中華民國第四十三屆中小學科學展覽會參展作品專輯

高職組

機械科

科別:機械科

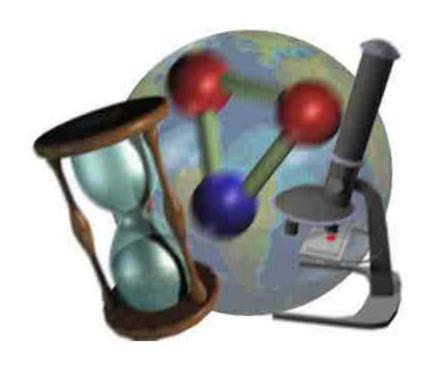
組別:高職組

作品名稱:自動化中控安全系統

關鍵詞:<u>晶片、反或閘、中控馬達</u>

編號:090902

學校名稱:


國立屏東高級工業職業學校

作者姓名:

王舜民、洪茂瑟、陳季堂、張昆敬

指導老師:

謝和原、許清華

摘要

- (一)突破汽車傳統中控控制方式。
- (二)不用鑰匙、遙控器,輕鬆的伸手開門、自動關門。
- (三)不需特別刻意設定防盜,自動化進入防盜系統。
- (四)感應式中控系統結合防盜鎖定控制與開車基本操作,完成自動化中控安全系統。
- (五)補救原廠防盜器防盜效果不足之缺點,為第二層安全防盜系統。
- (六)晶片可裝在戒子或手錶或類似的東西上。

壹 研究動機:

長期以來開車都是利用鑰匙或遙控器控制,如果駕駛者能一伸手即能感應控制車門開鎖,並自動關鎖、防盜,達到更自動化、更人性化的開車方式,該多好、多快樂的事。於是就開始著手進行此項研究工作,將晶片感應與中控系統與防盜鎖定連接起來,形成自動化中控安全系統,既方便又安全,且突破傳統式中控控制,讓開車對車主更能得心應手。

貳 研究目的:

- (一)自動化中控安全系統是人性化、自動化的設計,安全性更佳的控制系統。
- (二)突破傳統車門控制方式。
- (三)車主不必再為愛車被竊,鑰匙、遙控器丟掉,鎖頭被破壞及開車時中控有沒有上鎖,下車有無設定防盜而大傷腦筋。
- (四)此系統可補救原車防盜效果之不足,作為第二層防盜之用,使控制、安全達到最 佳狀態與效果。

參 研究設備及器材:

(一)設備:

- 1. 實車一部
- 2. 中控鎖及晶片感應控制盒示教 板一組
- (二)器材:
 - 1. 三用電錶一台
 - 2. 開關及指示燈各數個
 - 3. 點火開關一個
 - 4. 中控馬達 4 個
 - 5. 喇叭一個
 - 6. PC 萬用板及麵包板 各一塊
 - 7. 電子元件: IC4001 反 或閘

電晶體

- 3. 電路測試裝備一組
- 4. 電鑽及鑽頭一

CS9013, 2SC1815

2SA1015

二極體 4002 , 4148

電容 0.47μF , 1μF , 10μF

繼電器 × 3

電阻

肆 研究方式及過程與測試:

(一)研究方式:

- 1. 瞭解汽車中控鎖、中控馬達及晶片感應中央控制電路的作用情形。
- 2. 討論並訂出 (自動化中控安全系統) 所要達成的工作流程與目標及對原本電路的影響。

其研究流程與目標,說明如下:

(1) 正常狀況 熄火下車:引擎熄火,點火開關(IG)OFF → 中控自動

開鎖 → 門開、關 → 15 秒進入防 →

盗 中控

自動上鎖

感應上車:晶片感應 ──▶ 中控自動開鎖 ──▶

門開、關

→ 點火開關(IG)ON → 熱

車ON、OFF

──▶ 中控自動上鎖

(2) 異常狀況 未感應上車:晶片未感應,防盜中 →→開門觸 發防盜

> 喇叭會叫、斷油、斷電→→ 關門—→ 中控自—→ —→ 動上鎖 點火開關(IG)ON

斷油、

斷電 —→ 門開 關 —→中控自動 上鎖

- 3. 針對工作流程與目標,討論研究控制流程,如圖一所示。
- 4. 針對目標討論電路的設計與製作,如圖二所示。

(二)製作過程與測試:

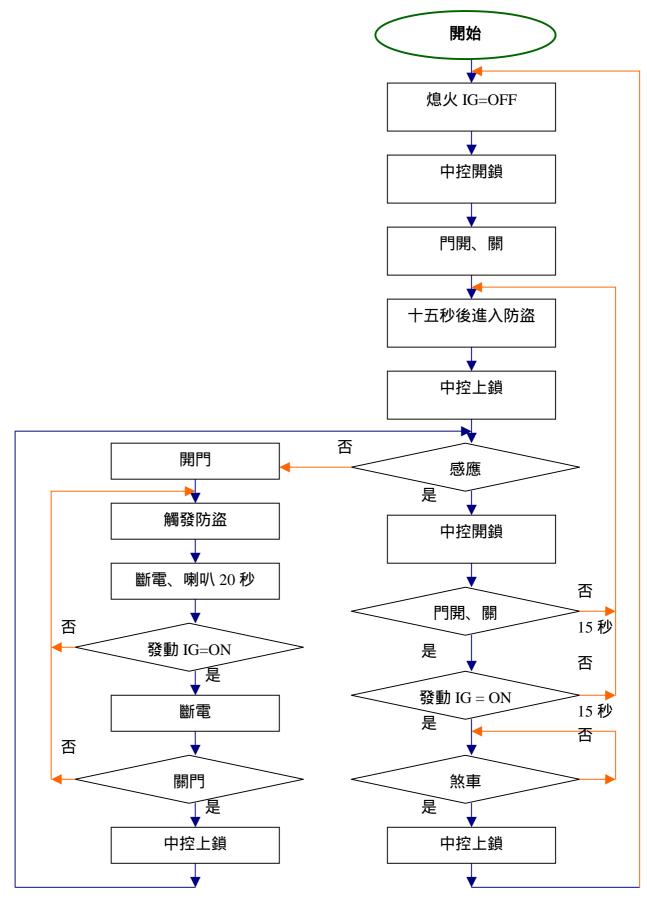
- 先研究控制電路考慮的參數與變因,採用那些訊號輸入,那些訊號 要輸出,如圖二所示。
- 2. 繪製粗略設計的控制電路圖,如圖三所示。
- 3. 按圖在麵包板上接出電路。
- 4. 作模擬測試訊號的輸入與輸出,按圖一之控制流程測試。
- 5. 作修改電路及保護電路。
- 6. 作負載測試配線,如圖四所示,整理中控鎖及防盜電路,配合控制 電路接線使適合控制電路運作。
- 7. 測試作用情形並修改電路。
- 8. 在確定可行後,將控制電路燒焊在PC萬用板上。

- 9. 將中控鎖、晶片感應控制盒、控制電路等零件裝配在展示板上,並配線。
- 10. 為避免配線上有所疏失,再做最後一次測試,以確保正常作動。

伍 研究結果討論:

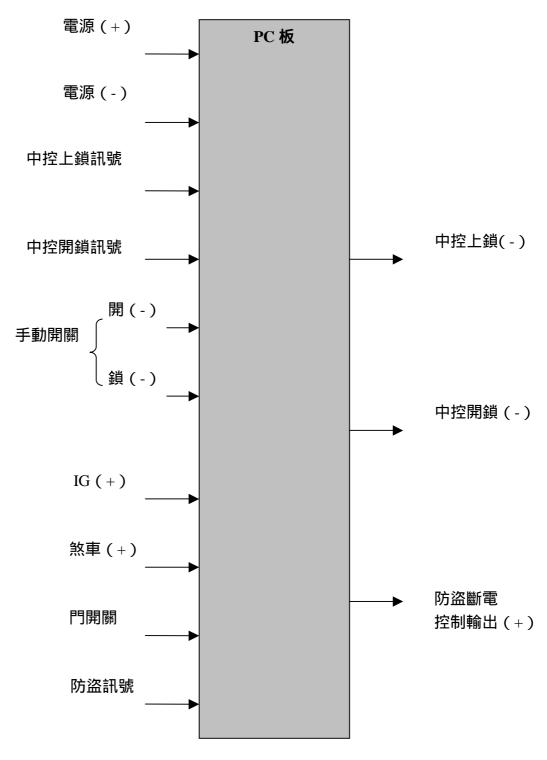
- (一)經過負載測試後,證實此控制電路確實可用,且具實用性與方便性。
- (二)此控制電路具有防止重複鎖,及防止重複開之回饋電路控制。
- (三)此控制電路有手動開關,方便臨時停車。(開門、鎖門)。
- (四)防盜中,門開又門關,中控會上鎖,多一層安全防盜設計。
- (五)駕駛側打開車門,按手動開關鎖門,該門不作用,防止誤觸手動開關 又關門,駕駛者無法進入車內。

陸結論

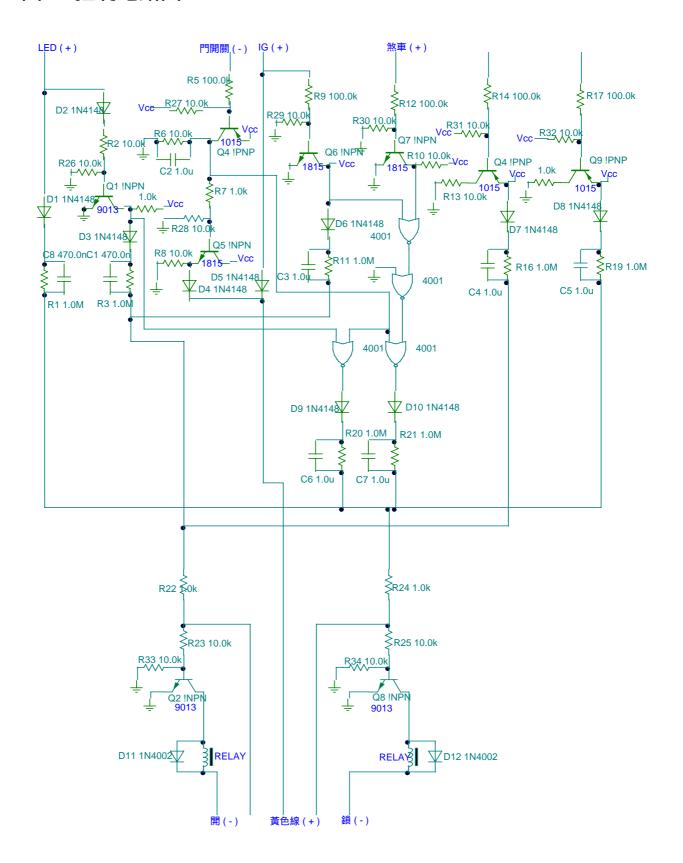

- (一)本裝置之優良控制電路設計,可使車主不用帶鑰匙、遙控器即可輕鬆 打開車門,突破傳統車門控制方式。
- (二)中控、防盜連接、開車控制,三者所達成的自動化中控系統,車門開鎖、關鎖自動控制,是人性化的設計具實用性與方便性。
- (三)中控、防盜連接,控制斷電、斷油,防盜中門開、關,再次鎖門是第二層安全防盜設計,防盜效果最好,也無其它副作用或後遺症。
- (四)此裝置可連接 GPS 衛星防盜追蹤系統及手機通報系統。
- (五)此裝置重視人性化、實用性、方便性為主,車子已被擬人化,猶如忠 實的老夥伴。
- (六)此裝置是優良的機電整合設計,可啟發我們邏輯分析、整合與組織應 用能力。

柒 參考資料

(-)	李錫泉	工業電子電路	科友圖書
(\Box)	蕭柱惠	數位邏輯	台科大圖書
(≡)	高瑞賢	電子電路	全華科技圖書
	王金松		
(四)	高瑞賢	電子學(一)	全華科技圖書
	王金松		
	陳和瑞		
(五)	稻葉保	電子電路集錦	全華科技圖書
	森口章成著		
	廖財昌編譯		
(六)	蔡朝洋	數位邏輯實習	全華科技圖書
(七)	吳敏雄	最新電晶體規格表	全華科技圖書

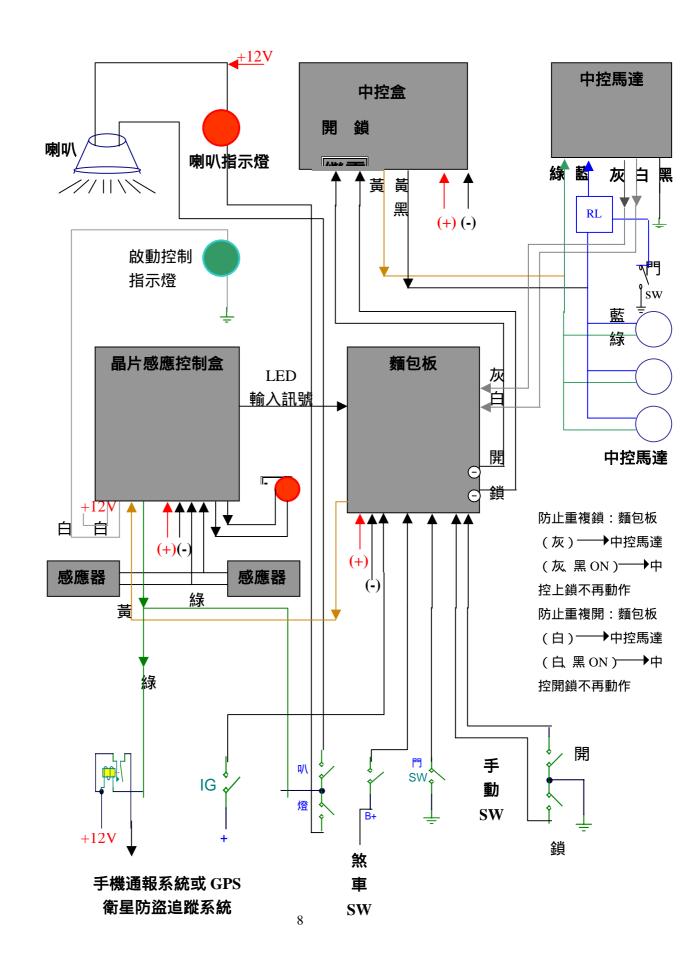

(八)	吳敏雄	最新 CMOS IC 規格表	全華科技圖書
(九)	HONDA	ACCORD	中控系統
(+)	NISSAN	CEFIRO	中控系統
(+-)	FORD	METROSTAR	中控系統
(+=)	MITSUBISHI	GALANT	中控系統
(十三)	TOYOTA	CAMRY	中控系統

圖一 控制流程圖:



圖二 電路板訊號與控制:

輸入訊號輸入訊號



圖三 控制電路圖

手動開關 開 - 手動開關 鎖 -

圖四 負載測試配線圖:

討論邏輯電路

電路板製作與測試

負載配線與測試

海報製作

評語:

- 1. 本作品具中控、防盜和開車控制整合之電路設計,使車主不用帶鑰匙或 遙控器即可輕易開車門。
- 2. 整體設計具人性化功能與實用性。
- 3. 各分項控制模組為已有的技術,本作品屬應用性的整合設計,技術上較缺創新性。