中華民國第四十四屆中小學科學展覽會

作品說明書

國中組 物理科

030112

臺中市立育英國民中學

指導老師姓名

蔡明致

林美君

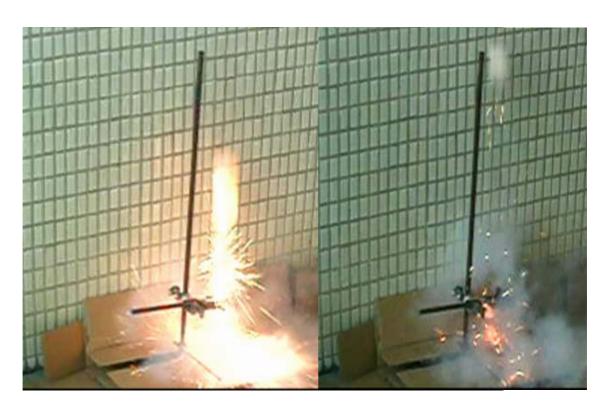
作者姓名

洪敬鈞

曾名鉉

張凱維

蔡侑均


中華民國第44屆中小學科學展覽會作品說明書

科 别:物理科

組 别:國中組

作品名稱: 飛 5、 飛 蛋 -----古代飄浮蛋解密之一

關鍵詞: 浮力、 反作用力

編 號:

飛 5、飛 蛋 ----古代飄浮蛋解密之一

一、摘要

Discovery 頻道報導:早在西元前 2 世紀,漢代淮南王劉安的《淮南子·外篇·萬畢術》就有「艾火令雞子飛」的記載,注:「取雞子,去其汁,燃艾火,內(納)空卵中,疾風因舉之飛。」去年(92年)的國小科展作品證實 Discovery 頻道的報導有誤,空蛋殼用線香的熱氣浮力是飄不起來的。但是「……疾風因舉之飛。」這句話讓我們想到:利用熱氣球的熱氣浮力並不能造成「疾風」;而水火箭或是火藥的噴射「疾風」,也就是作用力與反作用力原理,應可以造成蛋殼的噴射。經過我們的研究結果發現:

- 一、 燃燒產生熱氣的浮力,連蛋膜都無法漂浮,更不用說使蛋殼飛起來。甚至高溫還會使得蛋膜焦黑萎縮。可見熱氣球原理無法使用。
- 二、 利用自製小型密閉水火箭的噴射原理,測試要使 6 公克的蛋殼噴射,至少要 1.92 個大氣壓才能射高 2 公分。但是蛋殼灌氣加壓至 1.28 個大氣壓起,就有可能會爆裂,更不可能彈射近一人身高的高度。
- 三、 為避免壓力過高造成蛋殼爆裂,接著我們改用火藥噴射原理。發現:
 - 1. 噴射口如果大於1.2公分則噴氣力量分散,無法噴射起飛。
 - 火藥量若超過 0.4 公克,所產生的氣壓會造成蛋殼爆裂。而單純利用 火藥噴射,就如同發射空的水火箭,大都噴射不到 10 公分高。
 - 3. 若加入砂子一起噴射,則 0.36 克的火藥量以及 1.5 克的砂子並在噴射口塞上 0.03 克的棉花,所產生的反作用力及噴射效果最佳,蛋殼彈升的最高紀錄曾數次達 1 公尺以上的噴射高度,而且砂子在蛋殼底部維持重心,更容易造成垂直的起落。

由本實驗結果推論:古書中所敘述的「取雞子,去其汁,燃艾火,……疾風 因舉之飛。」應是最早的火箭原理的應用,而非應用熱氣球原理的開創者。本實 驗設計正是提供學生引起動機學習牛第三運動定律的最佳探究教材,是「作用力 與反作用力」的最佳實驗例證,值得推廣!也證明古代中國科學文明的昌盛!

二、研究動機

我們在欣賞去年科展作品時,看到一篇關於 Discovery 頻道報導有關飛蛋的實驗,內容是描述古代中國小孩子的童玩,只有用一根香就讓蛋飛了起來。但去年的

科展作品證實 Discovery 的報導有誤,空蛋殼用線香的熱氣浮力是飛不起來的。於是我們便查詢了相關的書籍,發現早在西元前2世紀,漢代淮南王劉安的《淮南子·外篇·萬畢術》就有「艾火令雞子飛」的記載,注:「取雞子,去其汁,燃艾火,內(納)空卵中,疾風因舉之飛。」

這件事引起新聞報導的轟動,也引起我們極大的挑戰興趣。我們很好奇既然用熱氣浮力飛不起來,那運用其他方法呢?特別是古書記載的這句話「……疾風因舉之飛。」於是我們想到利用熱氣球的熱氣浮力並不能造成疾風,以及水火箭或是火藥噴射的作用力與反作用力原理,是不是可以造成蛋殼的噴射呢?我們為了驗證這一連串的想法,於是展開了這次的研究。

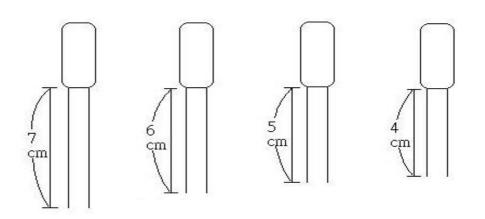
三、研究目的

- (一)探討熱氣球的熱氣浮力原理是否能讓蛋膜飄起來。
 - 1. 探討加熱溫度對蛋膜飄浮的影響。
 - 2. 探討蛋殼重量對蛋膜飄浮的影響。
- (二)探討利用空氣壓力將水射出(水火箭的反作用力原理)是否能讓蛋噴射出去。

 - 2. 分析空蛋殼所能承受的壓力數值與蛋殼噴射距離的關係。
 - 3. 將上述兩項的數據加以比對並證明空蛋殼是否能飛。
- (三)探討用火藥噴射的反作用力原理是否能使蛋殼飛起來。
 - 1.分析火藥重量對於蛋殼噴射距離的影響。
 - 2. 分析砂子重量對於蛋殼噴射距離的影響。
 - 3.分析蛋殼口徑(噴嘴)的大小對於蛋殼噴射距離的影響。
 - 4.分析棉花重量對於蛋殼噴射距離的影響。
 - 5. 改良噴射口封包方式對於蛋殼噴射距離的影響。

四、研究設備及器材

- (一)探討熱氣球的熱氣浮力原理是否能讓蛋膜飄起來。生雞蛋、生鴨蛋、蠟燭、艾草、打火機、線香、酒精燈、陳年醋
- (二)探討利用空氣壓力將水射出(水火箭的反作用力原理)是否能讓蛋噴射出去。 輕型水火箭:針筒、滴管、泡棉膠、快乾膠。


空蛋殼:針筒、滴管、剪刀、生鴨蛋。

(三)探討用火藥噴射的反作用力是否能使蛋殼飛起來。

黑火藥、鐵沙、砂子、空蛋殼、火藥引線、棉花、線香、剪刀、針筒

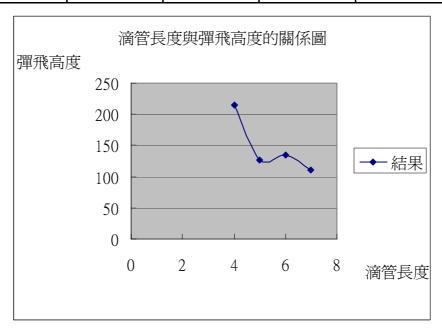
五、研究過程或方法

- (一) 探討熱氣球的熱氣浮力原理是否能讓蛋膜飄起來。
 - 1. 先將蛋其內容物挖空,所刺的洞皆在蛋的尖銳部,之後把蛋放入醋中取出蛋膜,再利用線香、酒精燈產生的熱氣使其膨脹,後飛起來。
 - 2. 先將蛋其內容物挖空,所刺的洞皆在蛋的尖銳部,之後把蛋放入鹽酸中溶解蛋殼取蛋膜,並將蛋膜上抹油保濕,後以酒精燈隔鐵管傳熱讓蛋膜膨脹飛起。
- (二)探討利用空氣或水壓力射出(水火箭)。
 - 1. 製作輕型水火箭時,將低管忽略頭部,並將軟管部分裁下後,剩下頭部及部分軟管作為單位,分成7、6、5、4共四種。(如下圖)

我們在測體積時,是將整根(包括頭部)一起計算的,再三 個三個取平均值。

- 2.分析自製輕型水火箭灌入空氣彈飛後所能承受的壓力數值、重量的分布和其 是否能飛的關係。
 - (1)截取低管頭部部分製作出輕型水火箭,並套至針筒。
 - (2)灌入定量氣體,以尋找將輕型水火箭彈飛的最小壓力。
 - (3)在輕型水火箭上黏上定量黏土,使其重量改變。

- (4)將改變重量後的輕型水火箭找出使其彈飛的最小壓力。
- 3. 分析空蛋殼所能承受的壓力數值和其是否能飛的關係。
 - (1)取一小部分的滴管的軟管部分,固定至空蛋殼,以利安裝在針筒上。
 - (2)灌入定量氣體,以尋找空蛋殼承受的最大壓力
- 4.上述兩項的數據加以比對並證明空蛋殼是否能飛。
 - (1)完的數據資料加以比對,將會有兩種情形:
 - A. 水火箭彈飛的最小壓力大於空蛋殼所承受的最大壓力的話,表示將輕型水 火箭彈飛的最小壓力代入空蛋殼,則空蛋殼在未飛起時就已破掉。
 - B. 輕型水火箭彈飛的最小壓力小於空蛋殼所承受的最大壓力的話,表示空蛋 殼有飛起的可能;則我們會再增加壓力使其飛起。
- (三)探討用火藥噴射的反作用力是否能使蛋殼飛起來。
 - 1. 將配好的火藥放在衛生紙上,再用空蛋殼蓋上,讓火藥完全在蛋殼內,之後 再封好洞口;之後插入引線,即可點燃發射。
 - 2. 經討論後,改用將配好的火藥放在鋁箔紙上並放上引線,將其捲成長條狀並 封住一邊使引線在外,以白膠固定在蛋內,即可點燃發射。
 - 經討論後,改用將配好的火藥加入少許蛋白,使其混合,再倒入空蛋殼並置入引線,之後烘乾即可點燃發射。
 - 4.經討論後,改用在空蛋殼內預留一些蛋白,再灑入火藥鋪在表面,再以酒精 燈在噴嘴下方燃燒發射。
 - 5.經討論後,改用將沖天炮多餘的塑膠剪掉,使沖天炮的噴口在蛋殼外,以泡棉膠固定在蛋內,即可點燃發射。
 - 6.經討論後,改用將配好的火藥及引線包在衛生紙內與砂子一起放入空蛋殼, 再置入棉花以防砂子漏出,之後即可點燃引線發射。
 - 7. 防止砂子下漏的棉花,大約 0.03g~0.04g 即可,太多會使砂子無法外漏而使蛋殼爆炸。
- 8. 同步驟7. 但因棉花不易控制封口的緊密程度,所以改用剪裁鋁箔紙用白膠將 蛋殼噴射口封口,在白膠未乾之前點燃引線發射。


六、研究結果

- (一) 探討熱氣球原理讓蛋膜飄起來。
 - 1. 蛋膜平均重量為 0. 265g。
 - 2. 蛋殼平均重量為 7.5g。
 - 3. 測得正常酒精燈火燄的溫度為 463 度。
 - 4. 測得使用自製集熱器的火焰溫度為 751 度。
 - 5. 以煙囪的原理,將蛋膜與酒精燈的距離拉長讓蛋膜不容易被火焰燒毀,測得 上頭火焰溫度為 376 度。
 - 6. 但是無論溫度高低均無法使蛋膜升高。

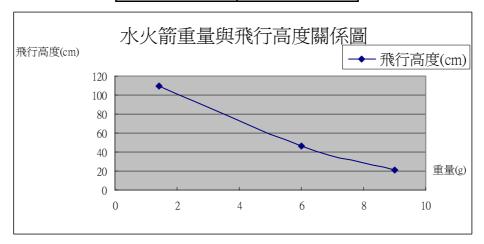
火焰温度(°C)	376	463	751
飄升高度(cm)	0.	0.	0.

- (二)探討利用空氣或水壓力射出(水火箭)。
 - 1. 實驗測得: $7 \, \text{cm}$ 的容量為 $13 \, \text{cm}^2$, $6 \, \text{cm}$ 的容量為 $12.5 \, \text{cm}^2$, $5 \, \text{cm}$ 的容量為 $12.3 \, \text{cm}^2$, $4 \, \text{cm}$ 的容量為 $11.8 \, \text{cm}^2$, $0.5 \, \text{cm}$ 的容量為 $10.8 \, \text{cm}^2$ 。
 - (1)分析自製輕型水火箭灌入空氣量 15 cc與彈飛高度的關係。

滴管長度	4cm	5cm	6cm	7cm
彈飛高度	215	126	134	110

圖一、熱氣球原理之集熱器測試

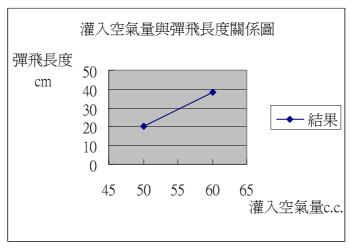
圖二、熱氣球原理之煙囪裝置測試

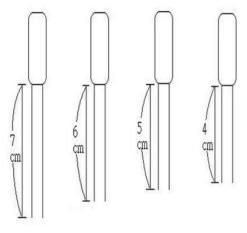


由上圖可知,表示滴管長度愈長,則彈飛高度愈低;相反的,滴管長度愈短,則彈飛高度愈高。

2. 分析自製輕型 7cm 水火箭重量的分佈和其是否能飛的關係。

當灌入空氣量為 15c. c. 時(壓力約 2.15T),添加黏土使其重量作為實驗變因所得的結果。


水火箭重量(g)	飛行高度(cm)
1.43	110
6	46
9	21


由上圖可知,當水火箭重量愈重時,飛行高度愈低;相反的,水火箭重量愈輕時,飛行高度愈高。

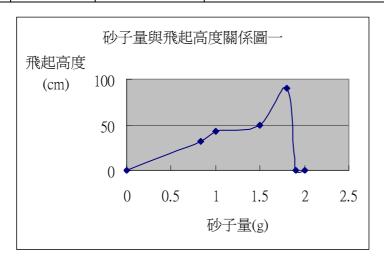
3. 分析空蛋殼所能承受的壓力數值和其是否能飛的關係。

蛋的容量(c.c.)	灌入空氣量(c.c.)	彈飛長度
65	50	平均彈飛 20cm
65	60	平均彈飛 38.3cm

圖三、自製輕型水火箭原理之測試

我們在測體積時,是將整根(包括頭部)一起計算的,再三個三個取平均值。

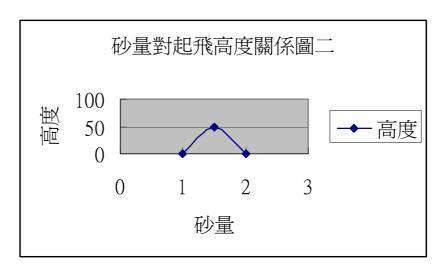
圖四、水火箭原理之測定



由上圖可知,蛋的容量相同時,則灌入不同空氣量會影響彈飛的長度。但是灌入 50c. c. 以上的空氣,即有可能造成蛋殼爆裂,也就是無法以高壓彈射原理將蛋殼射高 100 公分以上。因此排除密閉水火箭原理的使用。

- (三) 探討使用火藥原理使蛋殼噴射飛行。
 - 1. 當火藥量及棉花量固定時,砂子量作變因所得的數據結果。

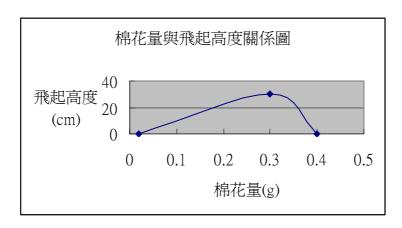
(1)砂子量不同的比較之一


火藥量(g)	砂子量(g)	噴射距離(cm)	結果
0.29	0	0	炸碎
0.29	0.83	32	飛起
0.29	1	43	飛起 43cm, 剩下 0.05g 砂子
0.29	1.5	50	飛起 50cm, 剩下 0.47g 砂子
0.29	1.8	90	飛起 90cm, 但下半部破裂
0.29	1.9	0	炸碎
0.29	2	0	炸碎

由上圖可知能使蛋飛起的砂子量,介於 1g~1.8g,超過此範圍都會使蛋殼破碎或飛不高。推測是因為砂子具有緩衝爆炸衝擊力的功能,所以砂子太少會因為爆炸力道直接衝擊蛋殼而碎裂。但是太多則又在噴射口造成阻塞,也會使蛋殼破裂。唯有適當的砂子量,在火藥爆炸噴射砂子時,提供蛋殼足夠的反作用力,就能跳高彈升。

(2)砂子量不同的比較之二

火藥量(g)	砂子量(g)	棉花量(g)	結果
0.36	1	0.04	炸碎
0.36	1.5	0.04	飛起 50cm, 剩下砂子 0.25g
0.36	2	0.04	炸碎



由實驗可知 1.5g 砂子量的噴射效果最為適當。

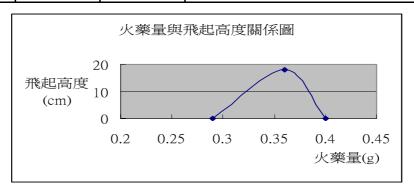
2. 當火藥量及砂子量固定時,棉花量作變因所得的數據結果。

(1)棉花量不同的比較。

火藥量	砂子量	棉花量	結果
0.29	1.5	0.03	飛起 30cm, 剩下砂子 0.51g
0.29	1.5	0.04	炸碎

少於 0.03g 的棉花塞不住蛋孔,但多於 0.03g 就開始爆炸了。

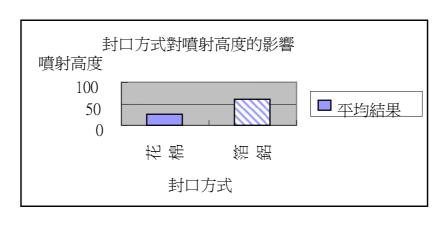
3. 當火藥量及棉花量固定時,鐵沙量作變因所得的數據結果。

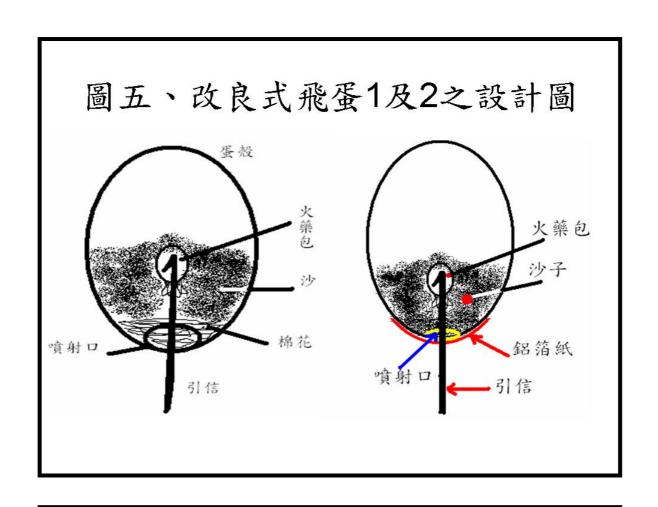

(1) 鐵沙量不同的比較。

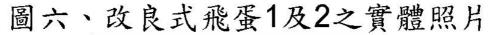
火藥量	鐵沙量	結果
0.29	1.5	炸碎
0.29	2	炸碎

由實驗結果發現相同重量的鐵沙不適合用來做飛蛋的填塞物。

4. 當砂子量及棉花量固定時,火藥量作變因所得的數據結果。

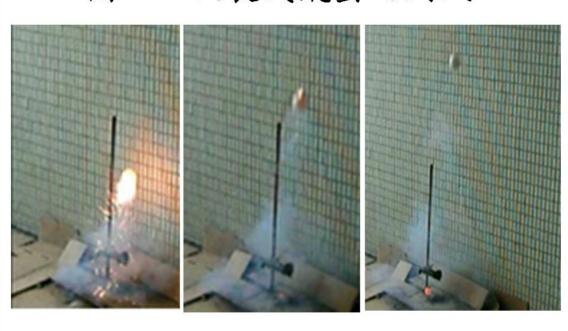

火藥量	砂子量	棉花量	結果
0.29	1.5	0.03	蛋殼未移動
0.36	1.5	0.03	飛起 50cm,剩下砂子 0.25g
0.4	1.5	0.03	炸碎




依據實驗結果發現 0.36g 的火藥量是使蛋殼噴射的適當量。

4. 當砂子量、火藥量及棉花量固定,以棉花及鋁箔封口作比較所得的數據結果:

火藥量	砂子量	封口方式	平均結果
0.36	1.5	棉花量 0.03 g	平均飛起 26cm
0.36	1.5	鋁箔直徑 2cm	平均飛起 60cm



圖八、改良式飛蛋之測試2

七、討論

- (一) 探討熱氣球原理讓蛋膜飄起來。
 - 1. 探討加熱溫度對蛋膜飄浮的影響:

熱汽球乃利用空氣受熱後密度會變小,因而受一浮力往上浮起。就是所謂 的阿基米德原理:物體密度小於水,則浮在水面上;物體密度大於水,則 會沉在水面下。

2. 探討蛋殼重量對蛋膜飄浮的影響:

因為重量會影響蛋飛行高度,加上整個空蛋殼的重量主要來自蛋殼,所以我們利用陳年醋酸來溶解蛋殼(碳酸鈣)進而取出蛋膜。在蛋膜加熱的過程中我們發現開口部分會出現焦黑狀,可見蛋膜耐熱度很差;於是我們設計讓醋酸只溶解上半部的蛋殼,開口附近的蛋殼不於予除盡。之後在整個加熱過程中蛋膜沒有燒焦了,但也沒有任何的漂浮現象,所以我們推斷不可能是利用熱汽球原理使蛋殼飛起的。

- (二)探討利用空氣或水壓力射出(水火箭)。
 - 1.分析自製輕型水火箭灌入空氣彈飛後所能承受的壓力數值、重量的分布和 其是否能飛的關係。從實驗當中發現只要提供足夠壓力,能克服輕型水火 箭噴出口的活塞摩擦力即可飛出,所以跟水火箭本身重量並沒有太大關 係;但重量卻會影響彈飛的高度,提供相同空氣量輕型水火箭越重彈飛越 低,而我們所設計的飛蛋噴出口與輕型水火箭一樣,因此結果亦相同。若 要使飛蛋噴的更高,只要提高注入蛋殼的空氣量,不過得在蛋殼所能忍受 壓力的範圍內。
 - 2.分析空蛋殼所能承受的壓力數值和其是否能飛的關係。發現要讓活塞脫離 的最小壓力是 1.92 大氣壓,且只能飛 2 公分,加上蛋殼在 1.28 大氣壓時 就很有可能破裂了,所以要讓蛋殼飛至一個人的身高是不太可能的。
 - 3. 將上述兩項的數據加以比對並證明空蛋殼是否能飛。

根據實驗結果發現,頂多能使蛋噴至2公分,要超過2公分得在灌入更多空氣,可是蛋殼又會破裂,因此利用密閉壓力反作用力原理是不能使蛋飛起的。

- (三)探討用火藥噴射原理使蛋殼飛起來的可能性。
 - 1.分析固定火藥量對於蛋殼飛起來的影響。

火藥燃燒會產生氣爆使蛋飛起,若火藥小於 0.36g 所產生的氣體壓力不足使 蛋飛起,若火藥高於 0.36g 一時所產生的氣體壓力會將蛋殼衝破炸碎。

2. 分析固定砂子量對於蛋殼飛起來軌道的影響。

根據圖片可知能使蛋飛起的砂子量介於 1g~1.8g,但由於加 1g 的砂子量沒有比加 1.5g 的砂子量飛得高,而加 1.8g 的砂子量雖然飛的很高但卻因衝力太大而使下半部蛋殼破碎,因此我們認為最佳的砂子量為 1.5g。推測是因為砂子具有緩衝爆炸衝擊力的功能,所以砂子太少會因為爆炸力道直接衝擊蛋殼而碎裂。但是太多則又在噴射口造成阻塞,也會使蛋殼破裂。唯有適當的砂子量,在火藥爆炸噴射砂子時,提供蛋殼足夠的反作用力,就能跳高彈升。

3. 分析蛋殼口徑(噴嘴)固定的大小的影響。

實驗過程中我們發現噴射口口徑 1.2公分時效果最佳,若口徑太小則氧氣不足無法點燃造成火藥燃燒,但口徑太大時,則又噴射力量不集中,彈跳高度不超過 45公分。

4. 找尋適當的棉花量以防內部物品掉落。

棉花目的是要防止砂子掉落,因此不用過多,以免阻礙砂子和氣體的噴出。 於是我們實驗時發現 0.02g 的棉花根本不足塞住蛋孔,但 0.04g 的棉花就又 會過多使蛋殼炸開而四分五裂,因此找到最適中的棉花量 0.03g,既可阻止 砂子掉落,又不妨礙飛起時衝力的方向。

5. 因棉花不易控制封口的緊密程度,所以改用剪裁鋁箔紙用白膠將蛋殼噴射口 封口,在白膠未乾之前點燃引線發射。所產生的噴射效果及反作用力最佳, 蛋殼彈升高度比塞棉花來的穩定。

八、結論

- (一) 想運用熱氣球原理讓蛋膜飄起來,但是蠟油在溫度 100 度時會溶化,而且熱 氣無法使蛋殼飄浮起來。
- (二)想利用空氣或水壓力射出原理(水火箭)發射蛋殼,發現蛋殼重量不會影響是 否能飛升,但會影響飛起高度。而且飛行高度不足,在未達飛起壓力蛋殼就會破裂。 所以,利用密閉壓力的反作用力原理是不能使蛋飛起的。

- (三)會探討用火藥使蛋殼飛起來,是因為推測古書內所說「疾風因舉之飛」的「疾風」可能是古人使用火藥爆炸所產生的。測試結果則是以 0.36 克的火藥量,加入 1.5 克的砂子,噴射口塗以白膠封上直徑 2cm 的鋁箔紙,所產生的噴射效果及反作用力最佳,蛋殼彈升高度比塞棉花來的穩定,噴射高度最高紀錄曾數次達1公尺以上,而且砂子在蛋殼底部維持重心,更容易造成垂直的起落。
- (三)由本實驗推論:古書中所敘述的「取雞子,去其汁,燃艾火,……疾風因舉之 飛。」應是最早的火箭原理的應用,而非應用熱氣球原理的開創者。而本實驗設計 正是提供學生引起動機學習牛頓運動定律的最佳探究教材,是「作用力與反作用力」 的最佳實驗例證,值得推廣!也證明古代中國科學文明的昌盛!

九、參考資料及其他

- (一) http://www.chiculture.net/0811/html/c48/0811c48.html (中國古代機械工程)
- (=) http://www.ettoday.com/2003/06/18/91-1471019.htm (ET today)
- (三) http://www.cdn.com.tw/live/2003/06/19/text/920619ea.htm (中央日報)
- (四) http://www.epochtimes.com/b5/3/6/18/n330727.htm (大紀元)
- (五) http://www.wfdn.com.tw/9206/030619/news/061907-1.htm (人間福報)

評語

030112 國中組物理科

飛为马`飛蛋-古代漂浮蛋解密之一

本實驗能從舊典中找新意,有創意。但牽涉空氣浮力,卻未能將基礎數據顯示,說理部分有待加強。趣味十足,理論稍嫌薄弱。