中華國國第42屆中小學科學國際自

國小-應用科學科

科 別:生活與應用科學科

組 別:國小組

作品名稱:「竹筷槍」的研究、改良與推廣

關鍵詞: 竹筷槍、級距、定位

編 號:080802

學校名稱:

臺北縣私立及人國民小學

作者姓名:

陳郁宸、林亞蕎

指導老師:

竹筷槍的研究、改良與推廣

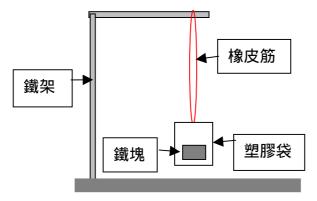
壹、 摘要

將社會科、鄉土教材的民俗童玩項目,結合自然科「力」的單元,以「竹筷槍」為主題,展開橡皮筋對力的表現的探討。再將橡皮筋彈性的探討結果應用到「竹筷槍」的設計及改良,並進一步研究如何推廣「竹筷槍」的方法。

貳、 研究動機

社會科第三單元(第八冊)為民俗童玩鄉土課程,提到許多好玩有趣的童玩,其中老師展示了一把竹筷槍,吸引了所有同學好奇、羨慕的眼光。老師說,竹筷槍是 4、50 年代農業社會兒童主要的玩具,可惜現在兒童知道的人不多,自己會做的人更少。老師不但教大家做竹筷槍,而且舉行射擊比賽。我想起上學期自然科(第七冊),老師教我們「測量力的大小」(第七單元)的時候,發現橡皮筋拉的愈長,力就愈大。因此我想自己動手做一支射的遠、射的準的竹筷槍,於是向老師請教,並展開相關的研究。

參、 研究目的

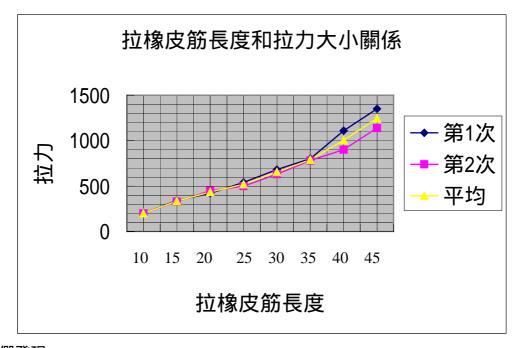

- 一、橡皮筋長度和拉力大小的關係
- 二、橡皮筋長度和射程、方向偏離的關係
- 三、橡皮筋兩側鬆緊不同時,和射程、方向偏離的關係
- 四、竹筷槍的造型及性能探討
- 五、如何製作性能最棒的竹筷槍
- 六、如何推廣民俗童玩竹筷槍,增進親子交流

肆、 研究設備及器材

各種竹筷、一般橡皮筋(發射實驗及綁製竹筷槍使用,周長為15公分),小橡皮筋(綁製竹筷槍時也會使用9.5公分的小型橡皮筋)皮尺、磅秤、倒『L』形鐵架、自製橡皮筋發射台

伍、 研究過程或方法

- 一、研究一:拉橡皮筋長度和拉力大小的關係
- (一)方法:利用倒『L』形鐵架,將橡皮筋下方以迴紋針勾住塑膠袋後,套掛於倒『L』 形鐵架,在塑膠袋內分次加入鐵塊(如圖一),並測量橡皮筋長度,在10、15、20、 25、30、35、40、45 公分時,分別測量所加鐵塊的重量(使用不同一條橡皮筋,測 量2次)。



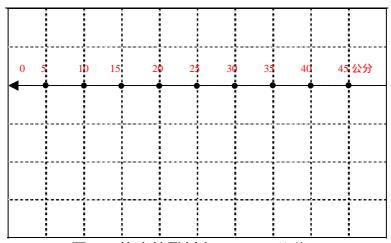
圖一:橡皮筋長度和力大小的關係

(二)結果:

拉橡皮筋長度(公分)		10	15	20	25	30	35	40	45
力的大小(公克)	第1次	200	340	420	540	680	800	1110	1350
	第2次	200	330	450	500	630	780	900	1140
	平均	200	335	435	520	655	790	1005	1245

表一:拉橡皮筋長度和拉力大小的關係

(三)我們發現:


- 1、拉橡皮筋愈長,所需的力量愈大。(和上學期所學的結果是一致的) 虎克定律:物體受力後所產生的形變,只要受力不太大,其形變的量質,會與受力的大小成正比。
- 2、若要將橡皮筋拉長到40公分以上,需1公斤以上力量。

說明:為能控制橡皮筋發射的一致性及精確性

- 1、在老師協助下設計完成了一個 50×30 公分的發射台,在其後的各項研究測試項目,提供不少的便利(如圖二)。
- 2、訂定標準發射條件規則:
- (1)研究過程中,一律使用發射台發射。
- (2)發射台置放於自然教室實驗桌上(高度75公分),每次實驗皆須仔細調整發射

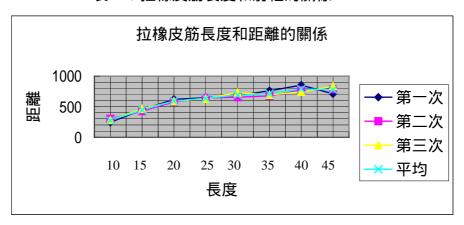
方向,對準磨石地面的銅條(使用垂線測量)。

- (3)研究中使用的橡皮筋須畫中心線,盡量讓兩邊張力相等;橡皮筋實驗一次後即予更換。
- (4)發射預備動作完成後,須等3秒鐘後再放手發射。
- (5)發射距離以橡皮筋著地點為準,著地後滾動的距離不予計算。

圖二:橡皮筋發射台(50×30公分)

二、研究二:拉橡皮筋長度和射程、方向偏離的關係

(一)方法:


- 1、使用發射台,將橡皮筋拉長到 10、15、20、25、30、35、40、45 公分後發射,記錄射出的距離和方向偏離。
- 2、相同條件發射 3 次,每次發射都使用不同一條橡皮筋。

(二)結果:

1、拉橡皮筋長度和射程的關係

橡皮筋長度(公分)		10	15	20	25	30	35	40	45
	第1次	245	448	619	647	683	758	852	713
射出距離	第2次	300	429	578	640	654	678	774	787
(公分)	第3次	281	462	590	630	730	694	741	835
	平均	275	446	596	639	689	710	789	778

表二:拉橡皮筋長度和射程的關係

2、拉橡皮筋長度和方向偏離的關係

橡皮筋長	度(公分)	10	15	20	25	30	35	40	45
	第1次	偏右 14	偏右 14	偏 <u>左</u> 51	偏左 64	偏右 6	偏左 16	偏右 29	偏右 53
偏向	第2次	偏右 13	偏 <mark>左</mark> 11	偏右 3	偏右 94	偏左 42	偏右 27	偏左 3	偏左 58
1/冊1円	第3次	偏右 8	偏右 32	偏 <u>左</u> 7	偏左 37	偏左 4	偏左 8	偏右 10	偏右 76
	合計	合計			偏右 13 次 偏				

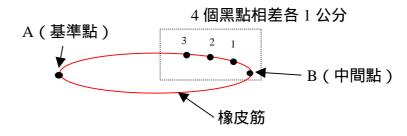
表三:拉橡皮筋長度和方向偏離的關係

(三)我們發現:

- 1、橡皮筋長度在40公分內,拉的愈長,射的愈遠。
- 2、橡皮筋長度在45公分時,射出距離反而比40公分時減少11公分。
- 3、橡皮筋兩邊拉力相等時(兩側等長),射出後,向兩側方向偏離中心線的機會相當(偏右13次、偏左11次)。

(四)分析:

1、將橡皮筋長度<mark>級距</mark>和射出距離差(拉橡皮筋長度不同,射出的距離差異)比較後, 發現除35-40公分有突然又增大的情形外,幾乎都是遞減的。(見表四)


橡皮筋長度級距(公分)	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40	40 - 45
射出距離差(公分)	171	150	43	50	21	79	-11

表四:橡皮筋長度級距和射出距離差的關係

- 2、拉橡皮筋長度超過 30 公分時,感覺有些困難,且橡皮筋變得很細,橡皮筋似乎快達到拉力極限,推測可能是射出距離增加受到限制的原因(虎克定律)。
- 三、研究三:橡皮筋兩側鬆緊不同時,和射程、方向偏離的關係

(一)方法:

- 1、在橡皮筋上以奇異筆先畫上兩個記號 A、B,使兩側距離等長,這是標準測試的橡皮筋。
- 2、和 B 點隔 1、2、3 公分處分別做記號,作為橡皮筋兩側在發射時鬆緊不同的參考點。(如圖四)

圖四:在橡皮筋上做記號

- 3、依據以上的研究數據顯示,橡皮筋拉太長(超過30公分)時,可能會影響測試數據的一般性,所以我們決定在後段的實驗中,橡皮筋的長度將以25公分(為主)30公分(為輔)做為橡皮筋拉長實驗標準。
- 4、我們將橡皮筋拉長成 25 公分,一次左側鬆、右側緊,另一次右側鬆、左側緊,分 別使用發射台來做發射測試。

(二)結果:

1、左側鬆、右側緊(拉長25公分)

橡皮筋兩邊鬆緊差		記號1(實差2公分)		記號2(實差4公分)		記號3(實差6公分	
射出距離	第1次	549	偏右 90	750	偏右 34	815	偏右 <i>5</i> 3
(公分)	第2次	653	偏右 61	658	偏 <u>左</u> 65	675	偏右 27
及方向偏	第3次	729	偏右 5	678	偏 <u>左</u> 30	736	偏右 63
離	平均	644		695		742	
方向偏離	合計		偏右	5 7 次	偏 <mark>左</mark> 2	次	

表五:橡皮筋兩側鬆緊不同時,和射程、方向偏離的關係(左側鬆、右側緊)

2、右側鬆、左側緊(拉長25公分)

橡皮筋兩边	邊鬆緊差	記號 1	(實差 2 公分)	記號2(實差4公分)	記號3(實差6公分)
射出距離	第1次	652	偏右 38	686	偏 <u>左</u> 50	663	偏 <mark>左</mark> 23
(公分)	第2次	643	偏 <u>左</u> 2	711	偏 <u>左</u> 7	761	偏 <mark>左</mark> 6
及方向偏	第3次	642	偏右 24	703	偏 <mark>左</mark> 24	651	偏 <u>左</u> 61
離	平均	646		700		692	
方向偏離	合計		偏右	2次	偏左刀	7 次	

表六:橡皮筋兩側鬆緊不同時,和射程、方向偏離的關係(右側鬆、左側緊)

(三)我們發現:

1、產生距離的變化:(拉長25公分)

橡	橡皮筋兩邊鬆緊差		0	記號1(實差	€2公分)	記號 2 (實達	€4公分)	記號3(實差	6公分)
	左	側鬆、	表	611		605		740	
射	7	占側緊	=	644		695		742	
出	右側鬆、		記	(1)		700		(02	
距	左側緊		錄	646		700		692	
離	平均	距離的	639	645	(+6)	698	(+ 59)	717	(+ 72)
		改變							

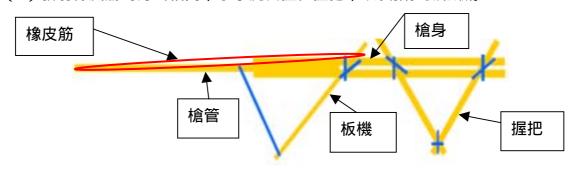
表七:橡皮筋兩側鬆緊相同、不同時射出距離的比較(拉長25公分)

- (1) 橡皮筋兩邊差 2 公分, 拉長 25 公分, 射出距離, 比橡皮筋兩邊等長時增加 6 公分。
- (2)橡皮筋兩邊差 4 公分, 拉長 25 公分,射出距離,比橡皮筋兩邊等長時增加 59 公分。
- (3)橡皮筋兩邊差 6公分,拉長 25公分,射出距離,比橡皮筋兩邊等長時增加 72公分。
- (4)橡皮筋兩側鬆緊不同時,射出的距離會增加;兩側鬆緊差愈多,距離增加也愈多

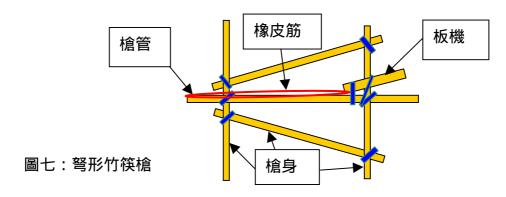
2、產生方向偏離的變化:

- (1)橡皮筋左側鬆、右側緊時方向偏離偏右7次、偏左2次。
- (2)橡皮筋右側鬆、左側緊時方向偏離偏右2次、偏左7次。
- (3) 橡皮筋兩側鬆緊不同時,射出方向比較會向較緊邊偏離。

(四)分析:


- 1、橡皮筋兩側鬆緊不同,由於一側的緊度比正常情況增加,而使射出距離增加。(參考圖五)
- 2、橡皮筋兩側鬆緊不同,射出後,橡皮筋為達到本身的平衡,較緊側會拉回較鬆側的 橡皮筋,因此而造成向較緊側偏向的力。(參考圖五)
- 3、左側鬆、右側緊時,兩側橡皮筋拉力的合力,使射出距離增加及向右邊偏向。(參考圖五)
- 4、相同的,右側鬆、左側緊時,兩側橡皮筋拉力的合力,使射出距離增加及向左邊偏向。

圖五:左側鬆、右側緊時,兩側橡皮筋拉力的合成


四、研究四:竹筷槍的造型及性能探討

- (一)經過以上的實驗,我們對橡皮筋拉長射出的性能,已經有了一些明確的概念;接著,我們從相關書籍、網路、長輩、親友處,蒐集各種竹筷槍的造型,並模仿綁製(參考我們的作品)。
- (二)從蒐集所得相關資料,分析竹筷槍的造型,約略分為兩大類(我們共蒐集七種不同造型的竹筷槍,參考附件資料)。
 - 1、槍形(如圖六):雖然長度、造型略有不同,但其共同特徵為
 - (1)和一般真槍一樣,具備槍管、槍身、握把、板機等結構。
 - (2)發射橡皮筋的方式相同,手掌虎口握住握把,以食指扣動板機。

圖六:槍形竹筷槍

- 2、 弩形 (如圖七): 雖然長度、造型各不相同, 但其共同特點是
 - (1)沒有握把。
 - (2)以左手握持槍身,以右手大姆指按壓板機、食指在其下方將槍身頂住。
 - (3) 槍身成水平面。

(三)槍形、弩形竹筷槍的製作、性能比較

	綁製難、易度	操作的方便性	外形的美感	射程及準確	連發性能
				性	
	竹筷如為圓柱形(如	單手即可射擊	外形與傳統真	槍管長度較	只要懂得方
	免洗筷),槍管和槍身	0	槍類似,較獲	易增長,使射	法,可連續
槍形	部分容易移位變形,	裝子彈方便。	討喜。	程增加。	發射。
	需注意綁製的方法、			較易瞄準。	
	技巧。				
	比較不受竹筷形狀的	須雙手射擊。	外形與傳統真	槍管長度不	不具連發性
	影響。	裝子彈較不方	槍差異大,較	易增長,射程	能。
弩形	板機部位綁製較為困	便。	不獲討喜。	受竹筷長度	要連發得加
	難。			限制。	裝槍管。
				較不易瞄準。	

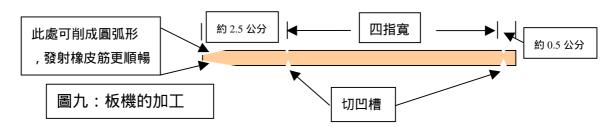
五、研究五:如何製作性能最棒的竹筷槍

依據研究四的討論、分析,我們決定研究、改良、推廣的竹筷槍是槍形竹筷槍。經過多次的製作、使用、發現缺點、檢討、研究改良,我們得到的研究成果如下。

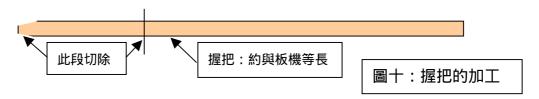
(一)傳統竹筷槍的缺點:

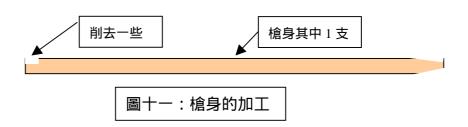
- 1、連發功能不足
 - (1) 槍口凹槽小,無法加掛多根橡皮筋。
 - (2) 槍管結構強度不足,連發加掛多根橡皮筋後易被拉彎、拉斷(參考附件圖片)
 - (3) 槍口結構強度不足,連發加掛多根橡皮筋後易被拉裂(參考附件圖片)。
- 2、板機易位移,甚至掉落。且連發加掛多根橡皮筋時,板機會被拉至發射位置,而自動發射(參考附件圖片)。

(二)我們的改良:

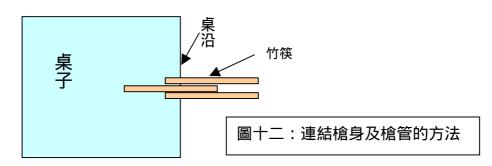

- 1、材料的選擇:
 - (1) 竹筷子的上端為方形,才容易固定造型;如為圓形,會滾離原位。因此,大部份的「免洗筷」並不太適合當槍身及槍管使用;如只有「免洗筷」可用,應參照「(三)綁製竹筷槍的步驟、方法」。
 - (2) 竹筷子的下端不能太尖、太細,否則綁製困難。因此,有些「家用筷」亦不適

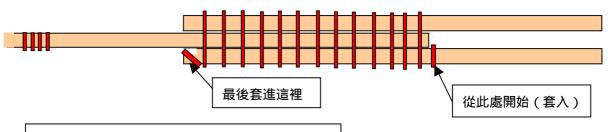
合當槍身使用;如只有此種「家用筷」,可在適當位置切斷後使用。


- (3) 竹筷子的長度不可太短,以免射出的橡皮筋彈性太小,而縮短射程;但可採用 兩根竹筷接續的方式改善。
- (4) 竹筷的選擇,以上端方形、粗、長、直、材質堅硬者,為最佳選擇。
- 3、竹筷子的加工:
- (1) 槍管:為使裝填子彈(橡皮筋)不易滑掉及裝填更多子彈(連發),應在槍管的 槍口部位以美工刀向內切割出一個 V 字形凹槽(此部份對我們國小學生而言,稍 有困難,需藉助家長的協助,而正是增進親子互動的機會),而且為了防止竹筷子 裂開,以短橡皮筋緊緊的綁牢。槍口 V 字形凹槽應為水平位置。(圖八)


(2)板機:使用「免洗筷」的尖端部位,以手掌除去大姆指的四個手指的寬度,再約略加上3公分的長度處切斷。在尖端部位後約2.5公分處,環切出凹環(<mark>定位</mark>作用,防止板機受力而向上、向下滑動),在底部前約0.5公分處,也環切出凹槽(圖九)

(3)握把:使用「免洗筷」的平端部位,約與板機等長處切斷,需2支。(圖十)



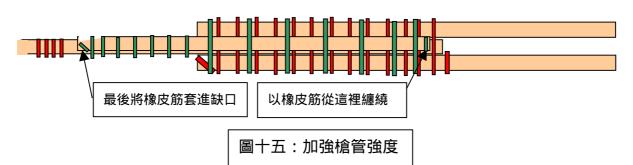

(4) 槍身:需2支全長的竹筷,其中1支的一側須削去一些。(圖十一)

- (三)綁製竹筷槍的步驟、方法及橡皮筋鬆緊控制:
 - 1、先連結槍身及槍管: 以4根橡皮筋連接成長橡皮筋後,將槍身及槍管在桌邊排好,需綁製的部位突出桌

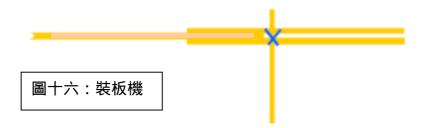
沿,用手壓牢後,將其用橡皮筋緊緊的綁牢(參考圖十二、圖十三)。(圓形竹筷使用此法綁製極為有效,橡皮筋愈緊,愈容易固定造型)

圖十三:以橡皮筋連結槍身及槍管的方法

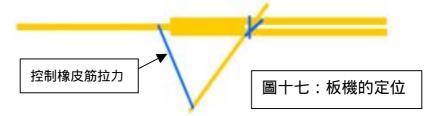
2、加強槍管強度:


連發時會裝許多根橡皮筋,其拉力會將竹筷槍的槍管拉彎、拉斷,槍口拉裂,需要 補強。

(1) 取1支「免洗筷」,在尖端削去一些。(圖十四)

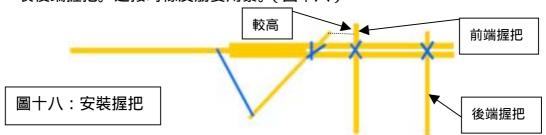

(2)和槍管結合:

將尖端削去一些的「免洗筷」壓在槍管下方,以另一4根橡皮筋連接成的長橡皮筋將其纏繞連結。(圖十五)

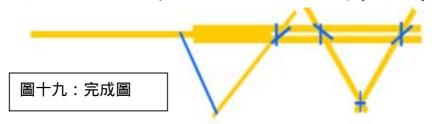


3、裝板機:

(1)將板機套入槍身,以一根橡皮筋將其綁住,此處是活動部位(摳動發射),故不可綁太緊。(圖十六)



(2)以一根橡皮筋,一頭套住槍管和槍身的交界處,一頭套住板機的下方。此橡皮 筋的拉力可調整,以平衡連發裝填多根橡皮筋時造成的回拉力量。(圖十七)

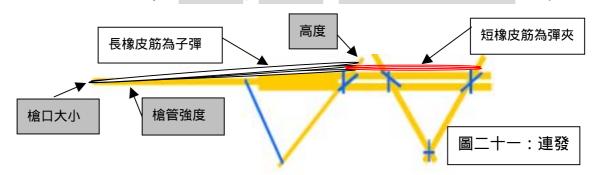


4、安裝握把:

(1) 先安裝前端握把,其上方高度須超出板機高度,如此才能發揮連發的功能。再安裝後端握把。連接時橡皮筋要用緊。(圖十八)

(2)將前、後端握把的下方,以一根橡皮筋緊緊的綁住。(圖十九)

5、完成作品實物圖(圖二十)



(四)橡皮筋連發的研究及做法:

- 1、我們稱發射出去的較長橡皮筋為「子彈」,控制連發的較短橡皮筋為「彈夾」。
- 2、第1根向前先安裝「子彈」, 第2根向後安裝「彈夾」, 第3根向前安裝「子彈」,

第 4 根向後安裝「彈夾」;如此一前安裝「子彈」,一後安裝「彈夾」,利用摳動板機的角度變化,即可達到連發的效果。(圖二十一)

- 3、前端握把因超出板機高度,可以回收「彈夾」,而不會彈到自己。
- 4、連發的「子彈」數目,視槍管強度、槍口大小及板機裝橡皮筋部位的高度而定。

六、研究六:如何推廣民俗童玩「竹筷槍」,增進親子交流

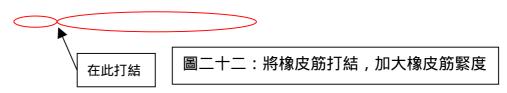
經過我們的研究、改良及多次的試驗後,「竹筷槍」的造型、強度及性能,比舊有傳統的「竹筷槍」進步許多,配合老師在校園內的推廣,深受同學們的喜愛。

- (一)我們認為須要推廣民俗童玩「竹筷槍」的原因
 - 1、「筷子槍」是我們祖先的智慧遺產,不應讓它失傳。
 - 2、材料、工具隨手可得,製作方法簡單,活動之場地不受限制,以及深受我們兒童 喜愛,是「竹筷槍」的特色;因此具有推廣民俗童玩項目的條件。
 - 3、現成玩具製作步驟複雜,材料多用化工原料,幾乎已沒有家長能陪同孩童一起製作玩具。如此雖然方便,卻犧牲了親子交流的互動,非常可惜;同時,也失去了訓練手腦並用、自行創作的勞作機會,減少了辛苦後得到成果的喜悅與滿足的體驗。
- (二)我們認為推廣民俗童玩「竹筷槍」,增進親子交流的辦法及步驟
 - 1、從班級、學校做起。
 - (1)藉由社會科「民俗」、「童玩」等教學單元,與鄉土、美勞、自然科課程結合, 設計、實施統整教學活動。
 - (2)配合校園活動,實施「竹筷槍」創意設計競賽,射遠、射準比賽。
 - 2、推廣到家庭、地區、全國。
 - (1)舉辦親子合作趣味競賽,如「竹筷槍」製作競速比賽等。
 - (2)設計多樣化的「竹筷槍」遊戲方式,及相關產品,如「竹筷槍」遊戲專用的標 靶等,吸引親子參與的興趣。(我們的設計如附件)
 - (3)推動地區性的校際相關活動,繼而普及至全國。
 - (4)將我們的研究、改良成果,提供「921 地震」受災嚴重的「南投」地區,利用 該地盛產的竹材,將產品生產成套件,廣為商品化。
 - (5)建立「竹筷槍」專業網站、網頁,提供「竹筷槍」資訊流通。

陸、研究結果

- 一、拉橡皮筋愈長,所需的力量愈大,射出的距離愈遠。一般橡皮筋(周長為 15 公分), 依據(表一)的結果顯示,符合「虎克定律」的,應為拉長 35 公分以內範圍。
- 二、橡皮筋拉長發射,可能因橡皮筋各部位結構不平均,射出後均有偏向的情形發生,偏

左或偏右的機會相當。


- 三、一般橡皮筋拉長發射,最遠的射距約為800公分左右,拉長長度為40公分(依記錄最遠可達852公分)。
- 四、橡皮筋拉長發射,如果兩側鬆緊不同時:
 - (一)射出後比較會向較緊側偏向。此結果與實驗前的判斷剛好相反,但是經過以力學 的合力原理分析,可以獲得解釋。
 - (二)射出的距離比兩側鬆緊相同時為遠。
- 五、「竹筷槍」的造型、材料及規格:
 - (一)「竹筷槍」的造型分為槍形、弩形兩種,以槍形性能較佳,且較受歡迎。(班級訪問調查)
 - (二)「竹筷槍」的材料,以較長的方頭筷較佳(尤其是槍管、槍身部分)。
 - (三)「竹筷槍」的尺寸,槍管長度以25-30公分較為適合;理由是:
 - 1、裝填子彈所需力量不會太大,比較適合兒童。(橡皮筋拉長 25 公分需力量 520 公克,30 公分需力量 655 公克)
 - 2、槍管、槍口比較不會受損。
 - 3、平均射出距離,橡皮筋拉長 25 公分時,可達 639 公分;橡皮筋拉長 30 公分時,可達 689 公分。

六:「竹筷槍」值得大力推廣

- (一)材料取得容易,製作方法簡單,好玩且受兒童歡迎。
- (二)可以增進親子互動、發揚民俗童玩技藝。

柒、 討論

- 一、如何使竹筷槍射的更遠?
 - (一)加長竹筷槍槍管長度。
 - (二)將橡皮筋打結,加大橡皮筋緊度(圖二十二)。

- (三)不改變槍管長度、不使用橡皮筋打結時,使橡皮筋兩側拉力鬆緊不同。
- 二、如何使「竹筷槍」射的更準?
 - (一)橡皮筋兩側拉力相同。
 - (二)手持竹筷槍要穩。
 - (三)要瞄準。
 - (四)多練習。
 - (五)選擇優質的橡皮筋。
- 三、如何綁製堅固耐用的「竹筷槍」?
 - (一)選用材質較硬的竹筷,且槍管須加強,槍管才不會被橡皮筋的拉力拉彎。
 - (二)以橡皮筋連接竹筷時,橡皮筋一定要綁緊,否則「竹筷槍」會變形。
 - (三)選擇優質的橡皮筋,才不易造成橡皮筋斷裂。

捌、結論

- 一、「竹筷槍」槍管長度,以25-30公分最佳;優點是,使裝填橡皮筋容易、發射距離理想及「竹筷槍」不易受損等。
- 二、裝填橡皮筋時,兩側張力應相同,比較射的準確。
- 三、「竹筷槍」的改良,為加強各部位的結構強度、「定位」及連發效果。
- 四、配合課程設計、校園活動、校際活動、親子活動、成果發表、成立網站、商品化,「 竹筷槍」是值得、可以推廣的一項民俗童玩。

玖、參考資料及其他:

出版家彩色美勞創作叢書⑥「自己做趣味玩具」。