中華民國第四十三屆中小學科學展覽會參展作品專輯

國中組

物理科

科別:物理科

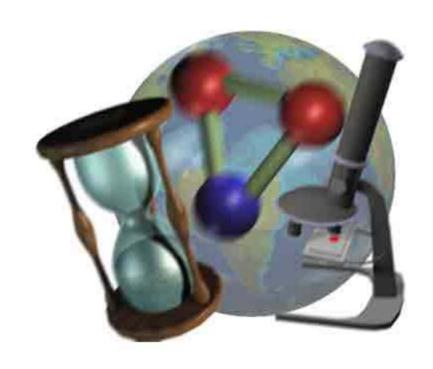
組別:國中組

作品名稱:知音難尋、相遇則鳴

關鍵詞: 音叉、共振、音箱

編號:030110

學校名稱:


台北市立民生國民中學

作者姓名:

洪亘屏、何昶毅、林健智、黄小綾

指導老師:

蘇恭彥、楊竣偉

摘要

本研究主要探討理化第一冊 3-1 音叉共鳴實驗中,音叉本體的構造及音箱所扮演的角色。以分析聲波軟體 Cool edit 2000,對自製音叉作仔細的探討,從中,我們也找出製作音叉的數學公式。

研究中發現,音叉的構造兩股必須等長,才可造成兩股間的共振。而在研究一中,以自製音叉分析兩股口徑粗細、寬度、厚度與頻率的關係,發現音叉的口徑長(兩股爲圓柱)和厚度均與頻率成正比,與一般弦樂器中弦愈粗頻率愈低不同。而音叉寬度對頻率的影響則不顯著。

在研究二中,音叉頻率與股長平方成反比,與一般弦樂器中頻率與弦線長成反比不同。在研究三、四中,我們證實音叉兩股的間距與材質均會影響頻率。

最後,在研究五中,分析音箱所扮演的角色。結果發現若木箱大小設計不佳時,亦可進行共鳴實驗,只是木板是當成共鳴板,而木箱則爲反射箱,但箱內空氣柱並不引起共振。

壹、研究動機

我們到樂器行買音叉時,從老闆給所展示的音叉照片中,發現大小不一,而老闆卻說頻率均爲 440Hz,但從照片

中看到愈粗的音叉,它的長度卻愈長(如圖二),這和教科書所提到弦愈粗則聲音頻率愈小互相矛盾,使我們迷惑不已。

當時同學有人猜測是照片經過放大,但也有人有不同的看法,問老闆又無法得到答案。加上我們對理化第一冊 3-1 音叉的共鳴實驗中,聲音的大小是否主要來自共鳴箱一直存有疑惑。

於是我們便自製各種音叉,並試著分析木箱所扮演的角色。

貳、研究目的

- 一、探討音叉兩股粗細、寬度、厚度與頻率的關係(研究一)。
- 二、探討音叉長度和頻率的關係,並與弦線長度對頻率的關係作比較(研究二)。
- 三、探討音叉兩股間距與頻率的關係(研究三)。
- 四、探討不同材質音叉對頻率的影響(研究四)。
- 五、分析理化第一冊實驗 3-1 音叉的共鳴中,木箱所扮演的角色。(研究五)。

參、研究設備及器材

硬體:

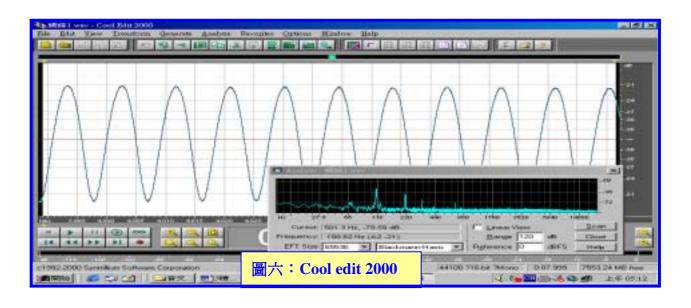
自製音叉(銅、鐵、鋁、不銹鋼、鋼尺),打氣筒(共振空氣柱),自製音箱,麥克風, 筆記型電腦,示波器(校準用),電子秤,游標尺,布尺,橡皮槌。

軟體:

Cool Edit2000, Audacity, Sprectrogram 頻率分析軟體。

肆、研究過程

首先,我們設計以雷射筆、旋轉鏡組成的機器來觀察振動。後來才知道這個方法已在第 24屆全國科展中有人使用過了。但我們確實觀察到了美麗的振動波形,如圖四、圖五。



圖四:鋼尺振動觀察

圖五:振動的波形

後來,我們在七下「自然與生活科技」課本中,發現可以利用示波器測量聲波,但是實際操作學校示波器時,很難記錄測量結果,而且操作介面不易了解。所以,我們從網路上搜尋有關聲波分析的三個軟體:Cool edit 2000(圖六)、Audacity 1.1(圖七)、Spectrogram Version 7.2(圖八)。我們比較了這些軟體的測試的結果,並以示波器校準。最後,我們選擇了介面操作比較容易、功能非常完整的 Cool edit 2000。 (一)

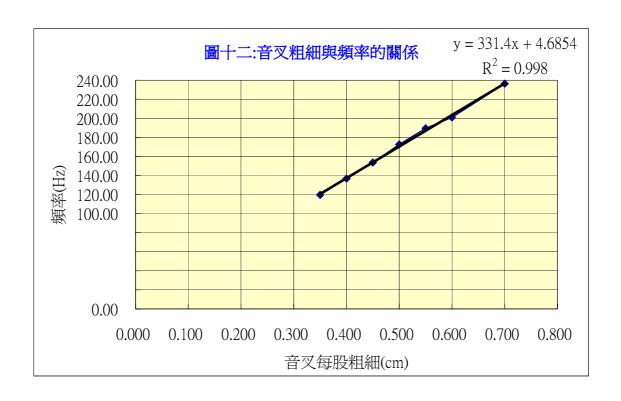
1.

爲了研究音叉這個「大聲公」是來自那裡,我們將影響音叉的幾個可能因素列出,流程如圖九所示。

爲了了解共振的原因,我們先進行單、雙擺(如圖十)實驗,觀察頻率與共振的關係。

在進行音叉振動的研究之前,我們曾經懷疑敲擊音叉能量大小、位置是否會影響音叉振動頻率,經過細心的實驗之後,證實並不會,使我們以後的步驟得以順利進行。

伍、研究結果

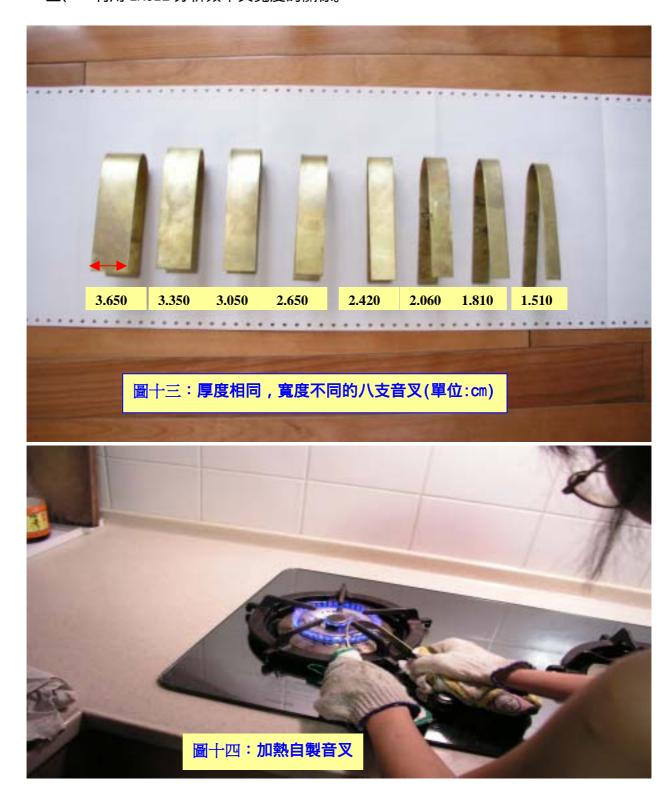

研究一之一:探討音叉兩股粗細與頻率的關係。

- 一、 自製不同粗細的七支鐵製音叉,如圖十一。
- 二、利用游標尺測量音叉口徑粗細。
- 三、 電腦準備好, 啟動頻率分析軟體 cool edit 2000, 錄音及分析頻率。
- 四、 測量及記錄五次,並求平均值。
- 五、 利用 EXCEL 分析頻率與口徑粗細的關係。

表一:自製音叉粗細與頻率比較

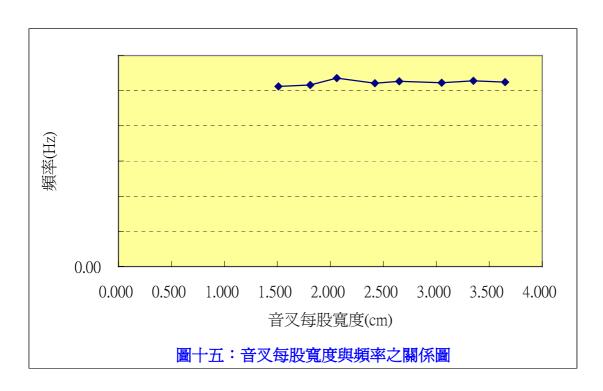
	每股直徑	每股長度	頻率測量	頻率測量	頻率測量	頻率測量	頻率測量	頻率測量
音叉編號	(cm)	(cm)	1 st (Hz)	2 nd (Hz)	3 rd (Hz)	4 th (Hz)	5 th (Hz)	平均值
	, ,	,	, ,	, ,	, ,	, , ,	, , ,	(Hz)
1	0.350	14.20	119.53	119.54	119.56	119.95	119.61	119.64
2	0.400	14.20	136.88	136.75	136.86	136.86	136.83	136.84
3	0.450	14.20	154.09	153.17	153.18	153.62	153.53	153.52
4	0.500	14.20	172.58	172.58	172.59	172.65	172.59	172.60
5	0.550	14.20	189.49	189.50	189.51	189.48	189.45	189.49
6	0.600	14.20	200.92	201.00	200.88	200.89	200.93	200.92
7	0.700	14.20	236.68	236.70	236.73	236.65	234.63	236.28

說明:1.研究發現,音叉愈粗時,頻率愈高。


2.經由 Excel 分析,可得方程式 y = 331.4x + 4.6854,相關係數: $R^2 = 0.998$, 爲高度相關。

3.故:音叉頻率約與口徑成正比。

4.此發現與課本中所提弦線愈粗頻率愈小的結果相反。


研究一之二:探討音叉兩股寬度與頻率的關係。

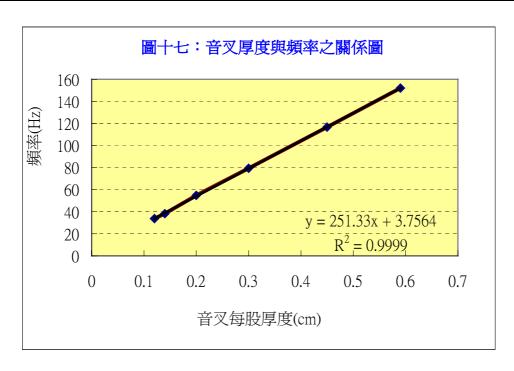
- 一、 利用加熱方式,自製不同寬度的八支音叉,如圖十三、十四。
- 二、利用游標尺測量音叉寬度及厚度大小。
- 三、 電腦準備好,啟動頻率分析軟體 cool edit 2000,錄音及分析頻率。
- 四、 測量及記錄五次,並求平均值。
- 五、 利用 EXCEL 分析頻率與寬度的關係。

表二:自製音叉寬度與頻率比較

音	音叉每	音叉每	音叉每股	頻率測量	頻率測量	頻率測量	頻率測量	頻率測量	頻率測量平
叉	股寬度	股厚度	長度(cm)	1 st (Hz)	$2^{nd}(Hz)$	3 rd (Hz)	4 th (Hz)	5 th (Hz)	均值(Hz)
編	(cm)	(cm)							
號									
1	1.510	0.210	14.210	51.35	51.45	51.32	50.96	50.96	51.21
2	1.810	0.210	14.210	51.58	51.61	51.62	51.63	51.61	51.61
3	2.060	0.210	14.210	53.61	53.59	53.59	53.58	53.58	53.59
4	2.420	0.210	14.210	52.10	52.10	52.15	52.13	52.15	52.13
5	2.650	0.210	14.210	52.71	52.69	52.65	52.67	52.67	52.68
6	3.050	0.210	14.210	52.26	52.25	52.24	52.26	52.23	52.25
7	3.350	0.210	14.210	52.80	52.79	52.79	52.79	52.81	52.80
8	3.650	0.210	14.210	52.37	52.35	52.30	52.64	52.65	52.46

說明:

- 1.研究發現所測量的頻率平均值(52.34Hz)與最大值、最小值相差在 2.4%內。 2.發現音叉每股寬度對頻率的影響極小。


研究一之三:探討音叉兩股厚度與頻率的關係。

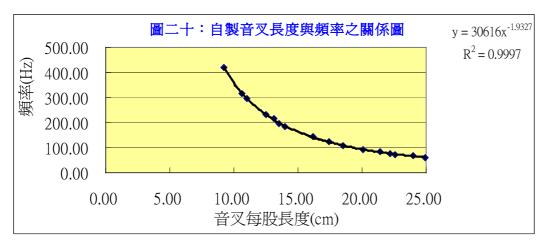
- 一、 自製不同厚度的六支音叉 , 如圖十六。
- 二、利用游標尺測量音叉寬度及厚度大小。
- 三、電腦準備好,啟動頻率分析軟體 cool edit 2000,錄音及分析頻率。
- 四、 測量及記錄五次, 並求平均值。
- 五、利用 EXCEL 分析頻率與厚度的關係。

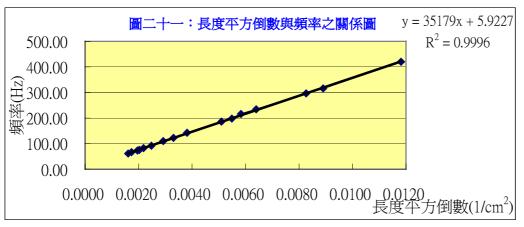
表三:音叉厚度與頻率比較

音	音叉每	音叉每	音叉每	頻率測量	頻率測量	頻率測量	頻率測量	頻率測量	頻率測量
叉	股厚度	股寬度	股長度	1 st (Hz)	$2^{nd}(Hz)$	3 rd (Hz)	4 th (Hz)	5 th (Hz)	平均值
編	(cm)	(cm)	(cm)						(Hz)
號									
1	0.120	1.200	13.40	33.87	33.78	33.80	33.80	33.40	33.73
2	0.140	1.200	13.40	38.80	38.90	38.00	38.00	38.00	38.34
3	0.200	1.200	13.40	54.90	54.90	55.00	54.80	54.80	54.88
4	0.300	1.200	13.40	79.30	79.20	79.50	79.60	79.20	79.36
5	0.450	1.200	13.40	116.60	116.60	116.60	116.60	116.60	116.60
6	0.590	1.200	13.40	152.50	152.30	151.90	151.70	151.70	152.02



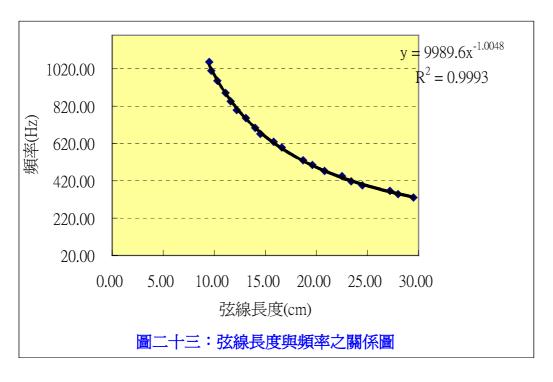
說明:

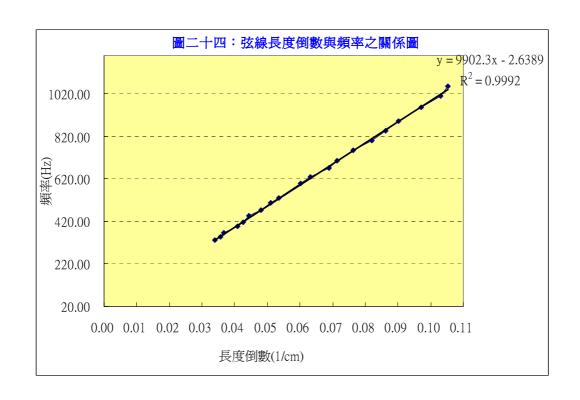

- 1. 研究發現當音叉厚度越厚,頻率越高,此與絃樂器不同。
- 2. 利用 EXCEL 分析可得直線方程式: y=251.33x+3.71564, 發現相關係數 R2=0.9999。 (為高度相關)
- 3. 研究發現音叉厚度與頻率約成正比關係。

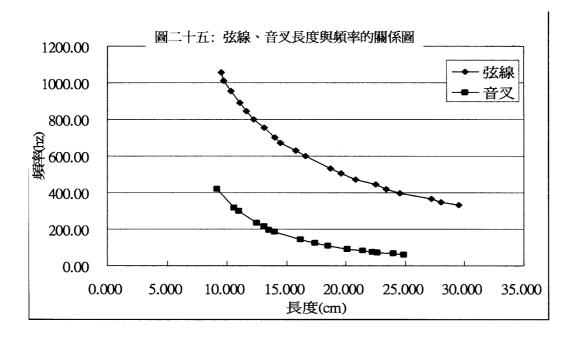

研究二之一、探討音叉長度與頻率的關係。

- 一、 自製不同長度不鏽鋼製音叉十六支,如圖十八、十九。
- 二、利用游標尺測量音叉寬度及厚度大小。
- 三、 測量音叉長度。
- 四、 電腦準備好,啟動頻率分析軟體 cool edit2000,錄音及分析頻率。
- 五、 測量及記錄五次,並求平均值。
- 六、 利用 EXCEL 分析頻率與音叉長度的關係。

音叉	每股長	每股	頻率測	頻率測	頻率測	頻率測量	頻率測量	頻率測量
編號	度(cm)	直徑	量	量	量	4 th (Hz)	5 th (Hz)	平均值
		(cm)	1 st (Hz)	$2^{nd}(Hz)$	3 rd (Hz)			(Hz)
1	9.20	0.600	420.32	420.30	420.30	420.60	420.21	420.35
2	10.60	0.600	316.57	316.06	315.90	315.98	315.94	316.09
3	11.00	0.600	296.34	296.38	296.39	296.33	296.31	296.35
4	12.50	0.600	233.93	233.84	233.96	233.90	233.99	233.92
5	13.10	0.600	215.79	215.81	215.74	215.80	215.77	215.78
6	13.50	0.600	197.64	197.64	197.58	197.56	197.57	197.60
7	14.00	0.600	185.61	185.54	186.01	185.98	185.97	185.82
8	16.20	0.600	142.42	142.39	142.48	142.46	142.46	142.44
9	17.40	0.600	122.60	122.63	122.67	122.73	122.65	122.66
10	18.50	0.600	109.55	109.47	109.88	109.91	109.94	109.75
11	20.10	0.600	91.81	91.78	91.91	91.88	91.91	91.86
12	21.40	0.600	82.51	82.52	82.49	83.07	82.54	82.63
13	22.20	0.600	75.54	75.58	75.59	75.62	75.57	75.58
14	22.60	0.600	73.07	73.06	73.14	73.10	73.14	73.10
15	24.00	0.600	66.99	66.99	66.97	67.00	67.01	66.99
16	24.90	0.600	60.90	60.93	60.98	60.95	61.02	60.96


研究二之二、探討弦線長度與頻率的關係。


- 一、準備好小提琴、琴弓,如圖二十二。
- 二、在不同長度的位置拉奏,利用布尺測量弦線長度。
- 三、電腦準備好,啟動頻率分析軟體 cool edit 2000,錄音及分析頻率。
- 四、測量及記錄五次,並求平均值。
- 五、利用 EXCEL 分析頻率與弦線長度的關係。

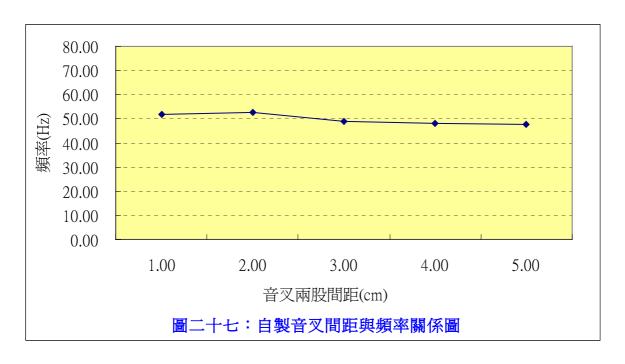


表五:弦線長度與頻率的關係

				スプトンスー 申JBH I		
弦線長度(cm)	頻率測量	頻率測量	頻率測量	頻率測量	頻率測量	頻率測量平均
	1 st (Hz)	2 nd (Hz)	3 rd (Hz)	4 th (Hz)	5 th (Hz)	值(Hz)
9.50	1056.45	1058.72	1055.64	1056.60	1055.42	1056.57
9.70	1010.26	1009.98	1011.28	1007.90	1009.34	1009.75
10.30	955.29	957.20	956.50	955.48	954.87	955.87
11.10	892.10	891.45	892.34	891.20	890.10	891.44
11.60	845.50	845.57	847.60	847.21	844.34	846.04
12.20	796.21	801.21	800.01	798.98	799.32	799.15
13.10	756.50	757.21	757.78	757.32	753.56	756.47
14.00	705.43	705.64	703.21	702.12	702.10	703.70
14.50	670.43	673.32	672.25	670.43	671.11	671.51
15.80	628.53	629.32	630.21	628.93	626.63	628.72
16.60	600.01	599.34	597.76	598.89	596.24	598.45
18.70	531.32	529.98	534.21	528.89	528.43	530.57
19.60	505.65	506.54	503.56	504.43	506.65	505.37
20.80	473.32	473.34	474.54	471.87	473.56	473.33
22.50	444.45	444.67	445.74	446.01	445.20	445.21
23.40	416.87	418.20	417.78	416.83	417.20	417.38
24.50	396.65	394.32	396.21	395.10	396.23	395.70
27.20	366.66	365.54	365.42	367.71	364.17	365.90
28.00	348.98	348.43	347.31	349.43	348.81	348.59
29.50	329.95	332.41	327.78	331.93	330.76	330.57

說明:

- 1. 若以音叉長度平方倒數爲 x 軸,頻率爲 y 軸,則所得線性關係如圖二十一,且爲高度相關。
- 2. 由圖二十一可知,音叉長度與頻率成平方反比。
- 3. 若以弦線長度倒數爲 x 軸,頻率爲 y 軸,則所得關係如圖二十四,且爲高度相關。
- 4. 音叉長度與頻率成二次方反比,而弦線則與頻率成一次方反比。

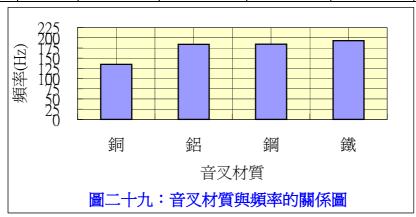

研究三、探討音叉兩股間距與頻率的關係。

- 一、 自製不同間距的音叉五支,如圖二十六。
- 二、 測量音叉間距大小。
- 三、 電腦準備好,啟動頻率分析軟體 cool edit 2000,錄音及分析頻率。
- 四、 測量及記錄五次,並求平均值。
- 五、 利用 EXCEL 分析頻率與間距的關係。

表六:研究自製音叉間距與頻率關係

音叉編號	兩股 間距 (cm)			音叉每 股長度 (cm)	頻率測量 1 st (Hz)	頻率測量 2 nd (Hz)	頻率測量 3 rd (Hz)	頻率測量 4 th (Hz)	頻率測量 5 th (Hz)	頻率測 量平均 値(Hz)
1	1.80	2.140	0.090	12.00	51.99	51.92	51.68	51.71	51.69	51.80
2	2.30	2.140	0.090	12.00	52.61	52.67	52.66	52.62	52.72	52.66
3	2.80	2.140	0.090	12.00	48.97	49.02	48.97	48.99	48.98	48.99
4	3.30	2.140	0.090	12.00	48.13	48.10	48.11	48.12	48.11	48.11
5	3.80	2.140	0.090	12.00	47.59	47.58	47.57	47.60	47.59	47.59

說明:研究發現音叉間距會影響振動頻率,但並不顯著。

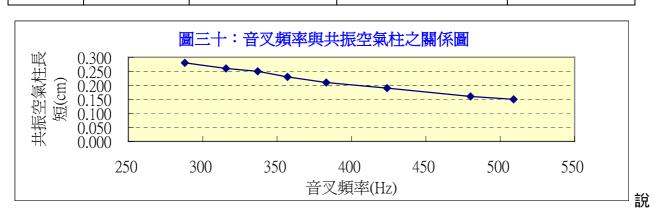

研究四、探討不同材質音叉與頻率的關係。

- 一、 自製不同材質的銅、鐵、鋁、不鏽鋼四支音叉,如圖二十八。
- 二、 利用游標尺測量音叉直徑、長度大小。
- 三、 電腦準備好,啟動頻率分析軟體 cool edit 2000,錄音及分析頻率。
- 四、 測量及記錄五次,並求平均值。
- 五、 利用 EXCEL 分析頻率與不同材質的關係。

表七:研究音叉材質與頻率的關係

音	音		每股長	頻率測量	頻率測量	頻率測量	頻率測量	頻率測量	頻率測量
叉	叉		度(cm)	1 st (Hz)	$2^{nd}(Hz)$	$3^{rd}(Hz)$	$4^{th}(Hz)$	$5^{th}(Hz)$	平均値
編	材	每股直							(Hz)
號	質	徑(cm)							
1	銅	0.500	12.00	135.00	135.23	135.34	134.24	134.33	134.83
2	鋁	0.500	12.00	184.31	184.01	183.12	184.15	184.11	183.94
3	鋼	0.500	12.00	183.00	186.33	186.00	183.02	183.31	184.33
4	鐵	0.500	12.00	193.31	193.12	193.00	192.21	193.23	192.97

說明:音叉材質不同時,頻率不同。


研究五

研究五之一

- (一)經查閱歷屆科展作品,發現空氣柱的共振長度是有一定的。
- (二)設計簡單自製儀器(如圖三十一所示),驗證空氣柱的共振實驗。數據如表八所示,關係 圖(如圖三十)。
- (三)過了三天後,我們後重作實驗,結果發現共振空氣柱的長度卻不同。經查閱資料後,知 道是因爲溫度造成的影響。
- (四)此時我們推論理化第一冊 3-1 音叉共鳴實驗中,木箱的大小應該隨著音叉頻率而有不同 的尺寸,或者應設計爲可調式的方式。

表八:音叉頻率與共振空氣柱長度的關係

溫度	音叉頻率	共振空氣柱	共振空氣柱	誤差
(°C)	(Hz)	實驗值(m)	理論値(m)	(%)
20.1	357.00	0.230	0.232	0.66
20.1	288.00	0.280	0.289	3.15
20.1	315.70	0.260	0.263	1.13
20.1	337.00	0.250	0.246	1.71
20.1	383.00	0.210	0.215	2.43
20.1	424.00	0.190	0.194	1.85
20.1	480.00	0.160	0.170	5.87
20.1	509.00	0.150	0.160	6.13

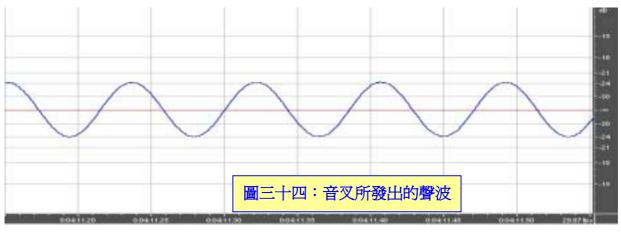
明:音叉頻率愈大時,共振空氣柱愈短。

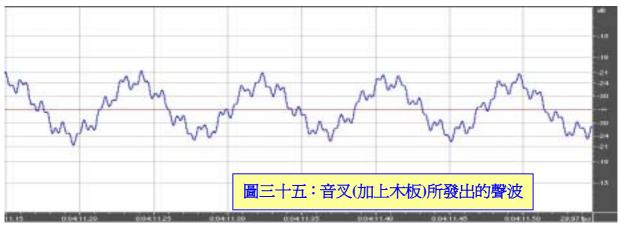
研究五之二

- 一、利用不同的成對音箱,重作課本音叉共振實驗。
- 二、音箱(如圖三十二),尺寸的大小(如表九)所示。
- 三、結果發現均可造成共鳴。
- 四、此結論與研究五之一的期望有所出入。

表九:自製音箱

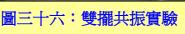
	•		
音箱	長 (cm)	寬 (cm)	高 (cm)
第一對	8.50	7.20	5.10
第二對	6.20	8.40	5.80
第三對	7.00	21.50	4.50
第四對	8.00	19.10	5.10
第五對	22.60	3.90	2.70
第六對	21.30	8.50	5.80
第七對	29.87	7.85	3.91




研究五之三

- 一、將音叉的聲波波形以電腦表示(圖三十四)。
- 二、將不同頻率的音叉下方加一木板(圖三十三)
- 三、敲擊音叉後,發現木板均能造成共振。
- 四、承上,將聲波利用電腦分析,結果發現主要頻率不變,但波形略有改變(圖三十五)。
- 五、我們推論,這便是音色的概念。

圖三十三:音叉下方加一木板



- 六、分析整個研究五的流程,結果發現在課本共鳴實驗中,音箱上只要裝上相同頻率的成對 音叉,共鳴實驗均能進行,而此時木箱的角色是作爲共鳴板及反射用。
- 七、實際設計一對可調式音箱(強調木箱內空氣柱大小),重作課本音叉共振實驗。結果發現, 則共振現象更明顯。
- 八、因此,同時考量木箱內空氣柱的大小,則在理化 3-1 音叉共鳴實驗中,共振的效果會更明顯。

陸、研究討論

- 一、在進行研究一之前,我們先利用學校實驗室的音叉,將其股長標記爲六等份,分別以 橡皮槌敲擊,結果發現頻率均相同。(細節可見研究日誌)
- 二、理想的音叉應爲單一頻率,但在研究中,發現音叉並非單一頻率,故本研究所討論的 頻率均爲響度較大的主要頻率。(一般稱爲基音)
- 三、在研究過程中,發現音叉兩股若不等長(如圖三十七),則振動時間明顯較短。經討論 後我們可由雙擺共振實驗(如圖三十六)推論音叉兩股等長時,兩股間便可發生共振, 而振動時間較持續久。因此,我們所自製的音叉均留意兩股等長。
- 四、在研究一中,我們發現音叉的頻率,並非可由課本所提弦線愈粗時頻率愈低推論。研究中發現音叉(兩股爲圓柱)的頻率與每股的口徑粗細成正比,本結果顯然與弦樂器是相反的。
- 五、在研究一中,若音叉股長並非圓柱時,則發現所測量的頻率平均值與最大值、最小值相差在 2.4%內,故推論音叉的寬度對頻率的影響並不大。
- 六、在研究一中,若音叉股長並非圓柱時,則發現所測量的頻率與厚度亦爲正比關係。本 結果顯然與上述第四點相同。
- 七、一般我們的認知只覺得振動體愈長則頻率愈低。在研究二中,我們更進一步分析音叉的頻率與股長平方成反比,而弦樂器的頻率則與長度成反比。
- 八、在研究三中,我們知道音叉兩股的間距亦會影響頻率的關係,但並不明顯。
- 九、在研究四中,發現音叉材質不同時頻率便不同。起初我們以爲與密度有關,經實際測量後並非如此,此點是我們以後想要研究的方向。

- 十、在研究五中,我們知道當音叉接觸木板時,則響度明顯變大,此時木板可將音叉的振動有效轉變成聲波,且不論音叉的頻率爲何,木板均可引起振動(共振),猜測木板的自然頻率並非只有一個。
- 十一、承上,課本的音叉共鳴實驗中,我們分析木箱的角色是作爲共鳴板及反射用。
- 十二、承上,由電腦分析可知,當音叉加了木箱,主要頻率並不改變,但聲波的波形卻略有變化。此點使我們更清楚音品(音色)的物理意義。
- 十三、承上,若木箱的大小設計,亦能引起箱內空氣柱的共振時,則共振便會更明顯。只 是共振空氣柱的大小,在研究中發現會受到溫度的影響,故若爲可調整的木箱應是 較佳的。
- 十四、由圖十二、十七、二十一中的線性方程式,我們可以找到製作一般頻率音叉的方法, 即可利用計算兩股口徑粗細、長度來切割出所要頻率的音叉。

柒、研究結論

- 一、音叉兩股等長,則兩股間可發生共振,因此敲擊後振動時間較持久。
- 二、在研究一中,發現音叉(兩股爲圓柱)的頻率與每股的口徑粗細成正比。
- 三、在研究一中,發現音叉的頻率與每股厚度成正比。而寬度對頻率的影響不大。
- 四、在研究二中,發現音叉的頻率與兩股的長度平方成反比,而弦樂器的頻率則與長度成反比。
- 五、在研究三中,知道音叉兩股的間距影響頻率並不顯著。
- **六**、在研究四中,發現音叉材質不同時頻率便不同。
- 七、我們找到製作音叉的數學公式:頻率= $k \cdot (p_{\xi})^2 \cdot (p_{\xi})$,其中 k 與材質有關。
- 八、在研究五中,我們得知當音叉兩股等長,且木箱內空氣亦能共振時,則理化第一冊 3-1 音叉共鳴實驗將會更明顯。

捌、參考資料

- 一、國立編譯館、國中理化第一冊、第三版、台灣、國立編譯館、p66-85、2002年
- 二、國立編譯館、選修理化第二冊、第二版、台灣、國立編譯館、p33-58、2000年
- 三、張豐榮、奇妙的聲音與顏色、第一版、台灣、暢文出版社、p1-40、1988 年
- 四、楊瑞珍、科學寶庫(上)、第一版、台灣、國語之刊雜誌社、p138-148、2001年
- 五、修伊特、觀念物理-聲光學、第一版、台灣、天下遠見出版社、p3-54、2002年
- 六、連坤德、陳忠志、吳永和、高中物質科學物理篇下冊、翰林出版社、P171-225、2002年
- 七、褚德三、高級中學物理(上)、第一版、台灣、龍騰文化事業公司、p2-15、2002年
- 八、陳忠城、高中新超群物理、第一版、台灣、南一書局、p382-387、2002年
- 九、余文卿、高級中學數學甲(上)、第二版、台灣、龍騰文化事業公司、p33-42、2002 年

玖、網站

- 1.http://www.physicsclassroom.com/mmedia/waves/swf.html
- 2. http://www.visualizationsoftware.com/gram/gramdl.html
- 3. http://audacity.sourceforge.net/windows.php?lang=en
- 4.http://www.syntrillium.com/download/download.html?1
- 5. http://www.sky.net/~floersch/cfit95.html
- 6. http://www.phy.hw.ac.uk/~peckham/matrices/eigenvalue/tuning_fork/tf.html

評語

配合理化課本共鳴實驗所用到的音叉和共鳴箱,對相關的變因和現象感到迷惑和質疑,因而設計一系列的探究活動。對音叉的材質、股長、寬度、厚度、間距等因素與頻率的關係進行系統性地探討,並歸納出經驗性的公式,所用方法適切,結果具實用價值。尤其是改進共鳴箱的結構,可調整共鳴箱的長度,使達最佳共鳴效果,並設法利用簡易器材達成相同功能,甚具創意。