中華民國第四十五屆中小學科學展覽會 作品說明書

國小組 自然科

081515 靜觀奇電

臺北市私立再興國民小學

作者姓名:

小五 邱緯婷 小五 徐易琳 小五 廖儷雯 小五 楊芷姗 小五 鄭筑元 小五 陳律

指導老師:

吳彥杰 林怡君

中華民國第四十五屆中小學科學展覽會作品說明書

科 别:自然科

組 别:國小組

作品名稱:靜觀奇電

關鍵詞:__靜電__、_摩擦起電_

編 號:

目 次

摘要	
壹、研究動機	
貳、研究目的	
參、研究設備及器材	1
肆、研究過程及結果	1
【研究一】靜電到底是什麼東西?	2
【研究二】靜電會產生吸引力嗎?	2
【研究三】静電可以用什麼方法測量大小?	
【研究四】影響靜電產生的因素有哪些?	3
研究 4-1 摩擦物的材質對靜電的影響	4
研究 4-2 摩擦次數對靜電的影響	
研究 4-3 摩擦力量對靜電的影響	6
研究 4-4 摩擦面積對靜電的影響	6
研究 4-5 兩摩擦物的摩擦速度對靜電的影響。	
研究 4-6 摩擦物間的光滑度對靜電的影響	8
研究 4-7 摩擦物間的物質對靜電的影響	9
研究 4-8 摩擦物的厚度對靜電的影響	9
研究 4-9 被摩擦物本身的温度對靜電的影響。	
研究 4-10 環境的溫度對靜電的影響	11
研究 4-11 環境的濕度對靜電的影響	
【研究五】靜電也有正負之分嗎?	12
【研究六】靜電能一直留在物體上嗎?	
【研究七】靜電如何消除?	14
【研究八】日常生活中的靜電與應用	16
伍、討論 陸、結論	17
陸、結論	19
柒、參考資料	21
捌、補充資料	

静 觀 奇 電

摘要

靜電這個東西一直存在於我們的日常生活中而不被查覺,只要是物體相互摩擦後分離,都會產生。靜電問題可大可小,小至只是被電一電而已,大至會損壞電子產品,甚至引起爆炸,所以,對靜電這東西,不可不知。我們在這報告中將研究靜電如何生成、了解它的性質及測量方法、並探討影響靜電大小的因素、防止與消除,最後,了解生活中的靜電現象與運用。

壹、研究動機

「『唉喲,啊!屁股好痛』。小朋友玩溜滑梯卻被電得哇哇叫,小屁股被電的又麻又痛,連「劈哩啪啦」的電流聲都聽得到。」電視新聞報導。爲什麼溜滑梯會這樣呢?心裡很疑惑,於是就去請教自然老師,老師說:「那是『靜電』現象產生的。」記得四年級下學期自然上「通電的玩具」時,老師有提過靜電這個東西,到底什麼是靜電呢?我們很好奇,想藉這個機會了解靜電,於是就請老師帶領我們一探靜電的奧秘。

貳、研究目的

- 一、了解靜電的生成與性質。
- 二、尋找測量靜電的方法?
- 三、探討影響靜電大小產生的因素有哪些?
- 四、研究靜電是否能一直停留在物體上?
- 五、研究要如何消除靜電?
- 六、了解在日常生活中的靜電現象與應用。

參、研究設備及器材

金箔驗電器、三用電錶、溫溼度計、密封罐、塑膠杯、電線、絨布、毛布、尼龍布、麻布、棉布、衛生紙、報紙、宣紙、影印紙、玻璃紙、塑膠袋、投影片、CD片、塑膠尺、鋁棒、鐵棒、玻璃棒、木棒、鋁箔紙、保鮮膜、絲襪、鉛筆、保麗龍、PVC管、油、蠟、漆、電爐、計時器。

肆、研究過程及結果

早在兩千年前,就有人發現用兩種不同性質的東西相互摩擦,不但會發出聲音和火花, 摩擦過的物體還能吸引很輕的小東西,如:羽毛和毛髮等,後來把這現象稱爲『電』,這是人 類首次發現電的現象。

電有兩種,一般我們所使用的電器有我們看不到的電在裡面流動,這種電我們稱爲<mark>動電</mark>,<mark>又稱爲電流</mark>。而不同性質的物體相互摩擦後產生的電,常停留在物體上沒有流動,我們稱 摩<mark>擦電或靜電</mark>。

靜電它不容易被察覺,所以不會很明顯的出現,但從許多現象中卻可以使我們感到它的 存在,現在我們就一起來探究靜電的奧秘吧!

【研究一】靜電到底是什麼東西?

文獻記載不同摩擦性質摩擦後會產生靜電,我們現在就用塑膠管和毛衣來摩擦,靠近身 體來感覺一下靜電吧!

實驗步驟:

- 一、把塑膠管和毛衣摩擦後,靠近手、臉、頭髮並用手摸一摸,感覺一下靜電吧!
- 二、將結果紀錄在表格中。

實驗結果:

	靠近手背	靠近臉部	靠近頭髮	用手觸摸
	感覺毛毛的,管子	感覺毛毛的,像是	發現管子靠近後	
感覺	經過的地方,手毛	有一層薄膜在管	,許多頭髮被吸起	摸起來有劈啪聲
	都會站立起來。	子的表面上。	來。	
照片			1	

一、摩擦後的塑膠管,會吸起毛髮,讓人有毛毛的感覺,像是一層薄膜附在管子的 表面,這就是我們對靜電的感覺。

【研究二】靜電會產生吸引力嗎?

在上一個研究中,發現靜電會吸引毛髮,所以,這個實驗就來試看看靜電會不會吸引物 體。

實驗步驟:

- 一、把塑膠管和毛衣摩擦後,靠近大小不同的餅乾屑、木屑、鋁箔屑、小紙屑、小 水流及點燃的線香,觀察會不會吸引這些物體。
- 二、將結果紀錄在表格中。

實驗結果:

貝嫐和未	•					
	餅乾屑	木屑	鋁箔屑	小紙屑	小水流	線香煙霧
結果	會	會	會	會	會	會
備註	小的碎屑會被吸起	小的碎屑會被吸起	小的碎屑會被吸起	小的碎屑會被吸起	小水流會被 吸引。	煙霧偏向塑膠管。
照片		2				

一、結果發現無論是<mark>固體、液體、氣體都會被靜電吸引。較小較輕的東西會被吸起</mark> ,較大較重的物品則無法被吸起。固體被靜電吸引時,物體會上下的跳動。

【研究三】靜電可以用什麼方法測量大小?

將日常生活中的測電儀器拿來試試看,看看可不可以測出靜電的大小。 實驗步驟:

- 一、先將塑膠管和絲襪摩擦。
- 二、分別靠近小紙屑、三用電表、金箔驗電器、三用電表+電容器、金箔驗電器+電容器等物品,觀察有何反應,紀錄之。
- 三、比較各測電器的優缺點。

實驗結果:

	小紙屑	三用電表	金箔驗電器	三用電表+電容器	金箔驗電器+電容器
結果	會吸起紙屑。 所以可用吸起 紙張的數量來 表示靜電的大 小。	無法測量靜電。	金箔會張開, 摩擦愈多張開 愈大。所以可 用金箔張開的 角度來表示靜 電的大小。	會顯示瞬間的電壓。	金箔會張開,摩 擦愈多張開愈 大。所以可用金 箔張開的角度 來表示靜電的 大小。
優點	方便觀察	×	測量較準確, 適合測量較小 的靜電。	測量較準確	測量準確、穩定 ,適合測量較大 的靜電。
缺點	不準確。紙屑 上下跳個不停 ,電量被中和 ,產生誤差。	×	金箔張開的角 度有限,不適 合測量較大的 靜電。	數字一下子就 消失,不方便 觀察。	較小的靜電測 不出來。
照片					

一、可用金箔驗電器來測量靜電,<mark>較小的靜電用金箔驗電器測量,較大的靜電用金箔驗電器+電容器測量</mark>,不適合用吸起紙張的數量來計算。

【研究四】影響靜電產生的因素有哪些?

我們想知道哪些因素會影響靜電的產生及大小,所以我們先預測影響因素,再分別對它 進行實驗。 影響因素:摩擦物的材質、摩擦次數、摩擦力量、摩擦面積、摩擦速度、摩擦物間的光滑度、摩擦物間的物質、摩擦物的厚度、被摩擦物本身的溫度、環境溫度、環境溼度

研究 4-1 摩擦物的材質對靜電的影響

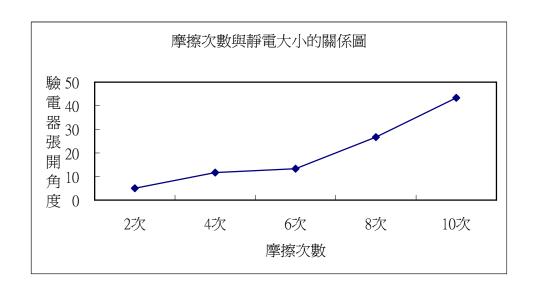
實驗步驟:

- 一、準備日常物品、金箔驗電器。
- 二、將兩摩擦物靠近驗電器摩擦五次後,觀察鋁箔 張開的角度,紀錄之。

	絨布	毛布	尼龍布	麻布	棉布	衛生紙	報紙	宣紙	影印紙	玻璃紙	塑膠袋	投影片	CD片	塑膠尺	鋁棒	鐵棒	玻璃棒	木棒	鋁箔紙	保鮮膜	絲襪	鉛筆	保麗龍	PVC 管	平均
絨布	0	0	0	0	0	0	0	0	0	0	25	55	0	40	0	0	15	0	0	60	10	0	50	65	13.3
毛布	0	0	30	0	0	0	0	0	0	0	45	60	0	50	0	0	20	0	0	30	35	0	45	70	16.0
尼龍布	0	30	25	0	0	0	0	0	0	0	30	45	0	45	0	0	15	0	0	60	30	0	0	65	14.4
麻布	0	0	0	0	0	0	0	0	0	0	45	55	0	20	0	0	5	0	0	50	15	0	20	60	11.3
棉布	0	0	0	0	0	0	0	0	0	0	45	60	0	5	0	0	10	0	0	60	5	0	15	40	10.0
衛生紙	0	0	0	0	0	0	0	0	0	0	65	65	0	10	0	0	20	0	0	65	5	0	30	65	13.5
報紙	0	0	0	0	0	0	0	0	0	0	60	65	20	50	0	0	25	0	0	60	20	0	30	50	15.7
宣紙	0	0	0	0	0	0	0	0	0	0	55	60	0	20	0	0	20	0	0	60	10	0	25	40	12.1
影印紙	0	0	0	0	0	0	0	0	0	0	60	60	10	30	0	0	10	0	0	60	30	0	55	45	15.0
玻璃紙	0	0	0	0	0	0	0	0	0	0	45	45	10	40	0	0	25	0	0	50	20	0	40	60	14.0
塑膠袋	0	0	0	0	0	0	0	0	0	0	20	30	10	65	0	0	30	0	0	40	5	0	20	60	11.7
投影片	0	0	0	0	0	0	0	0	0	0	50	50	10	70	0	0	45	0	0	45	5	0	30	55	15.0
CD 片	0	0	0	0	0	0	0	0	0	0	60	60	20	10	0	0	10	0	0	40	10	0	20	15	10.2
塑膠尺	0	0	0	0	0	0	0	0	0	0	40	30	20	10	0	0	0	0	0	30	25	0	0	20	7.3
鋁棒	0	0	0	0	0	0	0	0	0	0	20	10	5	5	0	0	0	0	0	20	10	0	10	15	4.0
鐵棒	0	0	0	0	0	0	0	0	0	0	20	10	5	0	0	0	0	0	0	35	0	0	5	10	3.5
玻璃棒	0	0	0	0	0	0	0	0	0	0	25	5	10	0	0	0	0	0	0	20	0	0	10	0	2.9
木棒	0	0	0	0	0	0	0	0	0	0	55	45	0	0	0	0	0	0	0	30	0	0	10	10	6.3
鋁箔紙	0	0	0	0	0	0	0	0	0	0	45	20	5	5	0	0	15	0	0	25	10	0	15	40	7.5
保鮮膜	0	0	0	0	0	0	0	0	0	0	10	25	5	20	0	0	25	0	0	20	25	0	5	30	6.3
絲襪	0	0	0	0	0	0	0	0	0	0	60	30	15	45	0	0	40	0	0	65	0	0	50	65	15.5
鉛筆	0	0	0	0	0	0	0	0	0	0	45	5	10	30	0	0	10	0	0	30	10	0	45	5	7.9
保麗龍	0	0	0	0	0	0	0	0	0	0	40	25	0	0	0	0	5	0	0	55	10	0	0	50	7.7
PVC 管	0	0	0	0	0	0	0	0	0	0	65	45	10	0	0	0	0	0	0	45	35	0	55	0	10.6
平均	0	1	2	0	0	0	0	0	0	0	43	40	7	24	0	0	14	0	0	45	14	0	24	39	

- 一、實驗結果發現: 塑膠類製品摩擦後,容易產生靜電,而金屬、木頭、紙類、布類則 不容易產生靜電。
- 二、把實驗結果歸納後發現:容易導電的物品,摩擦後不易產生靜電;不容易導電的物品,摩擦後容易產生靜電。
- 三、<mark>拿布類、紙類等物來摩擦塑膠類的物品,產生的靜電效果最佳</mark>。絨布、毛布、尼龍布、衛生紙、報紙、影印紙、玻璃紙、投影片、絲襪等,是最佳的摩擦物;而塑膠袋、投影片、保鮮膜、pvc 管等,是最佳的被摩擦物。

研究 4-2 摩擦次數對靜電的影響


實驗方法:

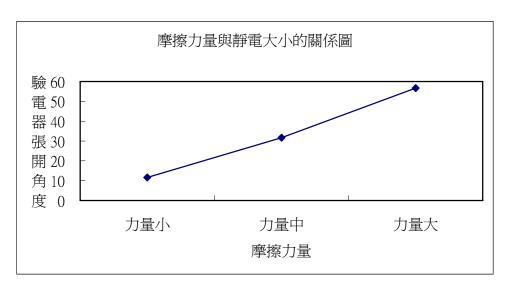
- 一、取塑膠管和毛布、金箔驗電器+電容器。
- 二、將塑膠管和毛布靠近電容器,分別摩擦2次、4次、6次、8次、10次。
- 三、觀察驗電器的角度,紀錄之。

實驗結果:

	摩擦2次	摩擦4次	摩擦6次	摩擦8次	摩擦 10 次
1	5°	10 °	15 °	25 °	50°
2	5°	15 °	10 °	30°	40°
3	5 °	10 °	15 °	25 °	40°
平均	5.0°	11.7 °	13.3 °	26.7 °	43.3 °

一、實驗結果發現,摩擦次數愈多,產生的靜電就愈強。

研究 4-3 摩擦力量對靜電的影響


實驗方法:

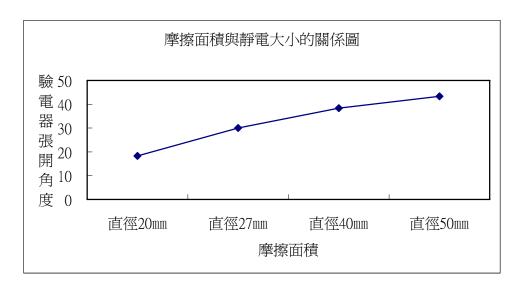
- 一、取塑膠管和毛布、金箔驗電器+電容器。
- 二、將束環套在塑膠管和毛布上,調整鬆緊度,分別以不同的鬆緊度來代表摩擦力量的大小摩擦。 (附圖9)
- 三、各摩擦5次,觀察驗電器張開的角度,紀錄之。

實驗結果:

	力量小	力量中	力量大
1	10°	25°	50°
2	15°	35°	55°
3	10°	35°	65°
平均	11.7 °	31.7 °	56.7 °

一、實驗結果發現:摩擦力量愈大,產生的靜電愈強。

研究 4-4 摩擦面積對靜電的影響

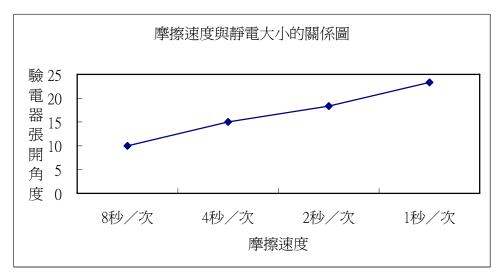

實驗方法:

- 一、準備塑膠管和毛布、金箔驗電器+電容器。
- 二、以不同直徑的管子代表不同大小的面積,將毛 布分別對不同直徑的塑膠管摩擦相同次數。
- 三、觀察驗電器張開的角度,紀錄之。

實驗結果:

	直徑 20 mm	直徑 27 mm	直徑 40 mm	直徑 50 mm
1	20°	35 °	40 °	40 °
2	20°	25 °	35 °	45 °
3	15 °	30°	40 °	45 °
平均	18.3°	$30.0^{\rm o}$	38.3°	43.3°

一、實驗結果發現:摩擦面積愈大,產生的靜電愈強。


研究 4-5 兩摩擦物的摩擦速度對靜電的影響

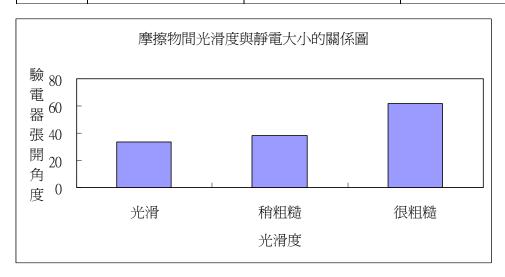
實驗方法:

- 一、取塑膠管和毛布、金箔驗電器+電容器。
- 二、將塑膠管和毛布靠近電容器,分別以不同的速 度各摩擦一次。
- 三、觀察驗電器的角度,紀錄之。

	8 秒/次	4 秒/次	2秒/次	1 秒/次
1	10°	15 °	15 °	20°
2	10°	15 °	20°	25 °
3	10°	15°	20°	25 °
平均	10.0 °	15.0°	18.3 °	23.3°

一、實驗結果發現:摩擦速度愈快,產生的靜電愈強。

研究 4-6 摩擦物間的光滑度對靜電的影響


實驗方法:

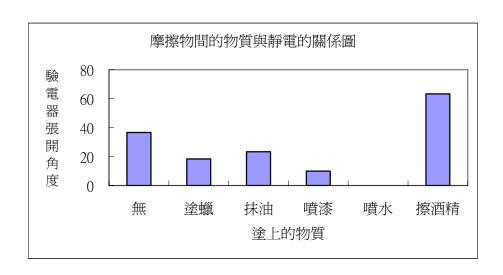
- 一、取塑膠管和毛布、金箔驗電器+電容器。
- 二、分別對不同光滑度的塑膠管摩擦相同次數。
- 三、觀察驗電器的角度,紀錄之。

實驗結果:

	光滑	稍粗糙	很粗糙
1	30°	40°	50°
2	35°	30°	65 °
3	35°	45°	70°
平均	33.3°	38.3°	61.7°

一、實驗結果發現:兩摩擦物間愈粗糙,產生的靜電就愈強。

研究 4-7 摩擦物間的物質對靜電的影響

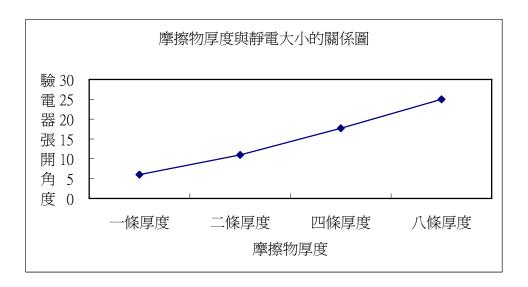

實驗方法:

- 一、取塑膠管和毛布、金箔驗電器+電容器。
- 二、將塑膠管和毛布間分別塗上蠟、油、漆、水、 酒精等物體摩擦。
- 三、觀察驗電器的角度,紀錄之。

實驗結果:

	無	塗蠟	抹油	噴漆	噴水	擦酒精
1	35 °	20°	20°	10°	О о	70°
2	40 °	20°	25 °	10°	0 °	60°
3	35°	15°	25 °	10°	0 °	60°
平均	36.7°	18.3°	23.3°	10.0°	0.0°	63.3°

一、實驗結果發現:塗上蠟、油、水、漆等物質後,摩擦產生的靜電變小,而擦過 酒精後,去除污垢,使管子變得更乾淨,摩擦產生的靜電變大。所以<mark>摩擦物間 越乾淨摩擦的效果越好。</mark>


研究 4-8 摩擦物的厚度對靜電的影響

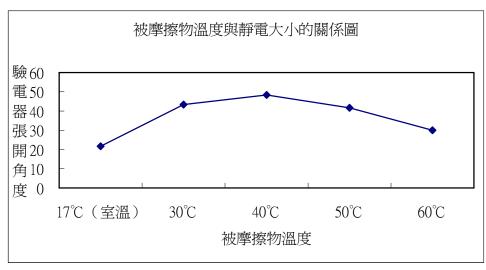
實驗方法:

- 一、取塑膠管和毛布、金箔驗電器+電容器。
- 二、將毛布以不同厚度靠近驗電器摩擦塑膠管,觀察角度,紀錄之。

實驗結果:

	一條厚度	二條厚度	四條厚度	八條厚度
1	5°	10°	18°	25 °
2	5 °	13 °	15 °	25 °
3	8°	10°	20°	25 °
平均	6.0 °	11.0°	17.7°	25.0°

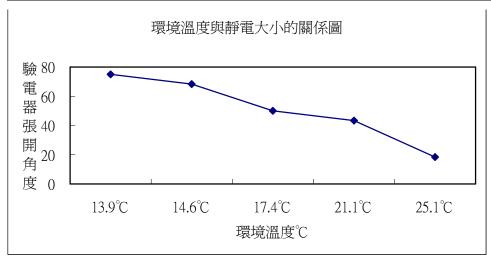
一、實驗結果發現:摩擦的毛布愈厚,產生的靜電愈強。


研究 4-9 被摩擦物本身的溫度對靜電的影響

實驗方法:

- 一、取塑膠管和毛布、金箔驗電器+電容器。
- 二、將塑膠管插入溫度計放在電爐上,加熱至不同 溫度後,取出與毛布摩擦五次。
- 三、觀察驗電器的角度,紀錄之。

	17℃ (室溫)	30℃	40°C	50℃	60°C
1	25 °	40°	50°	45 °	30°
2	20°	45 °	45 °	40 °	30°
3	20°	45°	50°	40 °	30°
平均	21.7°	43.3°	48.3°	41.7°	30.0 °


- 一、實驗結果發現:隨著被摩擦物溫度上升,摩擦產生的靜電也跟著增加,但是過了40℃左右後,靜電就隨著溫度開始減少。所以塑膠管溫度在40℃摩擦時,產生的靜電最大。
- 二、40℃後靜電減少的原因,我們認爲可能是塑膠管變質變軟,而使得靜電變小。

研究 4-10 環境的溫度對靜電的影響

實驗方法:

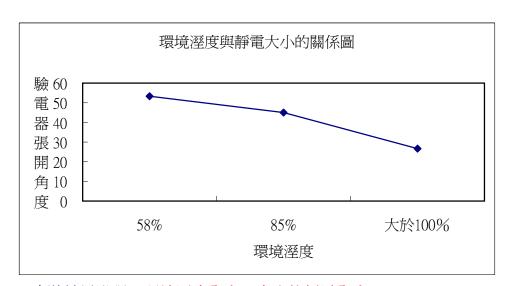
- 一、取塑膠管和毛布、金箔驗電器+電容器。
- 二、在不同的環境溫度下(溼度在60~65%),將塑膠管和毛布摩擦。
- 三、觀察驗電器的角度,紀錄之。

	13.9℃	14.6°C	17.4℃	21.1℃	25.1℃
1	75°	65°	50°	45 °	15 °
2	75 °	70 °	50°	40 °	20°
3	75°	70°	50°	45 °	20°
平均	75.0 °	68.3°	50.0°	43.3 °	18.3 °

一、實驗結果發現:環境的溫度愈高,產生的靜電愈小。

研究 4-11 環境的濕度對靜電的影響

實驗方法:


- 一、取塑膠管和毛布、金箔驗電器+電容器。
- 二、將塑膠管和毛布在不同的濕度下(室內 58% 、 浴室 85% 、洗完澡後 100%) 摩擦。
- 三、觀察驗電器的角度,紀錄之。

實驗結果:

在20℃下

	58%	85%	大於 100%
1	50°	45 °	30°
2	55 °	45 °	25°
3	55°	45°	25°
平均	53.3°	45.0 °	26.7°

- 一、實驗結果發現:環境溼度愈大,產生的靜電愈小。
- 二、洗完澡後,濕度超過 100%,摩擦後產生的靜電馬上就消失了,所以是紀錄瞬間的角度。

【研究五】靜電也有正負之分嗎?

實驗步驟:

- 一、將塑膠繩剪成兩條長形帶子,手捏住一端讓它重疊。
- 二、用毛布由上往下搓摩幾次,然後觀察兩繩的變化,紀錄之。
- 三、再將用毛布摩擦過的水管、毛布放進兩繩之間,觀察變化並紀錄。

實驗結果:

	未摩擦的 兩條塑膠繩	與毛布摩擦後的 兩條塑膠繩	摩擦後的水管 放入兩繩之間	摩擦後的毛布 放入兩繩之間
結果	兩繩子相互靠近	兩繩子分開了	兩繩張開更大	繩閉合吸住毛布
備註	不帶電	兩繩相斥,所以 帶相同性質的電	水管與繩子相斥 ,所以帶相同性 質的電	毛布和繩子相吸 ,所以帶不同性 質的電
照片				

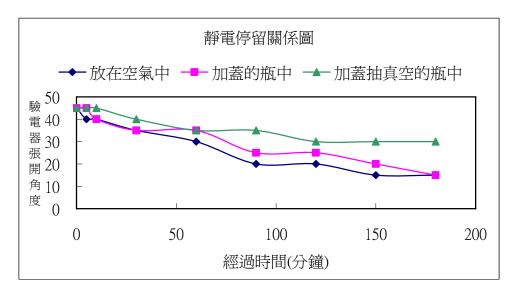
一、由實驗得知,兩物體摩擦後會產生不同性質的靜電,即正電和負電。

【研究六】靜電能一直留在物體上嗎?

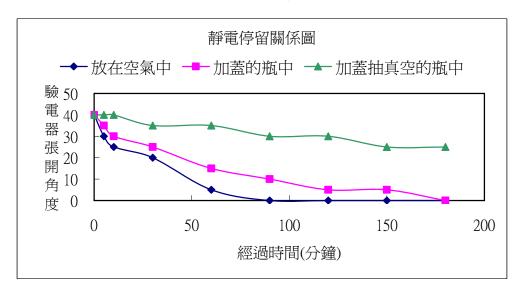
我們想要知道,摩擦後產生的靜電會一直停留在物體上嗎?

實驗方法:

- 一、先將塑膠管和毛布摩擦後,接觸三個驗電器,使 驗電器帶電,迅速的測出角度,紀錄之。
- 二、將三個驗電器分別放在空氣中、加蓋的瓶中、加 蓋並抽真空的瓶中。
- 三、放置一段時間,紀錄角度的變化。



室溫 17~18℃ 溼度 60~63%


環境	空氣	加蓋	真空
時間	中	瓶中	瓶中
0分鐘	45°	45 °	45°
5 分鐘	40°	45 °	45°
10 分鐘	40°	40°	45 °
30 分鐘	35°	35°	40°
60 分鐘	30°	35°	35°
90 分鐘	20°	25°	35°
120 分鐘	20°	25°	30°
150 分鐘	15°	20°	30°
180 分鐘	15°	15°	30°

室溫 18~19.6℃ 溼度 88~95%

環境	空氣	加蓋	真空
時間	中	瓶中	瓶中
0分鐘	40°	40°	40°
5 分鐘	30°	35°	40°
10 分鐘	25°	30°	40°
30 分鐘	20°	25°	35°
60 分鐘	5°	15°	35°
90 分鐘	0°	10°	30°
120 分鐘	0 °	5°	30°
150 分鐘	0°	5°	25°
180 分鐘	0°	0°	25°

室溫 17~18℃ 溼度 60~63%

室溫 18~19.6℃ 溼度 88~95%

一、實驗結果發現:靜電會隨著時間流失,完全曝露在空氣中的靜電消失的較快, 而在抽真空的瓶中消失的較慢。由兩個不同溼度實驗知,靜電的存留和空氣濕 度有關,濕度愈高,物體上的靜電消失的較快,濕度愈低,靜電存留在物體上 就愈久。

【研究七】靜電的消除

靜電也只是吸吸灰塵、電一電,這有什麼可怕?可怕的地方在於若是電子設備一直累積 電荷而沒適時的釋放,突然接觸到放電的導體時,會產生高電壓使電子設備受損,如果靜電 的火花遇到易燃物時,會產生爆炸,非常危險。所以本實驗將針對已帶靜電的物體,研究如 何使它消除。

實驗方法:

- 一、導體和非導體的物體各讓它帶上靜電。
- 二、以不同物品接觸,看它能不能使靜電消失。
- 三、觀察並紀錄之。

實驗結果: 〇:完全	☆ 消除	消除 ×:不能消除
帶	驗電器(導體)	塑膠管(非導體)
實驗物物品品		
手	0	Δ
絨布	Δ	×
麻布	0	Δ
棉布	0	Δ
毛布	Δ	×
尼龍布	Δ	×
報紙	0	Δ
絲襪	Δ	×
影印紙	0	Δ
溼抹布	0	Δ
橡皮擦	0	Δ
塑膠袋	×	×
葉子	0	Δ
鐵棒	0	Δ
鋁棒	0	Δ
黄銅	0	Δ
紅銅	0	Δ
鎳合金	0	Δ
玻璃棒	0	Δ
保麗龍	×	×
粉筆	0	Δ
鋁箔紙	0	Δ
木棒	0	Δ
塑膠尺	×	×
玻璃紙	0	Δ
筆芯	0	Δ
資料夾	×	×
橡皮筋	×	×
磁鐵	0	Δ
保鮮膜	×	×
膠帶	×	×
CD	×	×

一、實驗結果發現:

- (一)想要消除物體上的靜電,就必須和易導電的物質接觸才能去除。
- (二)消除物只接觸驗電器(導體)和塑膠管(非導體)的一小部分,驗電器(導體)上的靜電完全被消除,而塑膠管(非導體)的靜電只被消除接觸部分,由此可推知,導體上的靜電可以到處流動,非導體上的靜電則無法流動。

【研究八】日常生活中的靜電與應用

實驗方法:

一、上網或圖書館蒐集在日常生活中發生的靜電現象和運用。

實驗結果:

- 一、日常生活中的靜電現象:
 - (一) 開關電視時,螢幕會產生靜電,使螢幕表面很容易沾黏空氣中的灰塵。
 - (二)早上梳頭時,頭髮經常會飄起來,越理越亂,是因爲梳子和頭髮摩擦產 生靜電,而頭髮帶相同的靜電,所以相互排斥形成的。
 - (三)晚上脫衣服睡覺時,黑暗中常聽到劈啪的聲音,而且伴有藍光,是因為 衣服和衣服相互摩擦而產生靜電。
 - (四)拉門把、開水龍頭時,會觸電發出啪啪聲,有時見面握手時,手剛一接觸到對方,會突然感到指尖針刺般刺痛,都是因爲衣服和人體相互摩擦累積靜電,產生放電的現象。
 - (五)閃電的發生,是因爲雲裡的水滴和冰晶,受氣流帶動,會相互摩擦,使得雲帶電。雲和雲之間會產生火花。雲和地面之間也會產生火花,就是閃電。

二、靜電的運用


比起一般的電,靜電的用處雖然少很多,但是日常生活中還是有許多裝置。例如:影印機、吸塵器、噴漆塗料、冷氣的除塵裝置、空氣濾清器.....等,都是利用靜電具有吸引力的特性而設計出來的,最近還新開發靜電解凍保鮮技術,及可促進全身血液循環的靜電療法。

伍、討論

- 一、在【研究三】中,因爲沒有儀器可測量物體帶的靜電是正電還是負電,所以只能判斷是 帶同性質的電,或是帶不同性質的電。兩物體摩擦後發現會產生不同性質的電,這不同 性質的電應該就是我們常說的正電、負電吧!
- 二、在【研究四】中,小紙屑會上下不停的跳動,應該是受到塑膠管靜電感應,靠近塑膠管的一邊,因感應起了異性電,異性相吸,所以小紙屑就被塑膠管吸起來了。等到小紙屑與塑膠管接觸後,小紙屑的異性電與塑膠管的電,互相中和,作用抵消。因此小紙屑和塑膠管便帶同樣的電,同性相斥,所以小紙屑又落下來了。等到小紙屑身上的電消失了,小紙屑又成為不帶電體,塑膠管上的電,再把它吸上去,因此小紙屑就上上下下跳個不停。
- 三、有些人實驗會用吸起小紙屑多寡當成靜電的大小,我們認為是錯誤的,因為小紙屑會跟 塑膠管的靜電不停的中和,消耗塑膠管的電,最後塑膠管吸起的小紙屑有限,那就無法 準確的測出靜電的大小了。
- 四、實驗中,最難的地方就是驗電器的製作。驗電器中兩片金箔的大小、厚薄、鑽洞的大小、洞上方的金箔長度、電線的彎曲度等,都會影響驗電器的靈敏度,如果金箔太大太厚、和電線連接的洞太小、洞上方的金箔長度太長等,都會導致金箔無法張開。

五、驗電器的操作步驟:

- (一)將兩片金箔閉合對準量角器的中心點。
- (二)將摩擦後的物體,放在驗電器上方的金箔球。
- (三)兩片金箔張開後,數出之間有幾個小刻度。
- (四)每一刻度是5度,將刻度乘以5即爲張開角度。

- 六、驗電器的張開角度有限,測量時應先測出最大値。在測量中,如達到最大値時,其測出的靜電大小將不準確,因爲電量可能更大,只是驗電器的金箔已無法再張開。解決的方法就是加裝電容器,來儲存大量的靜電。
- 七、驗電器是靠一根電線和摩擦物感應,使金箔張開或閉合。感應後,電線的頂端容易產生「尖端放電」,使電不穩定且容易消失,所以在頂端套上圓形金屬球穩定之。
- 八、在實驗中,發現塑膠易產生靜電,金屬物不容易產生靜電,我們認為是因為金屬易導電,摩擦完後的靜電就跑走了,而塑膠不易導電,摩擦產生的靜電就留在物體上,不會流失。所以,<mark>想要金屬產生靜電的話,一定要使用絕緣的東西,隔絕手與金屬接觸</mark>,不然金屬上產生的靜電會經由人體導入地面而失去。
- 九、人體是導電體,電會經由人傳到地下去,所以,【研究七】能除靜電的這些導體,其電都 是由帶電體傳給導體,再經由人導入地面的,故<mark>要消除物體上的靜電,就需要將該物體</mark>

接地才行。

- 十、靜電的累積困難,流動很快,尤其當空氣潮濕時,就容易經由水的傳導而散逸流失掉。 所以,手濕濕的話,摩擦比較不易產生靜電。
- 十一、由摩擦所起的電量,在測量時與驗電器的距離有關。愈靠近驗電器時,測出的電量愈大,但因空氣溼度的關係,靠近時會產生放電現象,影響實驗觀察,所以,我們都將帶電體和驗電器接觸,來測量靜電大小。
- 十二、因爲我們沒有控制環境溫度及溼度設備,所以溫溼度對靜電影響的實驗,就只能靠天氣溫度升降來做。還好,這幾個月來,天氣溫度變化很大,最冷到達 5、6 度,最熱到達 27、28 度。實驗中,我們發現在較冷的天氣裡,摩擦一兩下就產生劈哩啪啦的聲音,且摩擦時手會有刺刺的感覺,但在較熱的天氣時,則不容易產生。所以溫度較冷時,比較容易產生靜電。
- 十三、同樣是布爲什麼絨布、毛布和尼龍布較容易產生靜電?拿【研究 4-1】和【研究七】比較後發現,這些<mark>容易產生靜電的布,都比較不容易導電</mark>。所以摩擦後能停留上物體上, 比較不容易流失。
- 十四、【研究 4-7】塗上酒精後,摩擦容易產生靜電的原因,我們認爲是因爲實驗中塗上其他物質後,管子滑滑的,使靜電減少,塗上酒精後,去除這些污垢,使管子變澀澀的,摩擦力增加(【研究 4-6】的結果),所以產生的靜電變大。

陸、結論

- 一、摩擦後的塑膠管,會吸起毛髮,讓人有毛毛的感覺,像是一層薄膜附在管子的表面,這 就是我們對靜電的感覺。
- 二、結果發現無論是<mark>固體、液體、氣體都會被靜電吸引</mark>。較小較輕的東西會被吸起,較大較 重的物品則無法被吸起。固體被靜電吸引時,物體會上上下下的跳動。
- 三、靜電的大小,可用金箔驗電器來測量,較小的靜電用金箔驗電器測量,較大的靜電用金箔驗電器+電容器 測量,不適合用吸起紙張的數量來計算。

四、影響靜電的因素:

- (一)摩擦材質:塑膠類製品摩擦後,容易產生靜電,而金屬、木頭、則不容易產生靜電。布類、紙類等物來摩擦塑膠類的物品,產生的靜電效果最佳。絨布、毛布、尼龍布、衛生紙、報紙、影印紙、玻璃紙、絲襪等,是最佳的摩擦物;而塑膠袋、投影片、保鮮膜、pvc 管等,是最佳的被摩擦物。
- (二)摩擦次數:摩擦次數愈多,產生的靜電愈強。
- (三)摩擦力量:摩擦力量愈大,產生的靜電愈強。
- (四) 摩擦而積: 摩擦而積愈大, 產牛的靜電愈強。
- (五)摩擦速度:摩擦速度愈快,產生的靜電愈強。
- (六)摩擦面粗糙度:兩摩擦物間愈粗糙,產生的靜電就愈強。
- (七)摩擦物間的物質:塗上蠟、油、水、漆等物質後,<mark>摩擦產生的靜電變小</mark>,而<mark>擦過酒精後</mark>,去除污垢,使管子變得更乾淨,摩擦產生的靜電變大。所以摩擦物間越乾淨摩擦的效果越好。
- (八)摩擦物厚度:摩擦的毛布愈厚,產生的靜電愈強。
- (九)摩擦物本身溫度:隨著被摩擦物溫度上升,摩擦產生的靜電也跟著增加,但是過了40℃後,靜電就隨著溫度開始減少。所以塑膠管溫度在40℃ 摩擦時,產生的靜電最大。
- (十)環境溫度:環境的溫度愈高,產生的靜電愈小。
- (十一)環境溼度:環境溼度愈大,產生的靜電愈小。
- 五、兩物體摩擦後會產生不同性質的靜電,即正電和負電。
- 六、物體的<mark>靜電會隨著時間流失</mark>,完全曝露在空氣中的靜電消失的較快,而在真空的瓶中消失的較慢。
- 七、想要消除物體上的靜電,就必須和易導電的物體接觸才能去除。在導體上的靜電會流動 ,能完全被消除,而在非導體上的靜電不會流動,只有在接觸的部分被消除而已。

八、日常生活中的靜電現象:

- (一)開關電視時,螢幕會產生靜電,使螢幕表面很容易沾黏空氣中的灰塵。
- (二)早上梳頭時,頭髮經常會飄起來,越理越亂,是因爲梳子和頭髮摩擦產生靜電, 而頭髮帶相同的靜電,所以相互排斥形成的。
- (三)晚上脫衣服睡覺時,黑暗中常聽到劈啪的聲音,而且伴有藍光,是因爲衣服和衣服相互摩擦而產生靜電。
- (四)拉門把、開水龍頭時,會觸電發出啪啪聲,有時見面握手時,手剛一接觸到對方,會突然感到指尖針刺般刺痛,都是因為衣服和人體相互摩擦累積靜電,產生放電的現象。
- (五) 閃電的發生,是因爲雲裡的水滴和冰晶,受氣流帶動,會相互摩擦,使得雲帶電。雲和雲之間會產生火花。雲和地面之間也會產生火花,就是閃電。

靜電的運用:

比起一般的電,靜電的用處雖然少很多,但是日常生活中還是有許多裝置。例如:影印機、吸塵器、噴漆塗料、冷氣的除塵裝置、空氣濾清器.....等,都是利用 靜電具有吸引力的特性而設計出來的,最近還新開發靜電解凍保鮮技術,及可促進 全身血液循環的靜電療法。

九、防止靜電的方法:

- (一)減少摩擦。
- (二)提高環境溼度。
- (三) 少使用化纖材料,應多穿純棉或真絲材料的衣服。
- (四)物品打上蠟,減少靜電產生。
- (五)電子機械設備須接地,防止靜電累積。

柒、參考資料

- 一、珍妮絲·派特·范克勞馥(民82)。不可思議的科學實驗—物理篇。台北縣:世茂。
- 二、瀧川洋二(民92)。70個奇妙有趣的科學實驗。台北縣:世茂。
- 三、瀧川洋二(民91)隨手可做有趣的科學實驗。台北縣:世茂。
- 四、鄒紀萬(民84)。簡易的電磁實驗。台北縣:錦德。
- 五、陳長樂(民61)。學生科學文庫—摩擦起電。台北市:惠淵。
- 六、陳長樂(民61)。學生科學文庫一靜電感應。台北市:惠淵。
- 七、陳長樂(民61)。學生科學文庫—放電。台北市:惠淵。
- 八、柯昱琪(民84)。來「電」一下。哥白尼21—第141期,45—51頁。
- 九、國立台灣科學教育館(民93)。科學遊戲—大車拼。台北市:柯正峰。

捌、補充資料

驗電器的六大功能

功能一:檢驗物體有沒有帶電

把一個物體,接近驗電器上的金屬球,如果瓶內的金箔不會張開,表示這個物體不帶電。如果一個物體,接近驗電器上的金屬球,瓶內的金箔張開了, 就表示這個物體有帶電。

功能二:檢驗物體是導體還是絕緣體

先利用帶電的物體,與驗電器上的金屬球接觸,使瓶內金箔張開。然後把各種物體一個個與金屬球接觸:如果金箔合起來,就是導體。如果金箔張開不合,就是絕緣體。

功能三:檢驗導體帶正電環是帶負電

先將帶正電的物體,與驗電器上的金屬球接觸,使金屬球和瓶內的金箔帶 正電。然後將一個不知道是帶正電或帶負電的導體和金屬球接觸:如果金箔展 開的角度增大,導體就是帶正電。如果金箔合起來,導體就是帶正電。

功能四:檢驗導體的帶電量多少

將一個帶電體,接觸驗電器上的金屬球後,瓶內的金箔張開的角度大小, 就表示這個物體帶電量多少。如果金箔張開的角度大,導體的帶電量多。如果 金箔張開的角度小,導體的帶電量少。

功能五:檢驗正負電是同時產生,電量相等

兩個物體摩擦後,同時和驗電器上的金屬球接觸,瓶內的金箔必定是閉合著。證明兩個物體互相摩擦後,一個物體帶正電,另一個物體必帶負電,而且兩個物體所帶的電量一定是相等。

功能六:檢驗人體是不是導體

將手指接觸驗電器的金屬球,瓶內的金箔就閉合起來,這就證明金箔上的電,經過人體傳到地下去。

中華民國第四十五屆中小學科學展覽會 評 語

國小組 自然科

081515 靜觀奇電

臺北市私立再興國民小學

評語:

- 1. 本件作品探討靜電的成因與解決生活中靜 電產生的困撓,動機佳,實驗過程詳實與作 品撰寫完整。
- 2. 作者解說態度大方,實驗操作流暢。 建議:靜電的主題,歷年探究的已經很多,實 驗的動機提及溜滑梯等靜電問題,若能將結論 再運用於解決這些問題的實際設計會更佳。