中華民國第四十四屆中小學科學展覽會

作者說明書

高中組生物(生命科學)科

040718

臺北市立麗山高級中學

指導老師姓名

林獻升

郭瓊華

作者姓名

王湘瑜

但漢真

許筱瑜

中華民國第四十四屆中小學科學展覽 作品說明書

科 别:生物科

組 別:高中組

作品名稱:「溫度」對蓋斑鬥魚「生殖表現」有何影響?

關 鍵 詞:蓋斑鬥魚、溫度、生殖 (最多三個)

編 號:

目 錄

壹	、摘要	P.02
貢	、研究動機	P.03
參	、研究目的	P.05
肆	、研究設備與器材	P.06
伍	、研究方法	P.07
陸	、研究結果	P.08
柒	、討論	P.09
捌	、結論	P.11
玖	、參考資料	P.12
	表一、雄魚吐泡巢次數與雌魚產卵次數之比較表	P.13
	表二、每批卵孵化所需時間之比較表	P.14
	表三、泡巢出現間隔時間之比較表	P.15
	表四、卵出現間隔時間之比較表	P.16
	圖一、溫度影響蓋斑鬥魚生殖表現之實驗假說圖	P.17
	圖二、溫度影響蓋斑鬥魚生殖表現之實驗設計圖	P.18
	圖三、實驗數據測量方式之示意圖	P.19
	圖四、蓋班鬥魚雄魚及雌魚生殖表現之比較圖	P.20
	圖五、卵孵化所需時間之比較圖	P.21
	圖六、激素對雌、雄魚生殖之影響流程圖	P.22
	彩圖一至六	P.23

壹、摘要

自 2003 年 10 月 30 日至 2004 年 1 月 20 日止,研究不同溫度對於蓋斑鬥魚生殖表現之影響。自臺北縣水產種苗繁殖場取得 40 尾(北縣種苗場字第 0930000192 號),將環境溫度設為 20、25、30 ℃,每一個處理組,重複四次,每一次實驗,飼養雌、雄魚一對,控制光週期、食物量、密度等變因。結果顯示溫度提高,雄魚吐泡巢次數增加、泡巢間隔時間縮短;雌魚產卵次數增加、卵孵化時間縮短。在應用上,進行復育時可以將雌、雄魚飼養於較高溫度下,提高生殖表現,使其在非繁殖季的冬天可以繁殖下一代,生產更多仔魚。

貳、研究動機

登革熱存在於熱帶、亞熱帶地區,在 60 多個國家流行,使得近 20 億人口的生命受到威脅,病原體主要是由埃及斑蚊及白線斑蚊叮咬傳染。蚊蟲滋生是登革熱肆虐的主因,蚊子的幼蟲主要生活在積水容器中。有許多種魚類如大肚魚,蓋斑鬥魚可生活於此暫時積水容器內,並以孑孓爲食(張與廖,2002),故可用於防治登革熱。其中蓋斑鬥魚(Macropodus opercularis)爲本土魚類,比起外來種較不會對原生態環境造成危害,且其環境適應力較大肚魚佳。過去蓋斑鬥魚曾分布於台灣全島,棲息在河溝、池沼、稻田等靜水區域。近年來由於經濟快速成長,自然資源過度開發、人爲不當的土地利用等行爲破壞蓋斑鬥魚棲息地,再加上農藥普遍使用、外來種引進等,使得其臨生存危機而瀕臨絕種,造成其野外分布呈極小區域的點狀情形,於民國八十三年公告爲保育類野生動物(詹照欽,1996)。

要復育蓋斑鬥魚,必須從現存族群中大量繁殖,使族群數量上升至不易於滅絕。生物的繁殖會受到許多因素影響,如溫度、光週期、食物量、密度等,但其中溫度對魚類生殖影響比其他因素來的重要。如高承志於 1983 年研究 "非生殖季節期間溫度及光週期對尼羅種吳郭魚生殖之影響",得知溫度及光週期的變化是影響生物生殖週期的兩個重要環境因子,但對於不同生物會有不同的效應。光週期對高緯度動物的生殖而言,是一種重要指標。但低緯度地區的魚種,如蓋斑鬥魚等,因光週期變化不似高緯度地區那般明顯,因此影響較不顯著。而溫度是另一項重要影響因素,有一最適生殖溫度,並非完全正比相關。

故本研究想探討溫度如何影響蓋斑鬥魚的生殖表現,希望從實驗結果找出最適合蓋斑鬥魚繁殖的溫度範圍,藉著對溫度的控制達成非繁殖季(冬季)依然可以繁殖的目的,以生產供應魚苗,復育蓋斑鬥魚,增加族群數量,並應用於登革熱病媒蚊的幼蟲防制工作,降低疾病流行的危機。

本研究作品與教材單元相關性說明如下:

一、高中基礎生物全冊:

第二章 個體和族群 第四節 討論

第五章 生物圈形形色色的生物及其生活環境 第五節 淡水中的生物世界

第六章 人類和生物圈 第三節 人類對生態環境的衝擊

第六章 人類和生物圈 第六節 自然保育與環境保護

二、高中生命科學上冊:

第一章細 胞和生物體 第二節 細胞的生理

三、高中生命科學下冊:

第六章 動物的協調作用 第六節 動物的行為 第七章 動物的生殖與遺傳 第一節 動物的生殖

參、研究目的

一、核心問題

溫度如何影響蓋斑鬥魚的生殖表現?

二、實驗假說(圖一)

在一定的溫度範圍內(20~30℃),溫度提高,

- (一)對雄魚生殖影響為:
 - 1.增加吐泡巢的次數
 - 2.泡巢的維持時間縮短
 - 3.叶泡巢的間隔時間縮短
- (二)對雌魚的生殖影響為:
 - 1.增加產卵的次數
 - 2.產卵的間隔時間縮短
 - 3. 卵孵化所需的時間縮短

三、研究目的

- (一)研究溫度如何影響蓋斑鬥魚的生殖表現。
- (二)利用實驗成果,瞭解蓋斑鬥魚適合的繁殖溫度,藉著對溫度的控制達成冬季生產 魚苗的目的,以復育蓋斑鬥魚。

肆、研究設備與器材

一、實驗動物(詹照欽,1996):

- (一)分布:包括中國南部、海南島、中南半島及台灣。過去在台灣西部低海拔的平原緩流區、湖沼或池沼、稻田等域中,均可見其蹤跡。
- (二)特徵:雄魚叉形尾(彩圖一),雌魚凹形尾(彩圖二)。擁有迷器,迷器爲位於鰓上方,輔助呼吸的器官,可以生存在低溶氧量的水域中。
- (三)行為:在繁殖期間具有明顯領域性(黃等,1998),生殖過程如圖三所示,首先雄魚吐泡巢,並將泡巢之下水域視領域範圍,對雌魚展開求偶行為(彩圖三)。一開始雄魚會驅趕雌魚,再游至雌魚附近,對雌魚展鰭,然後雄魚、雌魚會互相展鰭。雄魚會用身體纏繞雌魚,使其腹部朝上,產出白色卵粒。之後雄魚會將受精卵置入泡巢中,雄魚會不斷吐泡以保護受精卵(彩圖四),並看顧卵孵化直至仔魚具備游泳能力爲止(彩圖五)。

二、實驗器材(彩圖六):

器材	用途	數量
飼育箱(37 cm×29 cm×19 cm)	實驗環境	20 箱
低溫培養箱(R-201)	實驗環境	1台
熱電偶溫度指示器(WISEWIND-0109)	測量溫度	1支
加溫棒(SY100)	設定水溫	8支
數位式計時器(KOKA 牌 KT-365)	設定光週期	1個
電子式游標尺	測量體長	1支
研鉢、杵	磨碎飼料	1組
紗網	防魚跳出	15 張
魚網	撈魚用	5 支
魚飼料(海豐牌)	餵魚用	數罐

伍、研究方法

一、實驗動物

2003 年 9 月 18 日從臺北縣水產種苗繁殖場取得 40 隻體型、年齡相似的養殖蓋斑鬥魚。雄魚體長 52-54 mm, 雌魚體長 46-48 mm。

二、飼養環境

將魚分雄、雌後放入 2 個大飼育箱中,適應實驗環境。之後隨機取雌、雄魚 1 對, 飼養於 1 個飼育箱內(37 cm×29 cm×19 cm),共有 12 個飼育箱(彩圖七),每個飼育箱控制 相同的光週期、食物量、密度。

三、實驗設計

雄魚以泡巢總次數、每次泡巢維持的時間及兩次吐泡巢間隔的時間,當作影響指標。而雌魚以產卵總次數、兩次產卵的間隔時間及卵孵化所需時間,當作影響指標。

實驗設計(圖二)爲高溫組(30°C)、中溫組(25°C)、低溫組(20°C)各設置 4 個實驗缸(編號爲 1~12 缸),每個實驗缸雌、雄各 1 隻。高溫組、中溫組放入加溫棒(彩圖七),加熱水溫恆定於 30 ± 1 °C 及 25 ± 1 °C,低溫組因室外溫度較設定溫度高,因此放入設定爲 20 ± 1 °C的恆溫箱中。三個實驗組光週期設爲 12L/12D(彩圖八)。

四、測量內容

每天 0800、1200、1700 至實驗室觀察生殖情形,記錄內容包括(圖三):

- (一) 雄魚泡巢次數:實驗期間叶泡巢總次數。
- (二) 泡巢維持時間:泡巢出現至卵產下經過的時間。
- (三)泡巢間隔時間:兩次吐泡巢間隔的時間。
- (四) 雌魚產卵次數:實驗期間產卵總次數。
- (五)產卵間隔時間:兩次產卵間隔的時間。
- (六)孵化所需時間:卵產下至魚孵出經過的時間。

五、資料分析

原始資料記錄於自製表格,並以 Microsoft Excel 建檔,使用 Sigma Stat (1.0 版)統計軟體,進行結果之統計分析,再利用 Sigma Plot (8.0 版)繪圖軟體繪製成結果圖形。

以變方分析(Analysis of Variance, ANOVA)比較三個溫度組數據是否有顯著差異,若有顯著差異,再以 Student-Newman-Keul 檢定法(SNK test)進行兩組之間的比較,來瞭解不同溫度組的處理對於蓋斑鬥魚生殖的表現是否真的有差異。

陸、研究結果

一、溫度對雄魚吐泡巢次數之影響

自 2003 年 10 月 30 日至 2004 年 1 月 20 日止,雄魚吐泡巢次數,高溫組平均爲 17.0 ± 4.3 次(\overline{X} ± SD),中溫組 12.3 ± 3.9 次,低溫組 4.3 ± 3.6 次(表一)。由結果可知吐泡 巢總次數以高溫組最多,中溫組次之,低溫組最少(圖四)。將數據進行變異數分析 (ANOVA test),結果三組之間具有顯著差異(F_2 9=10.7,p < 0.05)。使用 Student-Newman-Keuls Test做事後比較,兩兩比較其差異,結果顯示高溫與低溫兩組之間 有顯著差異(p<0.05),中溫與低溫兩組之間,也有顯著差異(p<0.05),但高溫與中溫 組之間,並無顯著差異(p>0.05)。

二、溫度對雌魚產卵次數之影響

實驗期間雌魚的產卵次數,高溫組平均爲 7.0 ± 3.6 次,中溫組 1.8 ± 1.7 次,低溫組 無產卵記錄(表一)。由結果可知產卵總次數,以高溫組最多次,中溫組次之(圖四)。將數據統計分析,結果三組之間具有顯著差異($F_{2.9}=10.2$,p<0.05)。此外,高溫與低溫組做比較,兩者有顯著差異,高溫與中溫組做比較,也有顯著差異,但中溫與低溫組做比較,兩者無顯著差異。

三、溫度對卵孵化時間之影響

實驗期間卵孵化所需之時間,高溫組共記錄到 28 筆數據,中溫組 6 筆,低溫組沒有產卵紀錄。記算平均卵的孵化時數,高溫組爲 22.8 \pm 3.6 小時,中溫組 34.3 \pm 10.4 小時 (表二)。由結果可知卵的孵化時間而言,以中溫組最長,高溫組次之(圖五)。將數據進行 t 檢定,顯示兩組之間具顯著差異(t=-5.28,df=32,p<0.05)。由分析的結果得知,20℃時雌魚不產卵,當溫度越高,卵孵化所需的時間就越短。

四、溫度對雄魚叶泡巢間隔時間之影響

實驗期間高溫組共記錄到 54 筆數據,中溫組共記錄到 40 筆,低溫組 11 筆。計算平均吐泡間隔時間,高溫組爲 54.0 \pm 46.0 小時,中溫組 61.6 \pm 71.5 小時,低溫組 118.7 \pm 162.0 小時(表三)。由結果可知高溫組最短,中溫組次之,低溫組最長。

五、溫度對雌魚產卵間隔時間之影響

實驗期間高溫組共有 22 筆數據,中溫組 4 筆,低溫組無產卵紀錄。平均雌魚產卵的間隔時數高溫組爲 165.0 ± 66.4 小時,中溫組 128 ± 47.3 小時(表四),由結果可知以高溫組最長,中溫組次之。

柒、討論

一、溫度對雄魚吐泡巢次數之影響

由結果得知雄魚吐泡巢次數會隨溫度上升而增加,造成此結果可能是溫度提高會刺激雄魚的下視丘,使其分泌促性腺激素釋素,再刺激腦下垂體,使其分泌促性腺激素,經由血液運送至睪丸,使其分泌睪固酮,造成雄魚的生殖腺發育而出現第二性徵,並促成精子形成而排精(圖六)。而雄魚體內和生殖有關的酵素活性又會受到一定範圍的溫度影響,若超過此一範圍,溫度對其影響可能降低,甚至出現反效果。

高承志於 1983 年指出水溫對於熱帶魚種的影響是非常顯著,其生殖在低溫時受到抑制,在高溫時則相對地趨於活躍。蓋斑鬥魚爲熱帶魚種,本實驗與其研究結果相符合。

二、溫度對雌魚產卵次數之影響

實驗結果低溫組 20℃在實驗過程中完全無產卵,推測其產卵所需之最低溫度,應高於 20℃,當溫度超過此一臨界值,雌魚體內酵素呈活化態或卵巢開始發育,此時雌魚才出現產卵行爲。此外本實驗結果溫度越高其產卵次數越多,推測可能是因溫度提高,會刺激雌魚的下視丘,使其分泌促性腺激素釋素,再刺激雌魚的腦下垂體,使其分泌促性腺激素,並經由血液運送到雌魚的卵巢,使其分泌睪固酮,睪固酮再轉換成雌二醇,經由血液運輸到肝臟,使肝臟分泌卵黃前質,卵黃前質再進到卵細胞,並累積而形成卵黃。另外,卵巢也受到促性腺激素影響而分泌黃體素,使卵細胞成熟,產生成熟誘導類固醇,刺激雌魚排卵,再受到前列腺素影響而使雌魚產卵(圖六)。

何和蔡於 1999 年指出水溫對雌魚的影響,在產卵前期和產卵期間表現的特別明顯。 水溫升高,將會使雌魚性腺成熟的速度加快,但魚類性成熟與產卵有一定適溫範圍,當 溫度低於或高於此範圍,性腺發育就會受到抑制,即使成熟也無法產卵。蓋斑鬥魚雌魚 的產卵次數隨著一定範圍溫度的上升而增加,但是當溫度下降到此一範圍以外時,雌魚 便會停止產卵,本實驗結果與文獻相符合。

本實驗發現蓋斑鬥魚雌魚的生殖行爲發生在 $25\sim30^{\circ}$ °、而在 20° °已時雌魚則停止產 卵。與吳郭魚的生殖進行比較,發現吳郭魚生殖活動發生在水溫高於 $20\sim30^{\circ}$ °、,在低溫情況下,成熟的卵巢則會發生退化現象。而其實驗結果發現吳郭魚的卵巢發育在 16° °已時被抑制,在 23° °C時發育最佳,在 30° °C時則發育不甚顯著(高,1983),與本實驗蓋斑鬥魚雌魚在 20° ℃時產卵受到抑制,而在 30° °C時產卵次數爲最多有所差異,可能是魚類本身原來生存環境的差異所致。

三、溫度對卵孵化所需時間之影響

溫度越高,卵孵化時間就越短,原因可能是因在溫度較高環境下,卵內與發育相關的酵素活性提高,造成發育速度加快,其孵化所需時間也會較短。蓋斑鬥魚受精卵的孵化時間約為 24~30 小時(黃等,1998),但也有資料指出(中村幸昭,2000)其孵化所需時間約為 2~3 天。而本實驗結果則發現在 30℃時受精卵孵化所需時間平均為 22.8 小時,中溫組為 34.3 小時,將溫度提高,能夠縮短卵孵化所需的時間。

四、溫度對雄魚叶泡巢間隔時數之影響

溫度越高,雄魚吐泡巢間隔時間就越短,但本實驗數據差距極大,造成此可能原因 爲蓋斑鬥魚的生殖具週期性,在生殖期高峰,生殖行爲較頻繁,此時雄魚吐泡巢間隔時 數會比較短,當生殖期高峰過後,其生殖頻率降低,甚或停止,此時雄魚吐泡巢的間隔 時間就會拉長,使得實驗數距間的差距拉大,造成如表三中的實驗數據落差很大。

五、溫度對「雌魚產卵間隔時數」之影響

溫度越高,雌魚產卵的間隔時數爲高溫組最長,與假設不符,造成此可能原因爲中溫組的雌魚在實驗過程中,只有2對產卵,4筆數據,高溫組4對魚都有產卵,具有多筆數據,兩組數據數量差距大。另一個可能是因高溫組產卵次數較中溫組多,消耗較多的能量,因此中間需要較長的間隔時間來爲下次產卵儲存足夠的能量,而中溫組產卵次數較少,能量消耗沒有高溫組來的大,因此其產卵間隔時間較高溫組來的短。

六、實驗成果應用

國際環境保護意識漸趨於「生物防治法」,也就是找出此病蟲害的天敵,然後釋放於病蟲害猖獗之處,將病蟲殺滅,不建議使用大量殺蟲劑撲殺病蟲,以免造成環境二次污染。而且生物防制的害蟲天敵是取自於原本的生態系統,因此不會造成原生態系統的生態浩劫。魚類中有許多會吃蚊子的幼蟲,比較適合居家飼養的,其中蓋斑鬥魚可以說是蚊子幼蟲的最大天敵。使用蓋斑鬥魚防治登革熱的優點包括孑孓可生存的地方,蓋斑鬥魚也可生存,且蓋斑鬥魚可耐低溫,而大肚魚太冷會死亡。蓋斑鬥魚是原本生態系統的一份子,不會破壞原生態。且蓋斑鬥魚只要放一到數尾,就可徹底防止孑孓的生長。

本實驗目的,在找出蓋斑鬥魚最適繁殖的溫度,以進一步地復育蓋斑鬥魚。從文獻中得知(張,2002)蓋斑鬥魚繁殖季節爲每年的 4~10 月,在繁殖季可配對育雛多達六次。由本研究結果得知,溫度提高可使蓋斑鬥魚在冬季非繁殖季也能生殖,且可提高其繁殖次數。因此,想要有效達到繁殖蓋斑鬥魚的目的,可以在秋冬季溫度降低時,將種魚置於較高溫度下,促進其生殖,增加仔魚數量,以解決其滅絕危機,並應用於登革熱的病媒致幼蟲防制工作,降低疾病流行的危機。

捌、結論

本實驗結論爲,在一定的溫度範圍內(20~30℃):

- 一、溫度提高,雄魚的吐泡巢總次數及雌魚的產卵總次數會增加。
- 二、溫度提高,卵的孵化時間會縮短。
- 三、溫度提高,可以增加蓋斑鬥魚的生殖表現,繁殖更多的仔魚。

玖、參考資料

何大仁、蔡厚才 • 魚類行爲學。臺北 • 水產出版社 • 116-119、199-213, 1999。

高承志 • 非生殖季節期間溫度及光週期對尼羅種吳郭魚生殖之影響。

國立中山大學海洋研究所碩士論文 • 高雄 • 1982 。

張靜茹、廖運志•大自然的捕蚊高手—蓋斑鬥魚重回溪流。

光華雜誌 10:68-71,2002。

黃玉華、李宗翰、廖運志、尤少彬◆蓋斑鬥魚生殖行爲之觀察。生物科學41:21-28, 1998。

詹照欽 • 保育類野生動物圖鑑。南投 • 台灣省特有生物研究保育中心 • 276-277 • 1996。

郭欽明 • http://www.sinica.edu.tw/zool/chinese/kuo.htm。

中村幸昭著、宋碧華譯・魚類愛情物語。臺北・大樹文化出版社・165-170・2000。

表一、不同溫度下,雄魚吐泡巢次數與雌魚產卵次數之比較表。

~ — —		A A A A	(30	$^{\circ}\mathbb{C}$)		中溫組(25℃)							低溫組(20℃)				
(魚缸編號)	1	2	3	4	$\overline{X} \pm SD$	5	6	7	8	$\overline{X} \pm SD$	9	10	11	12	$\overline{X} \pm SD$		
泡巢出現 次數	13	17	23	15	^a 17.0±4.3	14	12	7	16	^a 12.3±3.9	9	1	2	5	⁶ 4.3±3.6		
魚卵出現 次數	2	9	10	7	^a 7.0±3.6	4	2	1	0	^b 1.8±1.7	0	0	0	0	0.0±0.0		

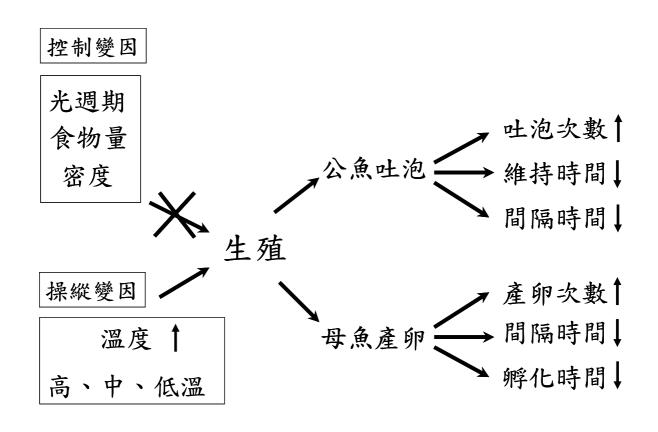
^{*}數字上相同英文字母者表示之間無顯著差異,不同者表示之間具顯著差異

表二、不同溫度下,每批卵孵化所需時間之比較表。

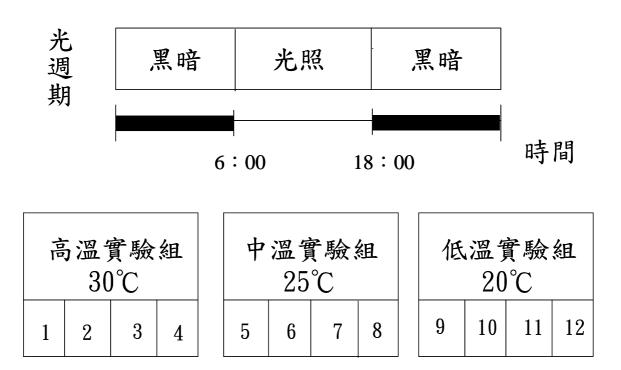
泡巢	声	温組	(30℃	2)	中	溫組((25°C))	低	低溫組(20℃)				
編號	1	2	3	4	5	6	7	8	9	10	11	12		
1	24	17	24	27	43	28								
2	24	24	24	24	39	24								
3		20	24	24	48									
4		24	20	24	24									
5		24	24	24										
6		24	24	20										
7		24	24	24										
8		20	20											
9		24	24											
10			29											
$\overline{X} \pm SD$		^a 23.3	3±2.4			^b 34.3	±10.4			-	-			

^{*}記錄時間以小時爲單位。

表三、不同溫度下,泡巢出現間隔時間之比較表。

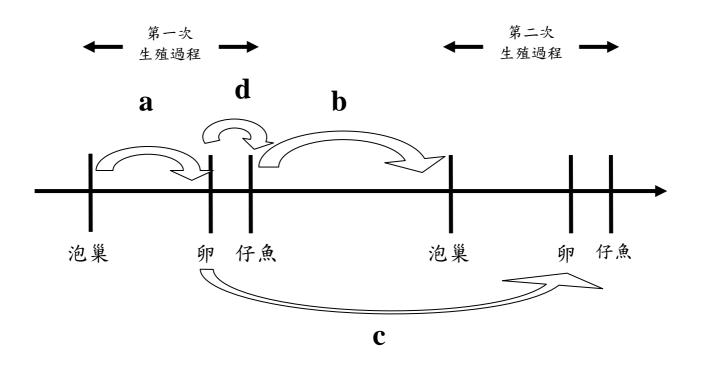

記錄	高	温組	(30°C	()	中	溫組((25°C))		低溫組(20℃)				
編 號	1	2	3	4	 5	6	7	8	-	9	10	11	12	
1	24	20	33	24	52	33	33	5		4		284	236	
2	19	19	48	48	15	105	9	57]	.40			5	
3	19	76	19	72	43	39	9	24		5			4	
4	5	24	9	57	57	24	19	68		4			504	
5	5	29	9	28	24	20	417	19		72				
6	5	5	48	9	24	24		48		48				
7	144	44	52	72	144	144		9						
8	268	57	129	57	33	63		9						
9	52	48	33	72	111	116		48						
10		72	72	68	120	72		20						
11		144	52	48	72			168						
12		48	124	92	48			96						
13		48	76	48				24						
14		48	124											
15			48											
16			24											
17			20											
18			48											
$\overline{X} \pm SD$		54.0	±46.0			61.6	±71.5				118.7	±162.0)	

^{*}記錄時間以「小時」爲單位。


表四、不同溫度下,卵出現間隔時間之比較表。

記錄	高	溫組	(30°C	2)	中	溫組((25°C))	低溫組(20℃)				
編號	1	2	3	4	5	6	7	8	9	10	11	12	
1	216	135	183	101	183	68							
2		283	48	120	136								
3		120	124	168	125								
4		183	168	168									
5		144	192										
6		240	336										
7		120	124										
8			168										
9			216										
10			72										
$\overline{X} \pm SD$		165.0	±66.4			128±	47.3			-	-		

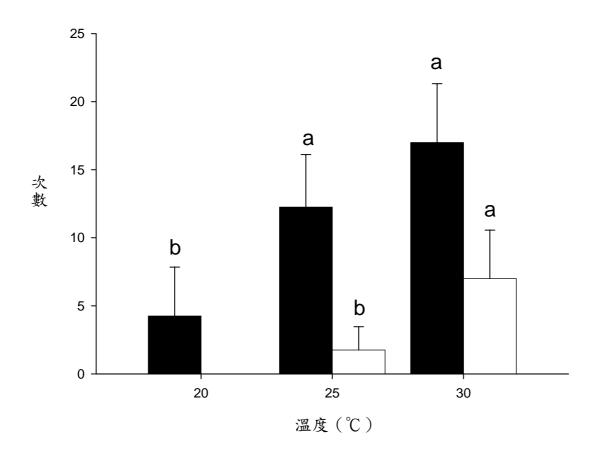
^{*}記錄時間以「小時」爲單位



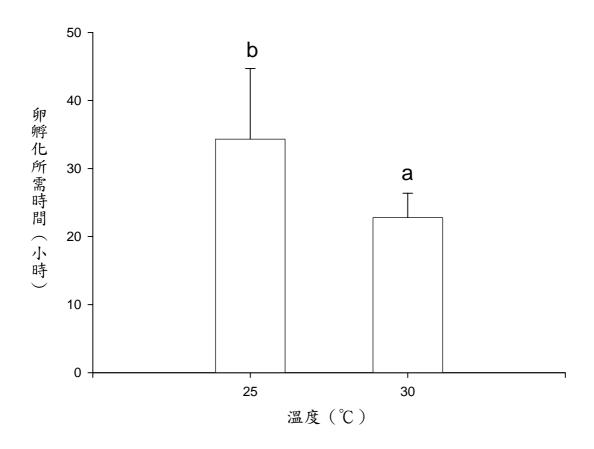
圖一、溫度影響蓋斑鬥魚生殖表現之實驗假說圖。

圖二、溫度影響蓋斑鬥魚生殖表現之實驗設計圖。

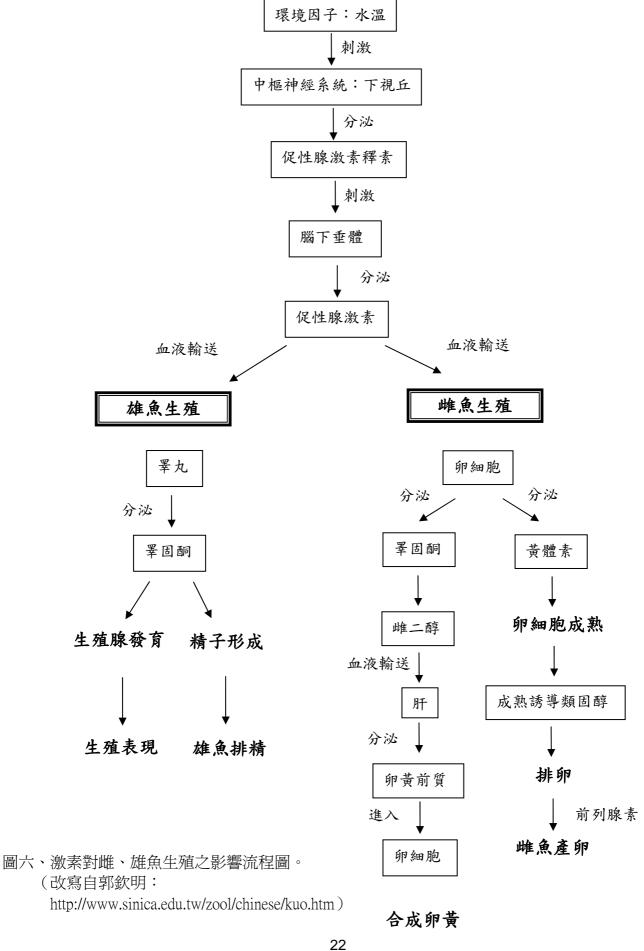
蓋斑鬥魚的生殖過程


圖三、實驗數據測量方式之示意圖。數據記錄說明如下:

a.泡巢維持時間:泡巢出現至卵產下經過的時間。


b.泡巢間隔時間:兩次泡巢間隔的時間。

c.產卵間隔時間:兩次產卵間隔的時間。


d.孵化所需時間:卵產下至仔魚孵出經過的時間。

圖四、不同溫度下,蓋班鬥魚雄魚及雌魚生殖表現之比較圖。(黑色柱狀圖表示雄魚吐泡巢次數之比較;白色柱狀圖表示雌魚產卵次數之比較)

圖五、不同溫度下,卵孵化所需時間之比較圖。

彩圖一:雄魚

彩圖三:雄魚吐泡巢


彩圖五: 仔魚孵出

彩圖七:實驗缸與加溫棒

彩圖二:雌魚

彩圖四:雄魚護卵

彩圖六:實驗器材

彩圖八:計時器

評語

040718 高中組生物科

溫度對蓋斑鬥魚生殖表現有何影響?

- 1. 記錄詳盡。
- 2. 實驗樣品數因研究過程中死亡,致結果之統計分析不完整。