中華民國第四十四屆中小學科學展覽會

作品說明書

國小組數學科

080401

臺北縣三重市永福國民小學

指導老師姓名

王儀芳

作者姓名

鄭百倫

蕭孟軒

劉玫伶

林暐傑

中華民國第四十四屆中小學科學展覽會作品說明書

科別:數學科

組別:國小組

作品名稱:魔術數學骰子

關鍵詞:骰子

編號:

膏、 摘要

藉由大家的提問及討論還有腦力激盪,找出「魔術數學骰子」遊戲背後所隱藏的數學規則,並設計出我們自制的「魔術數學骰子」。

貳、研究動機

爲了科展活動,我們分頭去找研究的主題,一天,其中一位同學帶來了「魔術數學骰子」,他每次總能很快的得知五個骰子上三位數字的總和,引起了大家的興趣,便決定以此爲題,想找出其中的秘密。又我們現在所學的五下翰林版數學,其中有「未知數」、「二維表格」、「電算器」,還有翰林版的補強與銜接教材中的「整數直式加法」等單元,都與我們「魔術數學骰子」的研究息息相關,課本的許多方法、觀念都可以加以運用在我們的研究討論上,而我們的討論、計算與記錄方式等,也都可以應用課本上所學到的知識,所以藉由科展活動可以加強我們的數學概念並應用所學,我們都覺得很高興。

參、研究目的

- 一、探討「魔術數學骰子」遊戲能快速得知答案的背後所暗藏的數學規則
- 二、我們是否也可以自製「魔術數學骰子」。

肆、研究設備及器材

- 一、紙
- 二、筆
- 三、自製骰子
- 四、計算機

伍、研究過程

- 一、由「科學實驗」書上得知「魔術數學骰子」之遊戲方式及過程簡述如下:
 - (一)做五個骰子,每個骰子都按書上(如下表)寫上三位數的數字

	第一顆	第二顆	第三顆	第四顆	第五顆
第一面	384	377	564	459	7 4 1
第二面	三面 780 179		366	756	6 4 2
第三面	186	872	762	954	3 4 5
第四面	483	278	663	657	8 4 0
第五面	681	773	168	8 5 5	147
第六面	285	971	960	5 5 8	5 4 3

(二)遊戲的時侯把它們同時擲出,顯現出五個骰面,看這五個骰面的數字和是多少?誰能先算出答案的人就算贏。

(三)每次都是帶骰子來的同學算得最快。由書中即可得知能快速算出答案的規則 如下:

規則一: 五個骰子擲出後,骰子上個位數的和即爲五個骰子總和的十位數及 個位數。

規則二: 50減去五個子個位數的和,即得五個骰子總和的千位數及百位數。 (四)知道遊戲背後的計算方式後,大家都能很快的將答案算出來了!

- 二、研究找出這些骰子特別的地方,提出疑問,大家一一討論,思考其中的道理:
 - (一)疑問:隨便五個三位數相加都符合這個規則嗎?
 - * 研究討論:隨意想出五個不同的三位數213, 456, 789, 330, 942, 套入書中的規則——個位數相加3+6+9+0+2=20, 再以 50-20=30, 故此五位數相加由規則推出總和應爲3020, 但與事實 213+456+789+330+942=2730不符,所以不是所有隨便的五個三位數相加都符合這個規則,故我們得知「魔術數學骰子」是經過特別設計的。
 - (二)疑問:五個三位數的骰子相加,總和一定是四位數嗎?有可能是三位數或五位數嗎?
 - * 研究討論:若以最小的五個三位數相加, 100+100+100+100+100=500, 所以五個三位數相加也有可能爲三位數。而以最大的五個三位數相加, 999+999+999+999=4995. 得知爲四位數,故五個骰子的三位數相加不可能爲五位數。
 - (三)疑問:那麼照書中的計算規則,五個三位數骰子相加的總和爲四位數,爲什麼沒有出現三位數呢?
 - * 研究討論:假設擲出每個骰子的最小面,總和即爲 186+179+168+459+147=1139, 即得知,若使用書中設計的骰子,總和最小即爲1139,所以得知書中的數字應該經過設計,才不致使總和出現三位數。
 - (四)發現:每個骰子每個面的三位數的十位數都一樣,第一顆骰子中間的數(十位數)都是8,第二顆骰子中間的數都是7,第三顆骰子中間的數都是6, 第四顆骰子中間的數都是5,第五顆骰子中間的數都是4。
 - * 研究討論:以第一顆骰子爲例,不管擲出哪一面,十位數永遠都是8,而其他四顆骰子也以此類推。所以每次擲出五個數字的十位數相加的和永遠固定爲8+7+6+5+4=30,所以剛好把3進位至五個骰子總和的百位數,把總和的十位數空了出來,所以五個骰子個位數的和即爲五個骰子總和的十位數及個位數,便找出了第一個規則的原理了。而又可推得總和的千位與百數字即爲五個骰子百位數字的和再加3,而由規則二可得到下面的關係

- 50-(五個骰字個位數字和)
- = (万個骰子總和的千位數與百位數)
- =(五個骰子百位數字的和)+3
- (五)發現:每個骰子的六個面中,至少有兩個面的個位數與百位數字顛倒,例如:第一顆骰子的六個面分別爲384、780、186、483、681、285,其中384與483,186與681的個位數字與百位數字即剛好顛倒。又發現每顆骰子的每一面,個位數字與百位數字相加的和皆相等。將發現整理如下:

	第一顆	第二顆	第三顆	第四顆	第五顆
第一面	384	3 7 7	564	4 5 9	7 4 1
第二面	780	179	366	7 5 6	6 4 2
第三面	186	872	762	9 5 4	3 4 5
第四面	483	278	663	657	8 4 0
第五面	681	773	168	8 5 5	1 4 7
第六面	285	971	960	5 5 8	5 4 3
個位數與百	7	1 0	9	1 3	8
位數字的和	1	1 0	Э	1 3	0

- * 研究討論:由以上發現得知
 - 50-(五個骰字個位數字和)
 - = (五個骰子總和的千位與百位)
 - = (五個骰子百位數字和)+3

所以50-(五個骰字個位數字和)=(五個骰子百位數字和)+3

即 50 = (五個骰字個位數字和 + 五個骰子百位數字和) + 3

= (7+10+9+13+8)+3

所以我們便找出「魔術數學骰子」遊戲背後所隱藏的原理了。

陸、研究結果

- 一、「魔術數學骰子」遊戲規則背後所隱藏的原理,由上面的研究討論整理得知: (PS.以下所講到的「總和」,指的是五個骰子所擲出的五個三位數相加的總和)
 - (一)每擲一次骰子出現五個三位數,這五個三位數的十位數相加必爲10的倍數,如此才能將總和的十位數空出來,讓五個三位數的個位數相加的和,能成爲總和的十位數及個位數。
 - (二)五個三位數的十位數相加,所得的10的倍數必進位到五個骰子總和的百位數,設此進位的數爲Y,則五個三位數的百位數相加,再加上Y,即等於五個三位數總和的千位數與百位數,再加上個位數的和,即會等於50,即50=五個骰字個位數字和+五個骰子百位數字和+Y由以上原理,即可知道「魔術數學骰子」能快速算出答案背後所暗藏的規則。

柒、討論

- 一、 我們要開始自己設計「魔術數學骰子」。先預設與書上相同條的條件:
 - (一)一樣是五個骰子
 - (二)每個骰子的每面都是三位數
 - (三)單個骰子的每個面的十位數皆相同,但五個骰子的十位數皆不同
 - (四)單個骰子的每個面的個位數與百位數字和皆相同,但五個骰子的個位數與百 位數字和皆不同
 - (五)每單個骰子的六個面的數字都不同
 - (六)五個骰子的十位數字和爲10的倍數
 - (七) 擲出骰子的五個三位數,其中的 (百位數和)+(個位數和)+(十位數相加所進位的數Y)=10的倍數, 如此設計才方便計算。

二、開始始設計「魔術數學骰子」

- (一) 設每一個三位數爲 ABC,A 爲百位數,B 爲十位數,C 爲個位數,且 $0 < A \le 9$, $0 \le B \le 9$, $0 \le C \le 9$,因爲爲三位數,所以百位數不能爲零。
- (二)設所擲出的五個三位數: 第一個骰子的三位數即為 A1B1C1,第二個骰子的三位數即為 A2B2C2,...... 以此類推。
- (三)五個三位數中間的十位數字和爲 10 的倍數,所以 B1+B2+B3+B4+B5=10 的倍數,又因五個骰子的十位數皆不同,即 $B1\ne B2\ne B3\ne B4\ne B5$ 所以五個三位數的十位數字和的最小可能爲 0+1+2+3+4=10,剛好爲 10 (符合條件爲 10 的倍數),而最大可能爲 9+8+7+6+5=35,但要符合爲 10 的倍數的這個條件,所以最大爲 30,所以中間十位數相加的可能只有三種,即 10、20 和 30。所以 Y (十位數相加所進位的數)可以等於 1 或 2 或 3。
- (四)先假設我們要的五個三位數的十位數字和為 10,所以 Y=1
- (五) 又設(百位數和) + (個位數和) + Y=10的倍數=P 所以 P= (A1+A2+A3+A4+A5) + (C1+C2+C3+C4+C5) + Y= (A1+C1) + (A2+C2) + (A3+C3) + (A4+C4) + (A5+C5) + Y
- (六) $0 < A \le 9$, $0 \le C \le 9$,而每個骰子的十位數皆固定,每個骰子的六個面的數字都要不同,所以 (A,C) 的可能性為:

假設 A+C=	(A,C)可能爲	(A,C) 的配對數	滿足骰子 六個面 數字皆不同
1	(1,0)	1種	不行
2	(2,0) \((1,1))	2種	不行
3	(3,0) \((2,1) \((1,2))	3種	不行

4	(40) (21) (12) (22)	4 TE	T'/-
4	$(4,0) \cdot (3,1) \cdot (1,3) \cdot (2,2)$	4種	不行
5	$(5,0)\cdot(4,1)\cdot(1,4)\cdot(3,2)\cdot(2,3)$	5種	不行
6	(6,0) \((5,1) \cdot(1,5) \cdot(4,2) \cdot(2,4) \cdot(3,3)	6種	可以
7	$(7,0)\cdot(6,1)\cdot(1,6)\cdot(5,2)\cdot(2,5)\cdot$ $(3,4)\cdot(4,3)$	7種	可以
8	$(8,0)\cdot(7,1)\cdot(1,7)\cdot(6,2)\cdot(2,6)\cdot$ $(3,5)\cdot(5,3)\cdot(4,4)$	8種	可以
9	$(9,0)\cdot(8,1)\cdot(1,8)\cdot(7,2)\cdot(2,7)\cdot$ $(6,3)\cdot(3,6)\cdot(4,5)\cdot(5,4)$	9種	可以
10	$(9,1)\cdot(1,9)\cdot(8,2)\cdot(2,8)\cdot(7,3)\cdot$ $(3,7)\cdot(6,4)\cdot(4,6))\cdot(5,5)$	9種	可以
11	$(9,2)\cdot(2,9)\cdot(8,3)\cdot(3,8)\cdot(7,4)\cdot$ $(4,7)\cdot(6,5)\cdot(5,6)$	8種	可以
12	$(9,3)\cdot(3,9)\cdot(8,4)\cdot(4,8)\cdot(7,5)\cdot$ $(5,7)\cdot(6,6)$	7種	可以
13	(9,4)\(4,9)\(8,5)\(5,8)\(7,6)\(6,7)	6種	可以
14	$(9,5)\cdot(5,9)\cdot(8,6)\cdot(6,8)\cdot(7,7)$	5種	不行
15	$(9,6) \cdot (6,9) \cdot (8,7) \cdot (7,8)$	4種	不行
16	(9,7) \cdot (7,9) \cdot (8,8)	3種	不行
17	(9,8) \((8,9))	2種	不行
18	(9,9)	1種	不行

- (七)由上表(A,C)的可能配對方式得知,(A,C)配對少於等於五種的,並不能滿足每個骰子每個面不同的要求,而(A,C)配對大於等於六種的,才足夠分配給每個骰子的六個面,才能滿足每個骰子六個面數字皆不同的要求。而每個骰子的個位數字及百位數字發生互相顛倒的狀況,也可以由上表看得出來,所以即驗証了我們以前的發現:每個骰子的六個面中,至少有兩個面的個位數與百位數字顛倒。
- (八)由上表亦可以知道當 $A+C \ge 14$ 及 $A+C \le 5$ 時,(A,C)的可能性低於 6 種,所以無法滿足骰子六個面數字皆不同的條件,所以 A+C 的範圍爲 $6 \le A+C \le 13$
- (十) P = (A1+C1) + (A2+C2) + (A3+C3) + (A4+C4) + (A5+C5) + Y,而 Y = 1 或 2 或 3,所以 P 最小為 40+1=41,最大為 55+3=58,而介

於 41 與 58 之間,又要爲 10 的倍數的數只有 50,所以 P 只能爲 50。 (十一) 現在設 Y=1,所以 B1+B2+B3+B4+B5=10,所以我們便拆成 0+1+2+3+4=10 50=(A1+C1)+(A2+C2)+(A3+C3)+(A4+C4)+(A5+C5)+1,所以 <math display="block">(A1+C1)+(A2+C2)+(A3+C3)+(A4+C4)+(A5+C5)=49, 49 可分爲 13+12+11+7+6 或

13+12+10+8+6 或

13+11+10+9+6 或

12+11+10+9+7或......,可任選一種組合,

隨意選出 49=13+11+10+9+6, 所以五個骰子以以上條件, 可設計如下:

	第一顆	第二顆	第三顆	第四顆	第五顆	
A+C	13	11	10	9	6	
В	0	1	2	3	4	
第一面	904	417	525	930	541	
第二面	409	516	426	336	640	
第三面	805	912	228	831	442	
第四面	508	318	921 237		541	
第五面	706	714	723	633	442	
第六面	607	219	624	435	343	

以上便是我們自己設計出的「魔術數學骰子」,任意擲出哪五面,其總和皆符合快速記算的公式:

- 1. 五個骰子個位數相加的和即爲五個骰子總和的十位數及個位數。
- 2. 50減去五個骰子個位數相加的和,即得五個骰子總和的千位數及百位數。例如:若擲出五面 $904 \times 516 \times 228 \times 633 \times 640$,個位相加爲 $21 \times 50 21 = 29$,故此五個三位數相加的和即爲 2921,而 904 + 516 + 228 + 633 + 640 = 2921,故相符合。

所以我們便成功的設計了「魔術數學骰子」!

三、 發現:若將上面假設的例子中的第五顆骰子的數字 640 換成 046,則個位數相加爲 27,50-27=23,則此五個三位數相加的和即爲 2327,而 904+516+228+633+46=2327,故亦能符合快速計算的公式,故得知五個子每一面數字的百位數字亦可爲 0,即是說也可以爲二位數,所以 A 的範圍可以是 $0 \le A \le 9$,只是每個骰子每個面的 三位數字,其範圍將可擴大爲二位數,而 (A+C) 的範圍亦可擴大爲 $5 \le A+C \le 13$, 因爲若 (A+C)=5,則 (A,C) 的可能有 (5,0)、(0,5)、(1,4)、(4,1)、(3,2)、(2,3) 變爲六種,增加了 (0,5) 這一種組合,即符合了每個骰子六個面數字皆不同的條件。

四、而 (A1+C1) + (A2+C2) + (A3+C3) + (A4+C4) + (A5+C5) 的最小可

能則變爲 5+6+7+8+9=35,最大可能依然爲 13+12+11+10+9=55,而 Y=1 或 2 或 3,而 P=(A1+C1)+(A2+C2)+(A3+C3)+(A4+C4)+(A5+C5)+Y,所以 P 的最小値爲 35+1=36,最大値依然爲 55+3=58,所以 P 可以爲 40 或 50。

五、 疑問:若把P設為60可以嗎?

* 研究討論:若不要求 $A1+C1\neq A2+C2\neq A3+C3\neq A4+C4\neq A5+C5$,而可允許 其中有相等的話,則 (A1+C1)+(A2+C2)+(A3+C3)+(A4+C4)+(A5+C5) 的最小値為 5+5+5+5+5=25,

最大値爲 13+13+13+13+13=65

而 P 的最小值為 25+1=26,最大值為 65+3=68,而 P 為 10的 倍數,所以 P 的可能為 $30 \cdot 40 \cdot 50 \cdot 60$,則「魔術數學骰子」的設計範圍便增大了。

如設 P=6~0, Y=2,即 B1+B2+B3+B4+B5=20,把 20 拆成 3+5+4+6+2,即五個骰子的十位數分別爲 $3 \cdot 5 \cdot 4 \cdot 6 \cdot 2$,而 60=(A1+C1)+(A2+C2)+(A3+C3)+(A4+C4)+(A5+C5)+2,則 (A1+C1)+(A2+C2)+(A3+C3)+(A4+C4)+(A5+C5)=58 而 $5 \le A+C \le 13$,故將 58 隨意拆成 13+12+11+10+12,故 $A1+C1=13 \cdot A2+C2=12 \cdot A3+C3=11 \cdot A4+C4=10 \cdot A5+C5=12$

	第一顆	第二顆	第三顆	第四顆	第五顆	
A+C	13	12	11	10	12	
В	3	5	4	6	2	
第一面	一面 538 953 942		565	329		
第二面	736	656	645	664	923	
第三面	439	359	744	169	428	
第四面	835	854	249	862	626	
第五面	637	458	843 466		725	
第六面	934	755	447	763	824	

所以若放寬條件,五個骰子的個位數與百位數字的和(A+C)不一定要全部不一樣,亦可設計出每個面不同的「魔術數學骰子」。

六、 問題:可以設計爲六個骰子或六個以上的骰子嗎?

* 研究討論:我們以以上的方式實際設計,的確也可以設計出六個以上的「魔術數學 骰子」,而且能放寬 $B1 \neq B2 \neq B3 \neq B4 \neq B5$的限制,即 B1, B2, B3....之間可允 許相等,而 Y 的範圍也跟著變大,所以 $0 \le Y \le 9$ 。例如:

假設條件:十個骰子、Y=4,即 B1+B2+B3+B4+B5+B6+B7+B8+B9+B10 =40,而 $5 \le A + C \le 13$,所以(A+C)的最小值為 $5 \times 10 = 50$,最大值為 $13 \times 10 = 130$,所以 P 的最小值是 50 + 0 = 50,最大值是 130 + 9 = 139,而 P 為 10 的位數,故 P=50,60,70,80,90,100,110,120 或 130。假設 P=80,則(A1+C1)+(A2+C2)+……+(A10+C10)=76,

	第一顆	第二顆	第三顆	第四顆	第五顆	第六顆	第七顆	第八顆	第九顆	第十顆
A+C	6	6	7	7	8	8	8	8	9	9
В	2	3	4	5	6	2	3	4	5	6
第一面	521	630	740	156	860	127	632	048	059	366
第二面	422	531	641	255	761	226	533	147	851	267
第三面	323	432	542	354	662	325	434	246	158	762
第四面	224	333	443	453	563	424	335	345	752	564
第五面	125	234	344	552	464	523	236	444	752	465
第六面	026	135	245	651	365	622	137	543	356	663

我們發現骰子的數目愈多,在遊戲時,不知道此規則的人所需的計算時愈長,愈 可突顯我們的快速,但骰子數愈多,也讓同學較不想參加這個遊戲。

捌、結論

「魔術數學骰子」以五個骰子爲方向的設計規則整理如下:

- 一、設每個骰子每個面的數爲 ABC,A 爲百位數,B 爲十位數,C 爲個位數,所擲出第一個骰子的數即爲 A1B1C1,所擲出第二個骰子的數即爲 A2B2C2,……以此類推。 $0 \le A \le 9$, $0 \le B \le 9$, $0 \le C \le 9$,所以有可能出現三位數二位數或一位數。
- 二、五個骰子的十位數相加 B1+B2+B3+B4+B5 爲 10 的倍數,爲避免所有骰子的某二面數字重複,故 B1 \neq B2 \neq B3 \neq B4 \neq B5,且 B1+B2+B3+B4+B5 只有三種可能: $10\cdot 20$ 或 30,設五個骰子的十位數相加所得爲 10 的倍數,設此 10 的倍數所進位到百位的數字=Y,所以 Y 只可能是 $1\cdot 2$ 或 $3\cdot$
- 三、設骰子擲出的五個數,其(個位數和)+(百位數和)+(十位數相加所進位到百位的數字 Y)=P,爲求遊戲中能方便且快速的計算,設 P 爲 10 的倍數,若嚴格規定 $A1+C1\neq A2+C2\neq A3+C3\neq A4+C4\neq A5+C5$,則 P 只能等於 40 或 50,若放寬限制,A1+C1,A2+C2,A3+C3,A4+C4,A5+C5 之間有可能相等的話,則 P 可以等於 30、40、50 或 60。
- 四、為拉大遊戲時與他人計算所需時間的差距,可以六個以上的骰子為設計方向,但骰子的數目以五、六個較好,因為這樣大家才不會因為數字太多而失去遊戲的意願,只要仿照以上的過程進行設計,都可以成功的設計出六個以上的「魔術數學骰子」哦!

玖、參考資料

科學實驗—小學生味科學—1998—風車圖書出版有限公司

評語

080401 國小組數學科 佳作

魔術數學骰子

由「科學實驗」書上的「魔術數學骰子」的遊戲中,發現「魔術骰子」背後隱藏的數學規律,並能自行設計骰子是一篇成功的作品。