負極的質量變化情形

電極質量	正	極的質量情	形	負極的質量情形			
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)	
碳棒	2.89	2.87	-0.02	2.88	2.82	-0.06	
不鏽鋼	2.16	2.10	-0.06	2.08	2.03	-0.05	

銅片	2.44	2.42	-0.02	2.45	2.46	+0.01
鋁片	1.10	0.02	-0.08	1.12	1.06	-0.06
鋅片	2.23	2.22	-0.01	2.26	2.39	+0.03
鐵片	2.42	2.49	+0.07	2.40	2.49	+0.09

表 3-2-2 在 9V 下 $_{\rm C}$ H $_{\rm 2}$ SO $_{\rm 4}$ $_{\rm 3}$ = 0.1M $_{\rm 4}$ 電解前後各電極正負極表面影像的變化情形

電	正極表面	面的情形		面的情形
極	電解前影像	電解後影像	電解前影像	電解後影像
碳棒				
不鏽鋼				
銅片				
鋁片				
鋅片	STATE OF THE PARTY		3 64	
鐵片				

3. (H₂SO₄) = 0.01M 的電解情形

表 3-3 在 9V 下不同電極材料下 $(H_2SO_4) = 0.01M$ 的電解之正負極體積比的情形

D(0 0	T 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 (· , · · · · ·		31/21/	. 1202120	3 F 3 1 F 3 / 1 / 2
時間(分) 電極材料		0	4	8	12	16	20
С	負極(ml)	0.00	2.40	3.20	5.00	7.40	10.20
碳棒	正極 (ml)	0.00	1.00	1.40	1.80	2.60	3.70
10火作	負極/正極(ml比)	0.00	2.40	2.29	2.78	2.85	2.76
不鏽鋼	負極 (ml)	0.00	1.50	3.80	5.60	7.80	9.80
	正極 (ml)	0.00	0.20	0.50	1.20	1.80	2.40
	負極/正極 (ml比)	0.00	7.50	7.60	4.67	4.33	4.08
Cu	負極 (ml)	0.00	1.00	2.00	3.20	4.00	4.80
銅片	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
到少一	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Al	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
	正極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
鋁片	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00

Zn	負極(ml)	0.00	0.00	0.00	微量	0.10	0.20
至 辞片	正極 (ml)	0.00	0.00	0.00	微量	微量	微量
亚干 <i>门</i>	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Fe 鐵片	負極 (ml)	0.00	0.20	0.80	1.00	1.40	1.50
	正極 (ml)	0.00	微量	微量	0.10	0.10	0.20
	負極/正極(ml比)	0.00	0.00	0.00	10.00	14.00	7.50

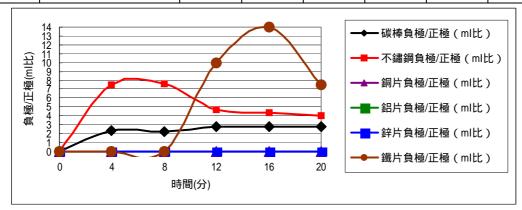
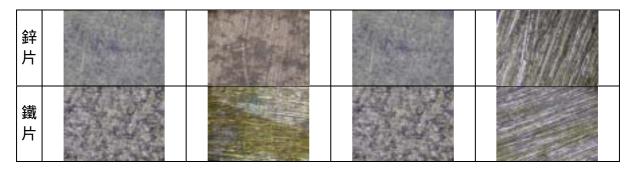



圖 3-3 在 9V 不同電極材料下 $(H_2SO_4) = 0.01M$ 的電解之正負極體積比的情形表 3-3-1 在 9V 下 $(H_2SO_4) = 0.01M$, 電解前後各電極正負極的質量變化情形

電極質量	正	極的質量情	形	負極的質量情形			
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)	
碳棒	2.85	2.88	+0.03	2.87	2.89	+0.02	
不鏽鋼	2.15	2.24	+0.09	2.14	2.19	+0.05	
銅片	2.43	2.37	-0.06	2.44	2.30	-0.14	
鋁片	1.16	1.18	+0.02	1.22	1.28	+0.06	
鋅片	2.13	2.05	-0.08	2.15	2.08	-0.07	
鐵片	2.45	2.32	-0.13	2.48	2.38	-0.06	

表 3-3-2 在 9V 下 $_{1}$ H₂SO₄ $_{1}$ = 0.01M , 電解前後各電極正負極表面影像的變化情形

電	正極表面	前的情形	負極表面	面的情形
極	電解前影像	電解後影像	電解前影像	電解後影像
碳棒				
不鏽鋼				
銅片				
鋁片				

(四)用不同電極材料電解「硫酸鈉」為電解質時,不同濃度下電解的反應情形: $1. (Na:SO_4) = 0.1M$ 的電解情形

表 4-1 在 9V 下不同電極材料下 $\{Na_2SO_4\}=0.1M$ 的電解之正負極體積比的情形

	時間(分)			_			
電極材	電極材料		4	8	12	16	20
С	負極 (ml)	0.00	0.80	2.60	3.80	5.00	6.40
碳棒	正極 (ml)	0.00	0.20	0.40	0.80	1.20	1.50
₩ 火 1辛	負極/正極 (ml比)	0.00	4.00	6.50	4.75	4.17	4.27
	負極 (ml)	0.00	0.30	1.20	2.00	2.80	3.40
不鏽鋼	正極 (ml)	0.00	0.10	0.20	0.50	0.80	1.40
	負極/正極 (ml比)	0.00	3.00	3.00	3.33	2.33	2.13
Cu	負極 (ml)	0.00	1.50	2.80	4.00	5.10	6.00
」 一銅片	正極 (ml)	0.00	0.00	0.00	0.00	微量	微量
型型 <i>厂</i>	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Al	負極 (ml)	0.00	0.00	0.00	0.00	微量	微量
日 名 日 日	正極 (ml)	0.00	0.00	0.00	0.00	0.00	微量
业口/一	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Zn	負極 (ml)	0.00	0.80	1.50	2.60	3.50	4.40
至II 鋅片	正極 (ml)	0.00	0.00	0.00	微量	微量	微量
业十八	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Fe	負極 (ml)	0.00	1.60	2.60	3.50	4.80	6.60
鐵片	正極 (ml)	0.00	0.30	0.50	0.60	0.80	1.40
銭力	負極/正極(ml比)	0.00	5.33	5.20	5.83	6.00	4.71

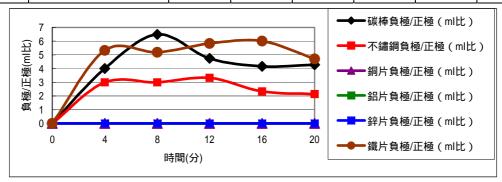


圖 4-1 在 9V 不同電極材料下 $(Na_2SO_4) = 0.1M$ 的電解之正負極體積比的情形表 4-1-1 在 9V 下 $(Na_2SO_4) = 0.1M$,電解前後各電極正負極的質量變化情形

電極質量	正	極的質量情	形	負極的質量情形			
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)	
碳棒	2.87	2.83	-0.04	2.83	2.81	-0.02	
不鏽鋼	2.15	2.12	-0.03	2.17	2.14	-0.03	

銅片	2.47	2.36	-0.11	2.45	2.41	-0.04
鋁片	2.12	2.09	-0.03	1.20	1.16	-0.04
鋅片	2.19	2.13	-0.06	2.23	2.18	-0.00
鐵片	2.45	2.49	+0.04	2.47	2.50	+0.03

表 4-1-2 在 9V 下 (Na₂SO₄) = 0.1M, 電解前後各電極正負極表面影像的變化情形

電	正極表面	面的情形		面的情形
極	電解前影像	電解後影像	電解前影像	電解後影像
碳棒				
不鏽鋼				
銅片				
鋁片				
鋅片	STATE OF THE PARTY			
鐵片				

2. (Na₂SO₄₎ = 0.01M 的電解情形

表 4-2 在 9V 不同電極材料下 (Na₂SO₄) = 0.01M 的電解之正負極體積比的情形

重场サ	時間(分)	0	4	8	12	16	20
电悭彻	電極材料						
С	負極(ml)	0.00	0.20	0.40	0.60	1.00	1.60
碳棒	正極(ml)	0.00	微量	0.10	0.20	0.20	0.30
W火1干	負極/正極(ml比)	0.00	0.00	4.00	3.00	5.00	5.33
	負極 (ml)	0.00	微量	微量	0.10	0.20	0.50
不鏽鋼	正極(ml)	0.00	0.00	微量	微量	微量	0.20
	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	2.50
Cu	負極 (ml)	0.00	微量	0.10	0.20	0.30	0.60
銅片	正極(ml)	0.00	0.00	0.00	0.00	0.00	微量
利引入一	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Al	負極 (ml)	0.00	0.00	0.00	0.00	0.10	0.40
台 銀片	正極 (ml)	0.00	0.00	0.00	0.00	0.00	微量
如力	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00

Zn 鋅片	負極 (ml)	0.00	0.00	0.00	0.00	0.00	微量
	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Fe 鐵片	負極 (ml)	0.00	微量	0.10	0.30	0.40	0.60
	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00

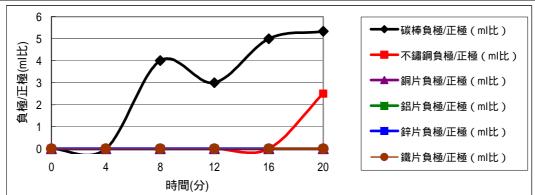
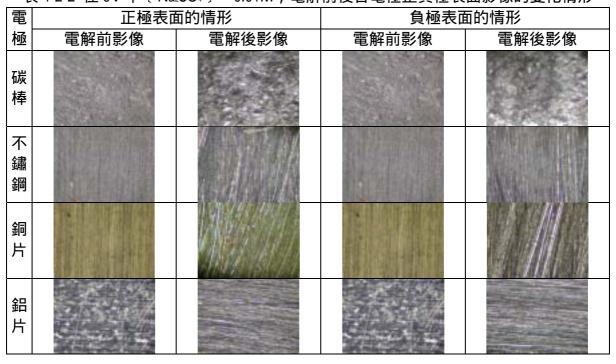



圖 4-2 在 9V 不同電極材料下 $(Na_2SO_4) = 0.01M$ 的電解之正負極體積比的情形表 4-2-1 在 9V 下 $(Na_2SO_4) = 0.01M$,電解前後各電極正負極的質量變化情形

		,							
電極大	正	極的質量情	形	負極的質量情形					
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)			
碳棒	2.91	2.87	-0.04	2.88	2.84	-0.04			
不鏽鋼	2.16	2.15	-0.01	2.18	2.16	-0.02			
銅片	2.49	2.46	-0.03	2.43	2.38	-0.05			
鋁片	1.15	1.12	-0.03	1.17	1.14	-0.03			
鋅片	2.22	2.24	+0.02	2.24	2.27	+0.03			
鐵片	2.46	2.51	+0.05	2.48	2.49	+0.01			

表 4-2-2 在 9V 下 (Na2SO4) = 0.01M, 電解前後各電極正負極表面影像的變化情形

(五)用不同電極材料電解「醋酸」為電解質時,不同濃度下電解的反應情形: $1._{\rm C}$ CH₃COOH $_{\rm D}$ = 0.5M 的電解情形

表 5-1 在 9V 下不同電極材料下 (CH₃COOH) = 0.5M 的電解之正負極體積比的情形

			/		21111 -	六 [五·1元	
電極材	時間(分)料	0	4	8	12	16	20
С	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
碳棒	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
14火1年	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
	負極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
不鏽鋼	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Cu	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
銅片	正極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
到9 <i>7</i> 一	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Al	負極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
鋁片	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
平口/二	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Zn	負極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
辞片	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
业十八	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Fe	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
鐵片	正極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
业我, /一	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00

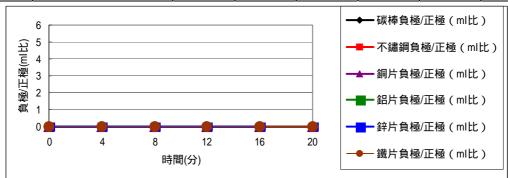


圖 5-1 在 9V 不同電極材料下 $(CH_3COOH) = 0.5M$ 的電解之正負極體積比的情形表 5-1-1 在 9V 下 $(CH_3COOH) = 0.5M$,電解前後各電極正負極的質量變化情形

電極質量	正極的質量情形			負極的質量情形		
電極材料	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)	
碳棒	2.84	2.83	-0.01	2.87	2.86	-0.01

不鏽鋼	2.12	2.12	0.00	2.13	2.11	-0.02
銅片	2.43	2.43	0.00	2.47	2.46	-0.01
鋁片	1.15	1.14	-0.01	1.19	1.19	0.00
鋅片	2.24	2.25	+0.01	2.15	2.16	+0.01
鐵片	2.41	2.43	+0.02	2.43	2.45	+0.02

表 5-1-2 在 9V 下 (CH₃COOH) = 0.5M, 電解前後各電極正負極表面影像的變化情形

電	正極表面		負極表面的情形				
極	電解前影像	電解後影像	電解前影像	電解後影像			
碳 棒							
不鏽鋼							
銅片							
鉛片							
鋅片	State of the state		The state of the s				
鐵片							

- 二、在電壓 (3V), 不同電極材料下, 電解水的正負極氣體產率:
 - (二)用不同電極材料電解「氫氧化鈉」為電解質時,不同濃度下電解的反應情形:
 - 1. (NaOH) = 0.5M 的電解情形

表 6-1 在 3V 不同電極材料下 [NaOH] = 0.5M 的電解之正負極體積比的情形

時間(分) 電極材料		0	4	8	12	16	20
С	負極 (ml)	0.00	0.00	0.00	0.00	0.00	微量
│ 碳棒	正極(ml)	0.00	0.00	0.00	0.00	0.00	微量
W火1干	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
	負極 (ml)	0.00	1.00	1.50	2.00	2.70	3.20
不鏽鋼	正極 (ml)	0.00	0.40	0.70	0.90	1.20	1.60
	負極/正極 (ml比)	0.00	2.50	2.14	2.22	2.25	2.00
Cu	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.10
銅片	正極(ml)	0.00	0.00	0.00	0.00	0.10	0.10

	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	1.00
Al	負極 (ml)	0.00	微量	0.20	0.70	2.00	2.90
品片 品片	正極(ml)	0.00	微量	0.50	1.40	2.50	3.20
平口/一	負極/正極(ml比)	0.00	0.00	0.40	0.50	0.80	0.91
Zn	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
辞片	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
业十八	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Fe	負極 (ml)	0.00	0.80	1.50	2.60	3.20	4.00
鐵上	正極(ml)	0.00	0.20	0.90	1.40	1.60	2.00
	負極/正極(ml比)	0.00	4.00	1.67	1.86	2.00	2.00

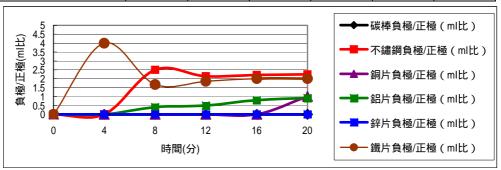
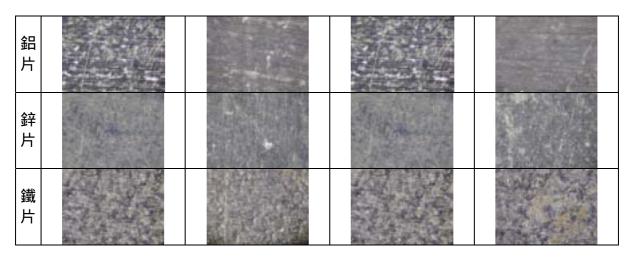



圖 6-1 在 3V 不同電極材料下 (NaOH) = 0.5M 的電解之正負極體積比的情形表 6-1-1 在 3V 下 (NaOH) = 0.5M ,電解前後各電極正負極的質量變化情形

電極好	正	極的質量情	形	負極的質量情形			
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)	
碳棒	2.88	2.86	-0.02	2.93	2.90	-0.03	
不鏽鋼	2.12	2.11	-0.01	2.12	2.13	+0.01	
銅片	2.45	2.44	-0.01	2.46	2.49	+0.03	
鋁片	1.34	1.21	-0.13	1.17	1.03	-0.14	
鋅片	2.09	2.05	-0.01	2.15	2.13	-0.02	
鐵片	2.64	2.66	+0.02	2.53	2.54	+0.01	

表 6-1-2 在 3V 下 (NaOH) = 0.5M, 電解前後各電極正負極表面影像的變化情形

	我 0-1-2 任 3V P(NdON) - 0.3M,电解削发台电極正負極农国影像的變化自於							
電	正極表面	面的情形	負極表面的情形					
極	電解前影像	電解後影像	電解前影像	電解後影像				
碳棒								
不鏽鋼								
銅片								

2. (NaOH) = 0.1M 的電解情形

表 7-2 在 3V 下不同電極材料下 (NaOH) = 0.1M 的電解之正負極體積比的情形

我72年50个时间电影的有了(Naori)—6.1100的电影之正只是暗点Confin							
電極材		0	4	8	12	16	20
С	負極 (ml)	0.00	0.00	0.00	0.00	微量	微量
碳棒	正極(ml)	0.00	0.00	0.00	0.00	0.00	微量
10次1年	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
	負極 (ml)	0.00	微量	0.30	0.60	1.00	1.50
不鏽鋼	正極(ml)	0.00	0.00	微量	0.10	0.20	0.40
	負極/正極(ml比)	0.00	0.00	0.00	6.00	5.00	3.75
Cu	負極 (ml)	0.00	微量	0.20	0.40	0.50	0.80
銅片	正極(ml)	0.00	0.00	0.10	0.20	0.30	0.40
到97	負極/正極(ml比)	0.00	0.00	2.00	2.00	1.67	2.00
Al	負極 (ml)	0.00	0.50	1.50	2.60	3.40	4.20
日本 日 日 日 日 日	正極 (ml)	0.00	0.10	0.50	1.20	1.90	2.60
単口/	負極/正極 (ml比)	0.00	5.00	3.00	2.17	1.79	1.62
Zn	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
至 鋅片	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
业十八	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Fe	負極 (ml)	0.00	0.10	0.30	0.50	0.80	1.00
鐵片	正極 (ml)	0.00	0.00	0.10	0.20	0.30	0.40
业我 /一	負極/正極(ml比)	0.00	0.00	3.00	2.50	2.67	2.50

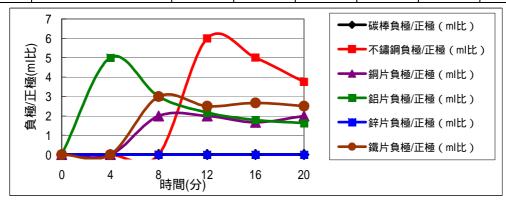


圖 7-2 在 3V 不同電極材料下 $_{\rm I}$ NaOH $_{\rm J}$ = 0.1M 的電解之正負極體積比的情形表 7-2-1 在 3V 下 $_{\rm I}$ NaOH $_{\rm J}$ = 0.1M ,電解前後各電極正負極的質量變化情形

電極共電極質量	正	極的質量情	形	負極的質量情形			
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)	
碳棒	2.84	2.84	0.00	2.94	2.93	-0.01	
不鏽鋼	2.13	2.12	-0.01	2.11	2.13	+0.02	
銅片	2.52	2.46	-0.06	2.33	2.43	+0.10	
鋁片	1.23	1.14	-0.09	1.30	1.19	+0.11	
鋅片	2.25	2.21	-0.04	2.15	2.18	+0.03	
鐵片	2.38	2.40	+0.02	2.47	2.50	+0.03	

表 7-2-2 在 3V 下 (NaOH) = 0.1M, 電解前後各電極正負極表面影像的變化情形

電	正極表面		負極表面	面的情形
極	電解前影像	電解後影像	電解前影像	電解後影像
碳棒				
不鏽鋼				
銅片				
鉛片				
鋅片	To the second se			TO SECOND
鐵片				

(二)用不同電極材料電解「硫酸」為電解質時,不同濃度下電解的反應情形: $1. (H_2SO_4) = 0.5M$ 的電解情形

表 8-1 在 3V 下不同電極材料下 (H₂SO₄) = 0.5M 的電解之正負極體積比的情形

(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
時間(分) 電極材料		0	4	8	12	16	20
C 碳棒	負極 (ml)	0.00	3.00	6.00	8.60	11.20	14.20
	正極(ml)	0.00	0.30	1.20	1.30	1.30	1.50
14火1辛	負極/正極(ml比)	0.00	10.00	5.00	6.62	8.62	9.47
	負極 (ml)	0.00	3.10	6.00	9.20	12.00	15.40
不鏽鋼	正極(ml)	0.00	0.20	0.40	0.80	1.00	1.20
	負極/正極(ml比)	0.00	15.50	15.00	11.50	12.00	12.83
Cu	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00

銅片	正極(ml)	0.00	0.00	0.00	0.00	0.00	0.00
	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Al	負極 (ml)	0.00	0.00	微量	0.10	0.10	0.20
名 鋁片	正極 (ml)	0.00	1.00	2.00	3.20	4.20	5.00
亚口门	負極/正極 (ml比)	0.00	0.00	0.00	0.03	0.02	0.04
Zn	負極 (ml)	0.00	4.40	21.40	超過 25	Stop	Stop
至 鋅片	正極 (ml)	0.00	4.00	15.20	超過 25	Stop	Stop
业十八	負極/正極 (ml比)	0.00	1.10	1.41			
Fe	負極 (ml)	0.00	0.10	0.30	0.30	0.30	0.30
鐵片	正極 (ml)	0.00	0.10	0.20	0.30	0.40	0.40
	負極/正極(ml比)	0.00	1.00	1.50	1.00	0.75	0.75

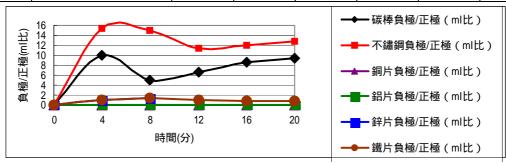
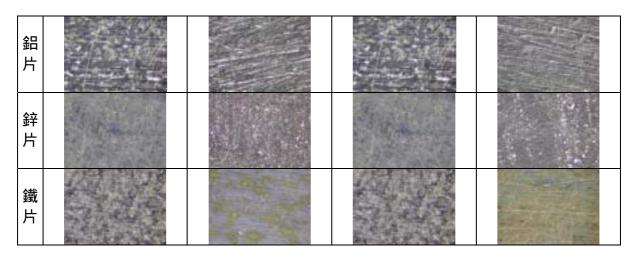



圖 8-1 在 3V 不同電極材料下 $(H_2SO_4) = 0.5M$ 的電解之正負極體積比的情形表 8-1-1 在 3V 下 $(H_2SO_4) = 0.5M$,電解前後各電極正負極的質量變化情形

電極質量	正極的質量情形			負極的質量情形		
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)
碳棒	2.92	2.89	-0.03	2.34	2.23	-0.11
不鏽鋼	2.37	2.42	+0.05	2.18	1.16	-0.02
銅片	2.26	2.16	-0.10	2.59	2.44	-0.05
鋁片	1.72	1.81	+0.09	1.30	1.16	-0.14
鋅片	2.39	2.56	+0.17	2.29	2.33	+0.04
鐵片	2.37	2.24	-0.13	2.42	2.51	+0.09

表 8-1-2 在 3V 下 (H₂SO₄) = 0.5M, 電解前後各電極正負極表面影像的變化情形

		·	的 及口 电型正 只怪 化曲炉 体的 安 10 间 //		
電	正極表面	面的情形	負極表面	面的情形	
極	電解前影像	電解後影像	電解前影像	電解後影像	
碳棒					
不鏽鋼					
銅片					

2. $_{\text{ }}$ $_{\text{ }}$

電極材	時間(分) 電極材料		4	8	12	16	20
С	負極 (ml)	0.00	1.00	1.80	2.80	3.80	4.60
碳棒	正極 (ml)	0.00	0.10	0.30	0.50	0.80	1.60
11/火 11年	負極/正極(ml比)	0.00	10.00	6.00	5.60	4.75	2.88
	負極 (ml)	0.00	0.50	1.80	2.40	3.10	3.60
不鏽鋼	正極 (ml)	0.00	0.10	0.10	0.10	0.20	0.30
	負極/正極(ml比)	0.00	5.00	18.00	24.00	15.50	12.00
Cu	負極 (ml)	0.00	1.00	1.50	2.20	3.00	3.60
Gu 銅片	正極 (ml)	0.00	0.00	0.00	0.00	0.00	微量
21971	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Al	負極 (ml)	0.00	0.00	微量	微量	微量	0.10
日 名 日 日	正極 (ml)	0.00	0.00	0.00	0.00	0.00	微量
東口/ I	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Zn	負極 (ml)	0.00	0.80	2.10	3.40	5.20	7.60
至n 鋅片	正極 (ml)	0.00	0.20	0.30	0.30	0.40	0.60
	負極/正極(ml比)	0.00	4.00	7.00	11.33	13.00	12.67
Fe	負極 (ml)	0.00	0.00	0.10	0.30	0.40	0.60
鐵片	正極 (ml)	0.00	0.00	0.00	0.00	0.00	微量
¥ 玉 及 / │	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00

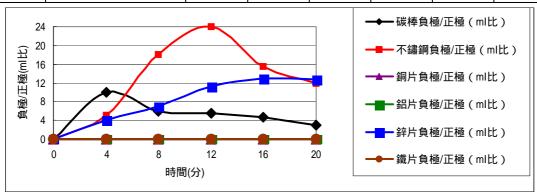


圖 9-2 在 3V 不同電極材料下 $(H_2SO_4) = 0.1M$ 的電解之正負極體積比的情形表 9-2-1 在 3V 下 $(H_2SO_4) = 0.1M$,電解前後各電極正負極的質量變化情形

電極質量	正極的質量情形			負極的質量情形		
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)
碳棒	2.86	2.85	-0.01	2.95	2.93	-0.02
不鏽鋼	2.51	2.45	-0.06	2.38	2.32	-0.06
銅片	2.48	2.44	-0.04	2.58	2.53	-0.05
鋁片	1.56	1.53	-0.03	1.70	1.62	-0.08
鋅片	2.07	2.04	-0.03	2.29	2.16	-0.05
鐵片	2.24	2.30	+0.06	2.31	2.47	+0.16

表 9-2-2 在 3V 下 $_{0}$ H₂SO₄ $_{0}$ = 0.1M , 電解前後各電極正負極表面影像的變化情形

電	正極表面		到发台电燃止只燃衣! 	的情形
極	電解前影像	電解後影像	電解前影像	電解後影像
碳棒				
不鏽鋼				
銅片				
鋁 片				
鋅片	A 10 10 10 10 10 10 10 10 10 10 10 10 10			
鐵片				

(三)用不同電極材料電解「硫酸鈉」為電解質時,不同濃度下電解的反應情形: 1. (Na₂SO₄) = 0.1M 的電解情形

表 10-1 在 3V 不同電極材料下 (Na₂SO₄) = 0.1M 的電解之正負極體積比的情形

時間(分) 電極材料		0	4	8	12	16	20
С	負極 (ml)	0.00	0.30	1.00	1.60	2.30	2.80
碳棒	正極(ml)	0.00	0.10	0.4	0.80	1.30	1.70
14火作	負極/正極 (ml比)	0.00	3.00	2.50	2.00	1.80	1.60
	負極 (ml)	0.00	0.10	0.10	0.30	0.60	0.80
不鏽鋼	正極(ml)	0.00	0.20	0.30	0.30	0.30	0.30
	負極/正極(ml比)	0.00	0.50	0.33	1.00	2.00	2.67
Cu	負極 (ml)	0.00	0.30	1.00	1.50	1.80	2.20

銅片	正極(ml)	0.00	0.00	0.00	0.00	0.00	微量
	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Al	負極 (ml)	0.00	0.60	1.00	1.60	2.40	2.80
名 鋁片	正極 (ml)	0.00	0.00	0.00	0.00	0.00	微量
业口厂	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Zn	負極 (ml)	0.00	0.10	0.10	0.10	0.10	0.10
至 鋅片	正極 (ml)	0.00	0.00	0.00	0.00	0.00	微量
业十八	負極/正極 (ml比)	0.00	0.00	0.00	0.00	0.00	0.00
Fe	負極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
鐵片	正極 (ml)	0.00	0.00	0.00	0.00	0.00	0.00
业我 /一	負極/正極(ml比)	0.00	0.00	0.00	0.00	0.00	0.00

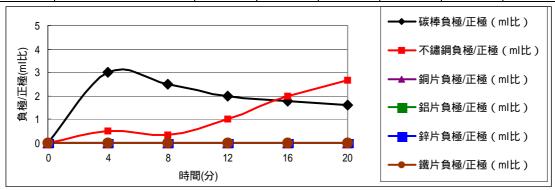
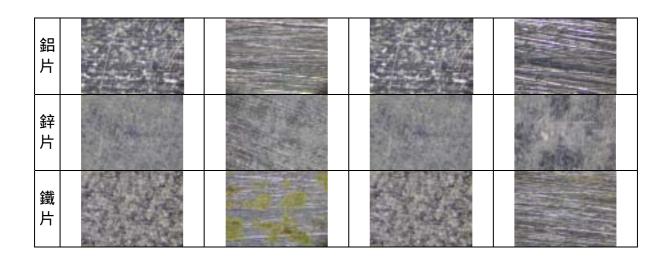



圖 10-1 在 3V 下不同電極材料下 $(Na_2SO_4) = 0.1M$ 的電解之正負極體積比的情形表 10-1-1 在 3V 下 $(Na_2SO_4) = 0.1M$,電解前後各電極正負極的質量變化情形

電極質量	正極的質量情形			負極的質量情形		
電極材料	電解前(g)	電解後(g)	變化量(g)	電解前(g)	電解後(g)	變化量(g)
碳棒	2.88	2.82	-0.06	2.74	2.71	-0.03
不鏽鋼	2.09	2.07	-0.02	2.18	2.11	-0.07
銅片	2.49	2.43	-0.06	2.35	2.42	+0.07
鋁片	1.27	1.18	-0.09	1.19	1.14	-0.05
鋅片	2.18	2.17	-0.01	2.22	2.24	+0.02
鐵片	2.37	2.42	+0.05	2.45	2.46	+0.01

表 10-1-2 在 3V 下 (Na2SO4) = 0.1M, 電解前後各電極正負極表面影像的變化情形

			F			
電	正極表面	面的情形	負極表面的情形			
極	電解前影像	電解後影像	電解前影像	電解後影像		
碳棒						
不鏽鋼						
銅片						

陸、討論

- 一、純水(蒸餾水)不導電,在自然與生活科技課本南一版第四冊第二章提到:純水為極弱的電解質,1L的水僅產生 10⁻⁷ 莫耳之 H⁺與 10⁻⁷ 莫耳之 OH⁻,難導電,所以我們在 9V 下不管用何種電極材料,在正負極均無氣體產生(見圖 1-1)。因此必須加入幫助 導電的物質,以達電解水目的,而本研究中所加入的物質為 NaOH、H₂SO₄、Na₂SO₄、CH₃C00H,分別為 0.5M、0.1M、0.01M,【附註:在國編國中理化(民 83 年版),第一冊第三章水的電解水實驗,是加入 0.1M 的 NaOH;而在國編國中理化(民 89 年版),第三冊第十三章的電解水實驗,是在大燒杯中裝水約 2/3,加入 NaOH 數粒】,基於我們所學的概念,我們所加入幫助導電的 NaOH 或 H₂SO₄多少都會腐蝕皮膚,因此我們決定以國編版明確指出的 0.1M 為標準,最高配 0.5M,最低配 0.01M,但我們發現 Na₂SO₄無法配置到 0.5M,因已達飽和,而 CH₃C00H 在研究報告中受限於篇幅,只 呈現 0.5M,因以下的濃度幾無變化。希望由此探討使用不同電極材料來電解水時,不同的電解質種類與濃度下,所得到正負極氣體產率的結果。
- 二、經實驗結果發現:9V 的電解正負極產物量較 3V 的多。我們經由資料的蒐集中得知電解水的全反應式(國中課本所提到的)為: $2H_2O$ $2H_2$ (負極) + O_2 (正極)。而從高中點線面化學(P8-82 P8-83)提到:「電解水的總反應電壓 $\triangle E = -1.23V$,電源電壓須大於 1.23V 方能電解。我們實驗的電壓均高於此值,而根據電學基本概念,通入的電壓越高,經過電路的電流亦越大,因此,通入 9V 將產生較高的電流,使得在相同 20 分鐘內所得的產物量較多。
- 三、我們深入去了解:水的電解是一種透過外加電能使非自發的氧化還原反應發生之過程,其△E⁰<0,即電解將電能轉變為化學能。關於這個部分我們現在所學到的氧化還原反應只涉及到氧元素的得失,我們只好將找到的資料請教老師,才知道氧化還原反應在廣義上為涉及電子的得失。因此,在電解水時通入直流電,而其反應可分開正負極兩個半反應來看:正極半反應即與外加電池或直流電源正極相接處,又稱『陽極』,發生氧化反應(失去電子的反應);負極半反應即與外加電池或直流電源負極相接處,又稱『陰極』:發生還原反應(得到電子的反應)因此,我們也從科展的研究過程中,了解到相同的科學概念有不同的定義。

- 四、經實驗結果發現:在加入幫助導電性的物質種類上,對正負極產物量來比較,在相同 濃度大小下: NaOH 較 H_2SO_4 多, Na_2SO_4 次之,而 CH_3C00H 最少。這跟其物質的特性有關,即解離的難易程度有關,因此,課本的實驗均以加入 NaOH 為主。
- 五、碳棒屬於惰性電極,不會和酸性及鹼性溶液反應,照理說是理想的電極材料,可是我們在研究時發現:
 - (一)在電壓較高(9V)的實驗中(見表 1-1-3 至表 5-1-2 之顯微攝影照片),正極的碳 棒會因為有電流通過而在表面產生活化作用,使得碳粒脫落並散佈在溶液中,因 此電解後發現燒杯底部及液面有黑色物質,並在表面形成腐蝕洞。而碳棒表面在 活化的過程中,電阻會增加降低電流並消耗一部份的電能,使得實驗中氣體的生 成量降低,又散佈在溶液中的碳粒會降低溶液的導電度,更使得氣體的生成速率 減少。
 - (二)降低實驗電壓(3V),我們發現正負極的氣體產量很少(見表 6-1 至表 10-1),即減緩反應速率。在正負極的表面(見表 6-1-2 至表 10-1-2 之顯微攝影照片)也出現腐蝕洞,但情況較 9V 的條件下較輕微。
 - (三)對於在各種類、濃度下其所產生的正負極氣體,負極有爆鳴聲,正極沒有爆鳴聲 只是火柴燃燒更旺,由我們所學的理化概念判斷,負極應為氫氣,正極應為氧氣; 比例大都沒有滿足體積比 2:1,**只有在 9V、0.5M H₂SO₄ 下電解 20 分鐘後負、正極比為 18.4ml:8.8ml=2.03:1,最接近理論值**。因此,我們發現碳棒並不是最好的電極。
- 六、在自然與生活科技(南一版)第四冊第三章課文內容中提到:「在生鐵中加入 18 % 的 鉻及 8 % 的鎳所形成的合金,稱為不鏽鋼」。經實驗結果發現:
 - (一)不鏽鋼在 9V 下、氫氧化鈉當電解液的實驗中是屬於較好的電極材料(見表 2-1-2 至表 2-3-2 之顯微攝影照片)),因其不易生鏽的特性,使得正極所產生的氧氣較不易於和不鏽鋼反應,而且其所含的成分中沒有會和氫氧化鈉反應的種類,因此減少了氫氧氣比例的差異,但濃度愈低在 0.01M 時,正負極氣體體積比變大,在,較理想的濃度為 0.5M,其電解 20 分後,負極氣體體積:正極氣體體積 = 2.02:1,與一般課本中提到使用的 0.1M 較接近理論值。
 - (二)但我們在實驗中發現,不鏽鋼會和硫酸產生些微的反應(見表 3-1-2 至表 3-3-2 之 顯微攝影照片),使得表面呈現模糊狀,而氫氧的體積比稍大於 2:1 而呈現大約 3:1 到 4:1,我們判斷可能是正極表面有副產物生成而阻止了氣體的產率。
 - (三)另外,對於在各種類、濃度下其所產生的正負極氣體,負極有爆鳴聲,正極沒有 爆鳴聲只是火柴燃燒更旺,由我們所學的理化概念判斷,負極應為氫氣,正極應 為氧氣。因此整體比較之下,不鏽鋼比碳棒更適合做為電極的材料。
 - 七、銅片的活性較小,導電性良好,不易形成氧化物,在濃度不高的酸鹼下又不發生反應,我們原先認為應該是不錯的電解水之電極材料,但也很好奇為何課本的實驗又不以此當電極,經我們在實驗中發現:
 - (一)在9V時,0.5M、0.1M NaOH下,電解正負極產物的體積比結果較佳,電解20分鐘後約1:2.06(見圖2-1與2-2),但經顯微攝影照片(見表2-1-3至表2-3-3)發現其正極表面有呈現些許紋路的,推測銅為變成銅離子關係,故質量些微變輕,而負極出現一些紋路,質量些微變重。

- (二)在 H₂SO₄ 與硫酸鈉及醋酸下,電解後正負極氣體的體積比結果較差。實驗過程中, 在正極發現附近溶液顏色呈現淡藍色,我們判斷應為銅離子,即實驗中正極的銅 片電極本身會被氧化成金屬正離子析出,從電極的質量變輕亦可知,正極的反應 式應為: Cu Cu²⁺ + 2e⁻,因此造成氧氣生成量較少。
- 八、 鋁片的活性大,就我們所知會與酸反應產生氫氣,故我們原先判斷若是加入硫酸則 應不適合作為電極材料。經實驗結果發現:
- (一)在加入氫氧化鈉下,從顯微攝影照片中(見表 2-1-3 至表 2-3-3)可看出正負極的表面均變得較為模糊,鋁片會與溶液反應產生氫氣(在正極氣體產物燃燒測試中亦有爆鳴聲)及溶液有片狀的淡藍色膠狀物,經資料搜尋後得知其膠狀物為氫氧化鋁,氫氧化鋁在溶液中會降低導電性,使得氣體的產量降低。
- (二)在加入硫酸下,理論鋁應會劇烈反應而產生氫氣,但從表 3-1 至表 3-3 的數據來看,正負極的產量極低,從顯微攝影的照片中卻發現電解前後正負極表面均確實不同,顯示電極與溶液發生反應,我們將此與在硫酸鈉下的結果比較,也是產量極低,鋁片應不與硫酸鈉發生反應,但結果均如此,我們認為可能原因有二:其一為在觀察紀錄中,正負極通電的瞬間有大量的小氣泡附著電極表面,隔絕電極和電解液,使得氣體產量不斷的下降;其二為本次所有實驗使用的鋁片,為了便於觀察前後的表面情形,事先沒有用砂紙作表面處理,根據所學鋁容易在空氣中與氧結合,形成緻密的保護層氧化鋁,而降低導電效果。我們將此推測與老師討論後,認為後者的因素極大,因此,鋁片並不適合做為電極的材料。
- 九、 鋅片的活性大,就我們所知會與酸反應產生氫氣,故我們原先判斷若是加入硫酸則 應不適合作為電極材料。經實驗結果發現:
- (一)在加入氫氧化鈉下,從顯微攝影照片中(見表 2-1-3 至表 2-3-3)可看出正極表面 顏色變為淡灰色,我們推測為鋅片與生成的氧氣反應產生氧化鋅,負極的鋅片則 會和溶液反應生成氫氧化鋅,由於氧化鋅的導電性很差,氫氧化鋅又會降低溶液 的導電度,因此如果使用鋅片作為電極,則氣體的產量都會變的極低。
- (二)在加入硫酸下,理論鋅片應會劇烈反應而產生氫氣,但在 9V 下,從表 3-1 至表 3-3 的數據來看,正負極的產量極低,從顯微攝影的照片中卻發現電解前後正負極 表面均確實不同,很有趣的是在 3V 下 [H₂SO₄] = 0.5M (見表 8-1),不管正負極 的氣體產量都很大,在電解約 12 分鐘就滿 25ml 量筒了,經燃燒測試,正負極均 有爆鳴聲,顯示都有氫氣。我們推測在 9V 下,正極的鋅片電極本身會被氧化成 金屬正離子析出,從電極的質量變輕亦可知,而抑制了鋅電極與硫酸溶液發生反應。因此鋅片在電解水時是極差的電極材料。
- 十、鐵片的導電性佳,但是鐵在酸、鹼、鹽的環境中較容易生鏽。因此不論是在氫氧化 鈉或是硫酸、硫酸鈉與醋酸的實驗中,正極的鐵片可能與生成的氧氣反應產生氧化 鐵(見表 1-1-3 至表 10-1-2 之顯微攝影照片),又在實驗過程中我們也發現正極附近 的溶液呈現微黃色,我們認為可能是 Fe(s) Fe²⁺(aq)+2e 或 Fe²⁺(aq) Fe³⁺(aq)+e ,電解 完後,燒杯底部有沉澱物。從結果得知正負極氣體產量體積比差,因此,鐵片也不 是理想的電極材料。另外,我們起初的研究用日常生活中拿得到的迴紋針、注射針、 織線針去作電解水實驗,結果發現非常容易生鏽,整個燒杯底部均為鐵銹。而現在 課本的電解水實驗大都使用「迴紋針」作電極材料,我們經過研究後認為不太適合。

柒、結論

- 一、我們在自然與生活科技(南一版)第四冊第二章中學到,一般電解質水溶液中,正離子與負離子的總帶電量相等使溶液呈電中性,且正、負離子凌亂地自由向各方運動,謂之解離。當通直流電於解離的電解質水溶液中,則溶液中的正離子向負極移動接受電子,負離子向正極移動釋出電子,並分別產生化學變化而生成新物質,即為「電解反應」。本研究從先前的全國科展資料中,了解其關於「電解水」的相關研究,大都探討如下幾個部分:
 - (一)探討電解水速率的影響因素。
 - (二)改良電解水的裝置。
 - (三)探討電解質水溶液電解前後的性質變化。

另在第 42 屆全國科展「生命之源 水的電解研究」中有探討到「電極材質」的因素,但僅著眼於「導電性的結果」。因此,本研究主要深入探討在不同「電極」材質上,在不同的電解條件下,對電解水的結果之探討,經過將近半年利用課餘的研究過程中,我們發現真是「極」有不同。

- 二、本研究在探討各種電極材料(碳棒、不鏽鋼、銅片、鋁片、鋅片、鐵片),電解水的正 負極產物體積比與電極材料性質的影響及變化,感謝科技的進步,我們得以透過「複 式顯微鏡+數位相機」清楚地將電解反應前後的電極表面情形觀察清楚與紀錄,並從 所學或所蒐集的資料中進一步了解與探討其對電解水正負極產物的體積比之影響關係 ,我們三人就隨興將此方法取名為『顯微攝影法』。
- 三、在我們的實驗控制變因下,我們發現通入的電壓不可太低:9V 的電壓比 3V 的較適合作為電解水的直流電源供應電壓。如設定電解時間在 20 分鐘內,9V 的電壓可產生較多的氣體量,較易測量數值比較,可避免在正負極氣體產量太少因人為估計而造成與理論值的誤差性過大。
- 四、從實驗的結果綜合分析下,活性較大的金屬如鋅、鋁、鐵,真的不適合用來探討電解水的正負極產物體積比為「1:2」的實驗之電極材料,至於銅雖然活性小且導電性佳,但在通電的情況下電極可能被活化,而產生負反應干擾實驗結果,亦屬不合適。
- 五、因此,整體而言,在本研究的實驗設計下,所探討出的用來**電解水**時,欲達到符合理 論值正負極氣體體積比「氧氣:氫氣 = 1:2」的**最佳反應條件**如下:
 - (一)輸入直流電壓值=9伏特(最好電源供應器較穩定)。
 - (二)使用「不鏽鋼」電極(正負極相同)時:在[NaOH] = 0.5M。 使用「碳棒」電極(正負極相同)時:在 $[H_2SO_4] = 0.5M$ 。
 - (三)其它控制變因的條件:兩電極距 3cm、兩電極面積均同、兩電極與外接銅線須絕緣(可用 AB 膠效果最好,其它像快乾膠、Silicone、絕緣膠帶,我們試過都不好用)。
- 六、經過將近半年課餘的研究,我們三人都犧牲了許多休閒的時間,尤其在校內科展中取得代表參賽資格後,有將近一個半月的時間每天晚上留在學校實驗室到 10 點繼續研究,雖然很辛苦,但我們「三劍客」都發現,化學實驗真的很有趣,而且並非像課本所敘述的那樣,有太多的變因會相互影響,使得實驗結果與課本所學到的理論有所誤差,就像我們所探討的「電解水」實驗一樣。希望本研究結果可作為一些後續研究者之參考。

捌、參考資料

- 一、南一書局主編(民93年版),自然與生活科技第三冊第四冊第五冊,南一書局。
- 二、育成書局主編(民93年版),自然與生活科技第六冊,育成書局。
- 三、國立編譯館主編(民83年版),國中理化教師手冊第一冊,台北:國立編譯館,P64。
- 四、國立編譯館主編(民89年版),國中理化第三冊,台北:國立編譯館,P72 P75。
- 五、陳偉民(民87),神奇的化學魔術,科學教育月刊,第208期,P33 P35。
- 六、高中點線面化學(民86),第八章,南一書局,P8-82 P8-84。
- 七、黃榮茂等四人編譯(民78年版),化學化工百科辭典,曉園出版社。
- 八、中華民國中小學科展第 21 屆至第 30 屆優勝作品專輯(民 84),國立台灣科學教育館。
- 九、國立台灣科學教育館全國網站:http://www.ntsec.gov.tw/activity/race-1/43/pdf。

中華民國第四十五屆中小學科學展覽會 評 語

國中組 理化科

佳作

031615 『極』有不同

基隆市立中正國民中學

評語:

- 1. 內容豐富且有新的發現。
- 2. 成果可供教學參考。