中華國國第42屆中小學科學國際會

高中-物理科

科 別:物理科

組 別:高中組

作品名稱: 敲出 Do Re Mi - 木琴奧秘知多少

關鍵詞: 木琴、頻率、共鳴管

編 號:040109

學校名稱:

國立蘭陽女子高級中學

作者姓名:

蕭雅云、吳敬萱、黃佩琦、楊植纓

指導老師:

林冠宏

敲出 Do Re Mi---木琴奥秘知多少

壹、摘要

木琴主要的構造有三部分:琴鍵、支撐架、共鳴管。我們的研究在於探討木琴頻率與琴鍵長度的關係,以裁切出正確音頻的琴鍵;探討琴鍵支撐點對木琴響度的影響,以找出最佳的琴鍵支撐位置;探討影響共鳴管長度的因素,定出適合各種頻率的共鳴管長度。綜合這些研究結果製造出一架音高準確、響度足夠的木琴。

貳、研究動機

常在音樂會上聽見淸脆的木琴聲,這種結構簡單但聲音優美的樂器令人欣賞,我們希望也能造出一臺木琴。高一基礎物理第四章「聲音」(參考資料一~五)、高中物理第十三章「波動」(參考資料六)、第十四章「聲波」(參考資料七)、高二物理「共鳴管實驗」(參考資料八),曾對樂器發音原理、聲波特性及駐波現象有所介紹,我們希望能以這些知識爲基礎,進行對木琴各部分功能的研究,以期完成造琴的工作,學以致用。

參、研究目的

- 一、探討琴鍵頻率與琴鍵長度、厚度、寬度的關係。
- 二、製造出可以產生標準音頻的木琴琴鍵。
- 三、探討琴鍵支撐位置對響度的影響。
- 四、探討影響共鳴管長度的因素。
- 五、探討木琴頻率穩定度。
- 六、組裝一台木琴。

肆、研究器材與設備

- 一、角尺、游標卡尺、捲尺、米尺、電子秤、橡皮棒、花梨木、木架、玻璃管、 氣柱共鳴管、分貝儀、麥克風、個人電腦
- 二、軟體:聲頻分析儀(Cool edit)、Microsoft Excel。

伍、研究過程與方法:

- 一、 琴鍵頻率 f 與琴鍵長度 L 、厚度 H 、寬度 W 的關係
 - (一)找出可能影響琴鍵頻率的所有變因

樂器的發聲頻率取決於振動體的幾何形狀與材質(參考資料一~三),木琴是一種打擊樂器,發出聲音的琴鍵,是由不同長度的長方形木條組成,我們推測可能影響琴鍵發音頻率的變因有 4 個,分別爲琴鍵的(1)長度(2)厚度(3)寬度(4)組成材質(參考資料五)。在上述 4 個變因中,琴鍵的組成材質可能會因木材的密度、彈性、結構、含水量等而改變,依現有的設備及知識,不易將它作爲操縱變因來評測,因此我們決定將它作

爲控制變因,在相同的組成材質下,探討琴鍵長度、厚度、寬度對頻率的 影響。

(二) 評測琴鍵頻率的方法

在本研究中,我們以下列兩種方法來測量琴鍵的頻率:

方法一:共鳴空氣柱法--(參考資料八)

高中物理實驗十一中的氣柱 共鳴管可以測量琴鍵的頻 率,其原理簡述如下:

 $\Delta X=X_2-X_1=1/2 \lambda \rightarrow \lambda=2 \Delta X$

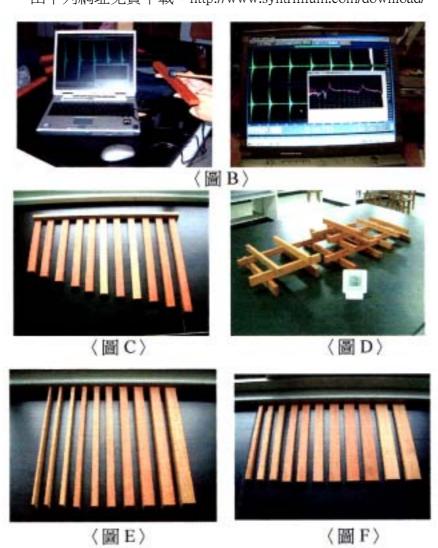
V = 331 + 0.6t

 $f=V/\lambda \rightarrow f=(331+0.6t)/2\Delta X ---- 〈公式一〉$

測量 $\Delta X \mathcal{D} t$,可以得到 f。

註:X1:第一次產生共鳴的水位;X2:第二次

產生共鳴的水位


 λ :聲波的波長;V:聲速;f:物體的振動頻率

方法二:聲音頻譜分析法

(圖A)

將琴鍵的振動音頻以麥克風接收,連結至 PC,以音頻分析軟體 "Cool Edit" 分析琴鍵振動所產生的聲波頻率,如〈圖 B〉所示。軟體 "Cool Edit"可由下列網址免費下載:http://www.syntrillium.com/download/。

(三)實驗操作流程

Step1:取一花梨木條,裁切成寬厚相同,長度 L 不一的琴鍵樣本 12 塊。如 \langle 圖 C \rangle

Step2: 將樣本置放於溫度 26℃~31℃,溼度 55%~70%的實驗室內約一星期 (此步驟的目的將於〈研究過程-五〉中說明)。如〈圖 D〉

Step3: 以擊槌敲擊琴鍵,用聲頻分析測其頻率f,紀錄各不同長度琴鍵的頻率。如〈圖B〉

Step4:以 "Microsoft Excel" 分析頻率 f 與琴鍵長度 L 的關係。

Step5: 取一花梨木材,裁切成長度、寬度相同,厚度 H 不一的琴鍵樣本 10 塊,重複 Step2~Step4,分析 f-H 的關係。如〈圖 E〉

Step6:取一花梨木材,裁切成長度、厚度相同,寬度 W 不同的琴鍵樣本 11 塊,重複 Step2~Step4,分析 f-W 的關係。如〈圖 F〉

Step7:綜合f-L、f-H、f-W的關係,歸納出f與L、H、W可能的關係式。

二、 裁切標準頻率的琴鍵

(一) 木琴的標準音頻 fs

我們希望製作的木琴有八個鍵,其音高為 C 大調的 8 個音階,其唱名及標準頻率如下表:--(參考資料四)

	1 / () 3	/ · · · · · /	
木材編號	音階音名	音階唱名	標準頻率 fs (Hz)
1	c^2	Do	523.25
2	d^2	Re	587.33
3	e^2	Mi	659.26
4	f^2	Fa	698.46
5	g^2	Sol	783.99
6	a^2	La	880.00
7	b^2	Si	987.77
8	c ³	Do	1046.5

(二)了解琴鍵長度 L 與振動頻率 f 的關係

木琴的琴鍵是由寬厚一致,但長度不同的長方形木條

組成,要裁切出適當長度的琴鍵,以產生標準頻率 f_s ,要先知道琴鍵長度與頻率的關係。經由〈研究過程一〉中的研究結果(將於〈柒、討論〉中詳細說明),所歸納出振動頻率 f 與琴鍵長度 L 的關係爲:

$$f = K \frac{H}{L^2} - \langle \triangle \overrightarrow{x} \rangle$$

其中琴鍵材質對頻率的影響,我們以材質係數 K 表示之。材質不同, 材質係數 K 差異性較大。但是即使同一木條,其木材結構、密度、含水量 也不一定均勻,各部分的 K 值也可能略有不同。

(三)初估琴鍵的長度 L。

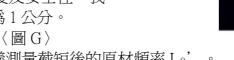
Step1:取一花梨木條,測其寬度 W_0 ,厚度 H_0 ,長度 L_0 ,以聲頻分析儀測其振動頻率 f_0 。假設此木條的材質係數爲 K_0 ,依〈公式二〉,其關係式應爲:

$$f_0 = K_0 \frac{H_0}{L_0^2} - \dots (1)$$

Step2: 假設可以產生標準頻率 fs 的琴鍵長度爲 Ls,裁切後琴鍵的材質係數 爲 Ks,依〈公式二〉,三者的關係應爲:

$$f_s = K_s \frac{H_0}{L_s^2}$$
 ----- (2)

Step3: 若原本木條長度 L₀與標準長度 L₅相近,則 K₀≒K₅。將式(1)、(2)相除:


$$\frac{(1)}{(2)} \Rightarrow \frac{f_0}{f_s} = \frac{L_s^2}{L_0^2}$$

$$\Rightarrow L_s = \sqrt{\frac{f_0}{f_s}} L_0 \quad ----- \quad (3)$$

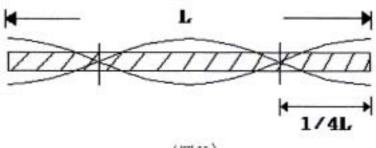
(四)修正琴鍵長度 Ls'

式(3)的結果必須在原材長度 L_0 ,與標準長度 L_s 相近時才成立,否則當 L_0 被截短成 L_s 時,因木材材質並非理想均勻值,可能造成截短後琴鍵的材質係數 K_0 。因此若能將原材的長度 L_0 裁切至與琴鍵長度 L_s 相近,重新以式(3)估算一次,便可以得到更精確的琴鍵長度 L_s '。其

步驟如下: Step1:將原材的長度由 L_0 截短成 L_0 , 如〈圖 G〉所示。其中 L_0 ' =初估長度 L_0 +預留裁 切長度 ΔL_0 。考慮所使用裁 切機的精細度及安全性,我 們將 ΔL_0 定為 1 公分。

(圖G)

Step2: 以聲頻分析儀測量截短後的原材頻率 Lo'。 Step3: 以式(4)重新估算產生標準頻率的琴鍵長度 L。'


(五)檢測完工後琴鍵的頻率(fs'、fs*)

依照長度 L' 裁切出琴鍵後,分別以聲頻分析儀及氣柱共鳴管檢測其頻率 $(f_s$ '、 f_s *)。

三、琴鍵支撐位置對響度的影響

(一)推測可以產生最大響度的琴鍵支撐點的位置

木琴琴鍵除了要發出正確的音高外,因爲琴鍵需置於琴架上,選擇適當的支撐位置將有助響度的提升。木琴琴鍵有兩個支撐點,其距琴鍵兩端等距,而琴鍵受敲擊的位置約在琴鍵的中央,依高中物理 13 章及 14 章(參考資料六、七),我們認爲木琴琴鍵振動的駐波型態應該如〈圖 H〉所示。換言之,琴鍵最佳響度的支撐位置應該出現在琴鍵振動時的節點處。其距離端點的長度應爲琴鍵全長 L 的 1/4。爲了確定我們的推測,我們設計以下的實驗求證。

(岡田)

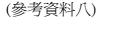
(二) 實驗操作流程:

Step1:裝置如〈圖I〉所示,將琴鍵 置於支架上,以鐵片將之固定 於支撐點。

Step2:擊槌由相同高度處向下敲 擊,以固定每次的敲擊力道。

Step3:將測量聲音響度的分貝儀置 於琴鍵下方,測量其聲音的

響度。


Step4: 改變支撐點的位置,重複 Step1~3。

Step5: 中響度與支撐位置的關係圖找出最大響度的支撐點。

(一)找出各琴鍵所對應的共鳴管長度 XI

木琴爲增加其響度,在琴鍵下方設計有共鳴管。共鳴管長度必須與琴 鍵振動頻率配合,才能產生較佳共鳴效果。我們欲以一端開放、另一端封閉 的玻璃圓管爲木琴的共鳴管,可藉由〈研究過程二:以共鳴柱法檢測琴鍵頻 率〉的數據,取其 X₁的長度即爲共鳴管長度。 X₁與聲音頻率 f 的關係式爲:

$$\chi_1 = \frac{1}{4}\lambda = \frac{1}{4}\frac{v}{f}$$
----- 〈公式三〉

(二) 共鳴管管口處駐波波腹位置的探討

如〈圖A〉所示,共鳴管長度 Xı應該 等於駐波波長λ的1/4,亦即管口處應爲駐波 波腹的位置。可是由〈研究結果二〉(詳見〈柒、 討論四〉)顯示: X1<1/4 λ。亦即駐波波腹並 沒有恰在管口處,而是在管口處的上方,如(圖 J〉所示。因此〈公式三〉應修正爲:

$$x_1 = \frac{1}{4}\lambda - \Delta h - \langle 公式四 \rangle$$

(圖J)

其中共鳴管的實際長度 X1 與 $1/4\lambda$ 之間的差距 Δh ,我們稱之爲修正長 度。爲了了解影響修正長度 Δ h的因素,我們設計下列流程來探討:

- 1.推測可能影響修正長度 Δh 的變因
 - 我們推測可能影響 Δh 的變因有三:
 - (1) 琴鍵的頻率 f
 - (2)琴鍵波源距管口的垂直距離 S
 - (3)共鳴管的內直徑 D
- 2.探討 Δh 與 f、S、D 關係的實驗操作流程

Step1:裝置如〈圖K〉,將琴鍵置於支架上,以〈研究過程三〉所找出的最 大響度的支撐位置爲琴鍵的支撐點。

Step2:以小槌連續敲擊琴鍵,同時由管口向下調降共鳴管中的水位,找到

第一個及第二個共鳴效果最佳的位置 $X_1 \cdot X_2 \cdot$ 如〈圖 L〉。

Step3: 計算 $\Delta h \circ \Delta h = \frac{1}{4} \lambda - X_1 = \frac{1}{4} \lambda - 2 \Delta X = \frac{1}{2} (X_2 - X_1) - X_1$

Step4: 更換不同頻率 f 的琴鍵, 重複 Step1 \sim 2, 分析 Δ h 與 f 的關係。

Step5:以固定的琴鍵頻率,但改變其在共鳴管上方的位置 S 重複 Step1 \sim 2,

分析 Δh 與 S 的關係。

Step6:固定琴鍵的頻率及位置,但改變共鳴管的口徑 D,重複 Step1~2,如

 $\langle BM \cdot N \rangle$ 所示,分析 Δh 與 D 的關係。

(圖K)

〈圖L〉

(圖N)

五、 木琴頻率穩定度的探討

我們曾經依照以上研究方法在校內科展中,製造出一架頻率相當準確的木琴, 其與標準頻率的誤差約在 1%以下,但經過一段時日,重新測量其頻率時,發現各琴 鍵其頻率皆已變大,與標準頻率間的偏差因而放大。爲了了解頻率產生變化的變因, 並找出使木琴頻率穩定的條件,我們設計以下實驗流程來探討:

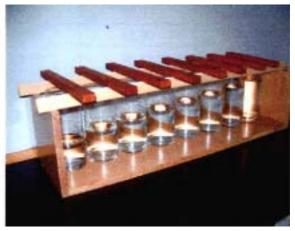
(一) 探討琴鍵置放後,其質量、形狀與頻率的變化

Step1:以花梨木原材裁切成厚度、寬度相同,但長度不同的琴鍵數塊,測量其質量 m、長度 L、厚度 H、頻率 f,並推算其材質係數 K。

Step2:將琴鍵置放於溫度 26℃~31℃,溼度 55%~70%的室內,經過一星期後, 重新測量 Step1 中的各項物理量。

Step3:比較置放前後各物理量的變化。


(二)探討置放時間 t 對琴鍵頻率 f 的影響


Step1:取厚度、寬度相同,但長度不同的琴鍵數塊,將原材置放於溫度 26℃~31 ℃,溼度 55%~70%的室內,每隔 24 小時,重新測量其頻率 f。

Step2:分析琴鍵頻率 f 隨置放時間 t 變化情形。

六、 組成一架木琴

調整支撐架,將裁切好的琴鍵置於響度最大的支撐點上。調整水位高低,找 出各琴鍵對應的共鳴水位,將各對應共鳴水杯置於各琴鍵下方,完成木琴的組合,如 下〈圖〇、P〉。

陸、研究結果

一、 琴鍵頻率 f 與琴鍵長度 L、厚度 H、寬度 W的關係

→ 、	琴鍵頻率 f !	與る	デ鍵長度 L	、厚度	支H、賃	息度 W 的關	图/			
	表 1-1: 琴鍵頻率 fo 與長度 L 的關係									
編號	長度 L(cm)	厚	度 H(cm)	寬度V	W(cm)	質量 m((g)	頻率 fo(Hz)	1/L ² (cm ⁻²)	
L1	59.10		1.548	2.6	593	207.98)	191.80	0.0002864	
L2	40.11		1.523	2.7	'38	158.45)	412.24	0.0006216	
L3	38.10		1.523	2.7	'35	149.88)	461.18	0.0006889	
L4	36.10		1.525	2.7	28	141.09)	525.27	0.0007673	
L5	35.00		1.548	2.7	'00	123.19)	559.75	0.0008163	
L6	34.10		1.528	2.7	28	131.26)	583.25	0.0008600	
L7	33.09		1.550	2.6	593	116.36)	637.86	0.0009133	
L8	32.09		1.535	2.7	'25	121.90)	663.50	0.0009711	
L9	30.11		1.535	2.7	20	115.60)	708.55	0.0011030	
L10	28.11		1.540	2.7	15	106.41		838.86	0.0012655	
L11	26.23		1.525	2.735		101.48)	953.77	0.0014540	
L12	24.10		1.530	2.740		93.93		1108.85	0.0017217	
			表 1-2:	琴鍵頻	[率 fo s	與厚度 H é	内關 [·]	係		
編號	長度 L(cm))	厚度 H	(cm)	寬度 W(cm)		質量 m(g)		頻率 fo(Hz)	
H1	30.45		2.54	8			166.34		1249.35	
H2	30.38		2.28	5	2	.600		181.97	987.68	
Н3	30.35 2.098		8	2	.703		165.88	928.95		
H4	30.38	0.38 1.80		5	2	.700		144.78	780.14	
H5	30.50	1.530		0	2	.710		124.27	676.36	
Н6	30.35	1.33		0	2	.700		104.08	593.59	
H7	30.50		1.11	5	2	.695		88.25	482.36	
Н8	30.50		0.90	0	2	.638		58.97	442.93	
Н9	30.35		0.70	8	2	.640		46.90	357.59	
H10	30.11		0.57	0	2	.695		36.81	274.94	

	表 1-3:琴鍵頻率 fo 與寬度 W 的關係									
編號	長度 L(cm)	厚度 H(cm)	寬度 W(cm)	質量 m(g)	頻率 fo(Hz)					
W1	30.43	1.525	3.958	179.32	662.32					
W2	30.41	1.520	3.695	168.35	665.18					
W3	30.51	1.523	3.285	147.60	670.30					
W4	30.48	1.508	2.973	132.87	677.24					
W5	30.49	1.508	2.700	122.16	685.87					
W6	30.55	1.533	2.485	111.54	681.84					
W7	30.07	1.550	4.503	176.71	745.26					
W8	30.10	1.530	4.308	166.10	719.15					
W9	30.05	1.555	2.125	83.74	696.24					

W10	30.04	1.563	1.908	76.33	692.04
W11	30.00	1.523	1.730	66.33	706.55

二、裁切標準頻率的琴鍵

	表 2-1: 琴鍵的裁切與頻率									
木材編號	F1	F2	F3	F4	F5	F6	F7	F8		
音名	c ²	d^2	e ²	f^2	g ²	a^2	b ²	c ³		
唱名	Do	Re	Mi	Fa	Sol	La	Si	Do		
標準頻率 fs(Hz)	523.25	587.33	659.26	698.46	783.99	880.00	987.77	1046.50		
原材頻率 fo(Hz)	412.24	461.18	525.27	583.25	663.50	708.55	838.86	953.77		
原材長度 Lo(cm)	40.11	38.10	36.10	34.10	32.09	30.11	28.11	26.23		
初估鍵長 Ls(cm)	35.60	33.76	32.22	31.16	29.52	27.02	25.90	25.04		
初裁鍵長 Lo'(cm)	36.65	34.90	33.11	32.12	30.54	27.93	26.87	25.80		
初裁後頻 率 Fo'(Hz)	494.65	547.94	625.14	653.67	730.84	823.29	919.33	979.98		
再裁後鍵 長 Ls' (cm)	35.63	33.71	32.24	31.07	29.49	27.01	25.92	24.97		
再裁後頻 率 Fs'(Hz)	519.69	583.15	653.52	697.35	778.39	876.60	980.31	1056.00		
偏差百分 比(%)	0.68	0.71	0.87	0.16	0.71	0.39	0.76	-0.91		

說明:

- 1.初估鍵長 Ls=Lox(fo/fs)^0.5
- 2.初裁切後鍵長 Lo=Ls+ΔL=Ls+1
- 3.再裁後鍵長 Ls'=Lo'x(fo'/fs)^0.5
- 4.偏差百分比=(fs'-fs)/fs×100%

表 2-2: 共鳴空氣柱測量再裁後琴鍵頻率

木材編號	音名	唱名	標準頻率 f _s (Hz)	X ₁ (cm)	X ₂ (cm)	△X(cm)	測得頻率 fs*(Hz)	偏差百分比 (%)
F1	c^2	Do	523.25	15.30	48.30	33.00	527.0	0.7109
F2	d^2	Re	587.33	13.60	43.20	29.60	587.5	0.0289
F3	e^2	Mi	659.26	11.80	38.10	26.30	661.2	0.2968
F4	f^2	Fa	698.46	11.00	35.80	24.80	701.2	0.3937
F5	g^2	Sol	783.99	9.80	32.00	22.20	783.3	-0.0838
F6	a^2	La	880.00	8.50	28.40	19.90	873.9	-0.6967
F7	b^2	Si	987.77	7.60	25.30	17.70	982.5	-0.5350

	F8	c^3	Do	1046.50	6.80	23.20	16.40	1060.4	1.3250
--	----	-------	----	---------	------	-------	-------	--------	--------

- 1.測量時溫度 t=28℃
- 2.X1:第一次共鳴時的水位
- 3.X2:第二次共鳴時的水位
- $4.\triangle X=X_2-X_1$
- 5.測得頻率 fs*=(331+0.6t)/ λ =(331+0.6t)/2△X
- 6.誤差百分比=(fs*-fs)/fs×100%

三、琴鍵支撐位置對響度的影響

_ 今獎又呀以	— ` 今姓又呀应但到晋区印》音 ————————————————————————————————————								
	表 3:琴鍵支撐位置與響度的關係								
響度(dB) 編號 支撐位置	T1(Do)	T2(Re)	T3(Mi)	T4(Fa)	T5(Sol)	T6(La)	T7(Si)	T8(Do)	
1/40L	80.1	85.4	84.5	84.5	88.7	87.6	90.0	89.6	
2/40L	85.4	86.6	85.3	85.0	89.2	89.1	90.4	89.8	
3/40L	86.1	87.5	86.2	88.8	91.9	90.1	90.6	90.8	
4/40L	88.6	88.6	87.6	91.0	94.5	90.1	91.0	91.0	
5/40L	92.7	90.1	91.5	92.6	97.3	91.5	93.9	94.4	
6/40L	93.5	93.9	95.7	96.8	99.0	97.8	98.7	100.7	
7/40L	97.8	98.2	100.0	100.0	103.8	102.0	103.4	103.2	
8/40L	104.1	103.1	105.0	105.9	107.4	106.7	108.0	109.6	
9/40L	106.6	105.6	108.0	109.5	109.8	110.5	111.1	112.1	
10/40L	104.1	104.2	105.3	107.0	107.6	106.9	109.7	108.6	
11/40L	101.8	100.2	102.6	103.2	103.4	105.3	104.7	105.5	
12/40L	97.6	96.6	99.1	98.7	99.3	98.6	103.7	101.7	
13/40L	93.0	94.0	96.2	97.9	97.2	96.7	99.7	99.5	
14/40L	92.0	92.2	92.8	95.4	94.4	96.6	99.6	99.3	
15/40L	93.3	88.3	90.0	91.8	95.7	96.5	97.4	98.4	
=∆□□	上海 (上里		#去巴國上百万 E	三声丰二		<i>在</i> 公主王 <i>公</i> 事点		<u> </u>	

說明:支撐位置是以距離端點的長度表示,其中L為琴鍵的全長

四、木琴共鳴管長度的探討

	表 4-1:不同頻率 fs*的琴鍵,所對應的共鳴管長度 X₁及修正長度△h									
木材編號	音名	唱名	頻率 f [*] (Hz)	X ₁ (cm)	X ₂ (cm)	△X(cm)	1/4 λ	修正長度△h(cm)		
F1	c^2	Do	527.0	15.30	48.30	33	16.5	1.21		
F2	d^2	Re	587.5	13.60	43.20	29.6	14.8	1.21		
F3	e^2	Mi	661.2	11.80	38.10	26.3	13.15	1.36		
F4	f^2	Fa	701.2	11.00	35.80	24.8	12.4	1.41		
F5	g^2	Sol	783.3	9.80	32.00	22.2	11.1	1.31		
F6	a^2	La	873.9	8.50	28.40	19.9	9.95	1.46		
F7	b ²	Si	982.5	7.60	25.30	17.7	8.85	1.26		

F8	c^3	Do	1060.4	6.80	23.20	16.4	8.2	1.41
----	-------	----	--------	------	-------	------	-----	------

說明:

- 1.測量時溫度 t=28℃
- 2.測得頻率 fs*=(331+0.6t)/ λ =(331+0.6t)/2△X
- $3.1/4 \lambda = \triangle X/2$
- 4.修正長度△h=1/4 λ -X₁
- 5.琴鍵擺放位置 S=1.2(cm)
- 6.共鳴管直徑 D=3.615(cm)

表 4-2:波源擺放位置 S 與修正長度△h 的關係

位置 S(cm)	X ₁ (cm)	X ₂ (cm)	△X(cm)	1/4 λ (cm)	△h(cm)
0.5	11.70	37.80	26.10	13.05	1.36
1.5	11.80	38.00	26.20	13.10	1.31
2.5	11.80	38.00	26.20	13.10	1.31
3.5	11.90	37.90	26.00	13.00	1.11
4.5	11.90	38.00	26.10	13.05	1.16
5.5	11.80	38.00	26.20	13.10	1.31
6.5	11.90	38.00	26.10	13.05	1.16
7.5	11.91	38.00	26.09	13.05	1.14
8.5	11.90	38.00	26.10	13.05	1.16
9.5	11.90	37.90	26.00	13.00	1.11

說明:

- 1.波源(琴鍵)的擺放位置 S 爲距共鳴管口的垂直距離
- $2.1/4 \lambda = \triangle X/2$
- 3.修正長度△h=1/4 λ -X₁
- 4.共鳴管直徑 D=3.615(cm)

表 4-3:不同共鳴管內直徑 D 與修正長△h 的關係

共鳴管 編號	管內徑 D(cm)	X ₁ (cm)	X ₂ (cm)	△X(cm)	1/4 λ (cm)	△h(cm)
D1	1.135	10.95	33.80	22.85	11.43	0.48
D2	1.605	10.90	33.80	22.90	11.45	0.55
D3	1.755	10.80	33.70	22.90	11.45	0.65
D4	2.06	10.70	33.70	23.00	11.50	0.80
D5	2.395	10.50	33.50	23.00	11.50	1.00
D6	3.18	10.00	32.60	22.60	11.30	1.30
D7	3.615	10.01	32.91	22.90	11.45	1.45
D8	4.535	9.80	32.60	22.80	11.40	1.60

五、木琴頻率穩定度的探討

表 5-1:琴鍵置放後各物理量的變化											
編號	P1	P2	P3	P4	P5	P6	P7	P8	P9		

初質量	159.11	150.81	141.78	131.68	122.20	115.58	106.33	102.12	94.36
mi(cm)	10,,11		1 1177 0	101100			100.00	102112	<i>,</i>
末質量	157.29	149.10	140.14	130.32	121.11	114.85	105.74	101.38	93.54
m _F (cm)	157.27	1 17.10	1 10.1 1	150.52	121.11	111.05	103.71	101.50	73.34
△m%	-1.14	-1.13	-1.16	-1.03	-0.89	-0.63	-0.55	-0.72	-0.87
初長	40.12	20.10	26.05	24.00	22.00	20.12	20.11	26.20	04.15
L _I (cm)	40.13	38.10	36.05	34.08	32.08	30.13	28.11	26.20	24.15
初厚	1 5 40	1.520	1.550	1 5 1 5	1 550	1.540	1.520	1 500	1 500
H _i (cm)	1.540	1.530	1.550	1.545	1.550	1.540	1.530	1.528	1.528
末長	40.10	20.10	26.04	24.05	22.05	20.10	20.11	26.16	24.12
L _F (cm)	40.12	38.10	36.04	34.05	32.05	30.10	28.11	26.16	24.12
末厚	1 520	1 500	1 505	1 505	1 5 40	1 520	1 520	1 500	1 500
H _F (cm)	1.530	1.520	1.535	1.535	1.540	1.530	1.530	1.520	1.520
$\triangle H/L^2\%$	-0.62	-0.65	-0.89	-0.50	-0.46	-0.48	0.00	-0.19	-0.24
初頻率	409.27	458.79	525.88	583.96	664.25	708.38	839.93	950.70	1108.40
fi(Hz)	707.27	730.77	323.00	303.70	004.23	700.50	037.73	750.70	1100.40
末頻率	413.98	463.35	531.08	589.48	669.92	711.93	846.47	958.23	1117.63
f _F (Hz)	713.70	703.33	331.00	J07. 1 0	007.72	711.73	0+0.+7	730.23	1117.03
△f%	1.15	1.00	0.99	0.95	0.85	0.50	0.78	0.79	0.83
初係數	107070	125070	4.40000	120060	4.41007	417440	422701	407000	100001
K _i (Hz · cm)	427872	435279	440922	438860	441027	417442	433781	427233	423204
末係數	125522	440500	440062	115011	116012	401570	127150	421410	107760
$K_F(Hz \cdot cm)$	435522	442502	449263	445241	446843	421579	437159	431419	427769
△K%	1.79	1.66	1.89	1.45	1.32	0.99	0.78	0.98	1.08

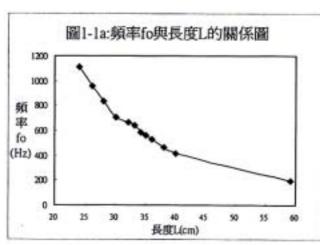
說明: 1.末測量是經歷 184 小時的置放

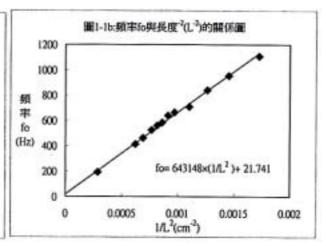
 $2.\triangle m\% = [(m_F - m_i)/m_i] \times 100\%$

 $3.\triangle F\% = [(f_{F-}f_i)/f_i] \times 100\%$

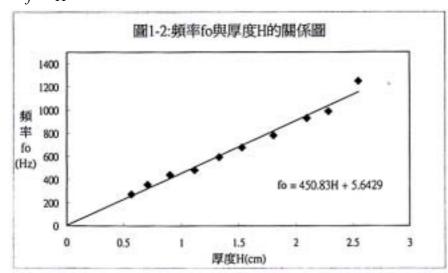
 $4.K = (f \times L^2) / H$

 $5.\triangle ext{K i \%} = [(ext{K }_{ ext{F}} - ext{K }_{ ext{i}}) / ext{K }_{ ext{i}}] \times 100\%$

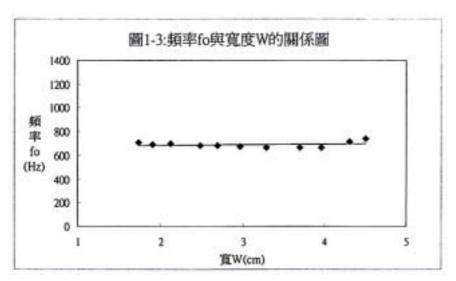

表 5-2a:各琴鍵的頻率 f 與置放時間 t 的關係										
頻率(Hz)置放時間(hr) 編號	0	19	38	62	86	110	134	160	184	
P1	409.27	410.87	411.85	412.04	412.13	412.48	412.25	414.02	413.98	
P2	583.96	585.74	587.08	587.37	587.60	587.93	587.81	589.32	589.48	
Р3	839.93	842.33	845.00	844.99	844.88	845.27	845.42	846.49	846.47	
P4	1108.40	1111.45	1114.55	1114.74	1114.65	1115.40	1115.20	1117.80	1117.63	


表 5-2b:各琴鍵的頻率變化量 Δ f 與置放時間 t 的關係										
頻率變化 置放時 量(Hz) 間(hr) 編號		19	38	62	86	110	134	160	184	
P1	0.00	1.61	2.59	2.78	2.86	3.22	2.98	4.76	4.72	
P2	0.00	1.77	3.12	3.40	3.63	3.97	3.85	5.36	5.52	
P3	0.00	2.41	5.07	5.06	4.95	5.35	5.49	6.56	6.54	
P4	0.00	3.05	6.15	6.34	6.25	7.00	6.80	9.40	9.23	
說明:各時刻的頻率變化量 Δ f=該時刻測得的末頻率 f_1 - 初始頻率 f_0 。										

柒、討論

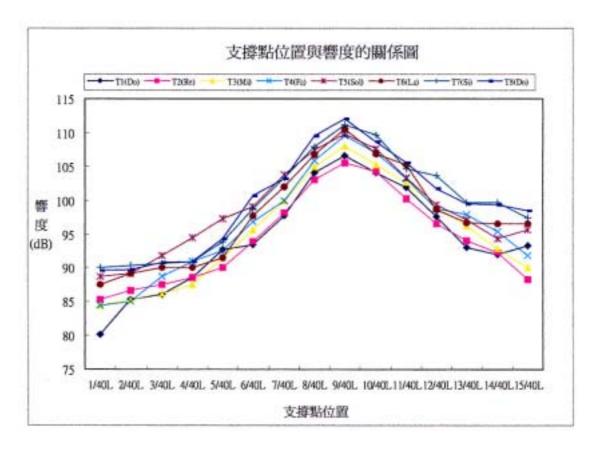

- 一、琴鍵頻率 f 與琴鍵長度 L、厚度H、寬度W的關係
- (一) 不同長度琴鍵的振動頻率,如〈表 1-1〉所示。將琴鍵頻率 f 與琴鍵長度 L 作成 f-L 的關係圖,如〈圖 1-1a〉所示,可以看出琴鍵愈長,琴鍵的頻率 愈低。將兩者間的函數關係改畫成 f-1/L²的關係圖,如〈圖 1-1b〉所示,可 以明顯地看出 f 與 1/L²的關係爲一條過原點的直線,即 f 與 1/L²成正比:

$$f \propto \frac{1}{L^2}$$



(二) 不同厚度琴鍵的振動頻率如〈表 1-2〉所示,若將琴鍵頻率 f 與琴鍵厚度 H 作成 f-H 的關係圖,如〈圖 1-2〉所示,可以看出琴鍵的厚度愈厚,琴鍵的頻率愈高。而且 f-H 的函數關係為一條通過原點的直線,即 f 與 H 成正比: $f \propto H$

(三) 不同寬度琴鍵的振動頻率,如〈表 1-3〉所示,若將琴鍵頻率 f 與琴鍵寬度 W 作成 f-W 的關係圖,如〈圖 1-3〉所示,可以看出琴鍵的寬度對琴鍵頻 率的影響並不明顯,換言之,琴鍵的頻率 f 幾乎與琴鍵的寬度 W 無關。

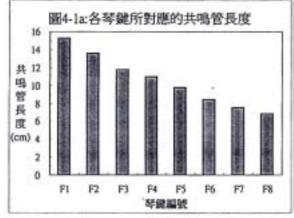


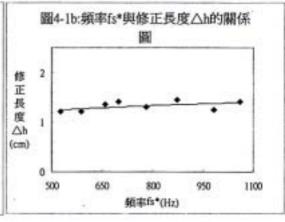
(四)綜合(-)~(三),我們可以歸納出:對同一材質製成的琴鍵而言,其振動頻率與琴鍵厚度成正比、與琴鍵長度的平方成反比,與琴鍵的寬度無關,即 $f \propto \frac{H}{I^2}$ 。其關係式可表示爲:

$$f = K \frac{H}{L^2} - \cdots \langle \text{AR} \rangle$$

其中K為一比例常數。

- (五)琴鍵頻率也會受到琴鍵組成材質的影響,不同材質的木材,即使製成相同形狀、 大小的琴鍵,其振動頻率也不一定相同(參考資料五)。因此我們認為《公式 二》中的 K 値與琴鍵的組成材質有關,稱之為材質係數。不同材質的木材,因 其組成結構、密度、含水量等因素的不同,都可能造成 K 値不同,即使同一木 材,其材質組成也不一定均勻,各局部的 K 値也可能多少會有差異。
- 一、裁切出標進頻率的琴鍵
- (一)從測量原材的頻率 fo開始,藉由〈公式二〉的輔助,經初估長度與再推估長度的步驟,我們得以裁切出產生標準音頻的琴鍵,其結果如〈表 2-1〉所示。不管是以聲頻分析法(表 2-1)或氣柱共鳴法(表 2-2)去評測完工後琴鍵的頻率(f s'、f s*),其與標準頻率 f s 間的偏差百分比皆在 1%以下,顯示以這種方法所製造出的琴鍵音高相當準確。
- (二)考慮木材材質的均勻度不一定很理想,因此在估算琴鍵長度的步驟中,經歷兩次估算長度、裁切鍵長的步驟,如果木材的質地很均勻,而且原材與完工琴鍵間的長度差距不太大,以估算長度一次、裁切一次的步驟,便可以得到令人滿意的琴鍵音高。
- 三、琴鍵支撐位置對響度的影響
- (一) 在相同力道的敲擊下,不同琴鍵支撐的響度測量結果如〈表 3〉所示。將響度與支撐位置畫作成關係圖,如〈圖 3〉所示,可以明顯看出不管何種長度(頻率)的琴鍵,其最大響度的支撐點皆位於距離端點 9/40L 處(L 爲琴鍵全長)。這個結果與〈研究過程三〉中所預測的 1/4L(10/40L)並不相符,令人有點訝異。

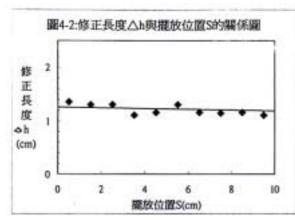

(二)為了探究琴鍵最大響度的支撐點到底在何處?前人是否做過類似的研究?我們多方蒐集資料,最後在〈參考資料九〉中找到相關的研究結果,其內容顯示: 木琴琴鍵振動時所產生的駐波型態,其節點出現在距端點 0.224L 處。這個結果 與我們的發現:9/40L(=0.225L)很接近。文獻中並未說明 0.224L 的來由與推 導過程,但是實驗的結果顯然說明了:木琴琴鍵振動的駐波型態可能並非如高 中物理所描述的那麼單純。

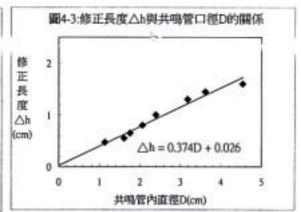

四、木琴共鳴管長度的探討

(一) 不同頻率琴鍵所對應的共鳴空氣柱長度 X 如 〈表 4-1〉所示,將兩者間的 對應關係以長條圖表示,如〈圖 4-1a〉,可以發現振動頻率較高的琴鍵(長 度較短,編號大),所對應的共鳴空氣柱較短。依〈公式三〉:

$$X_1 = \frac{1}{4}\lambda = \frac{1}{4}\frac{V}{f}$$

所以琴鍵的頻率f越高,對應的共鳴空氣柱的長度應該越短。



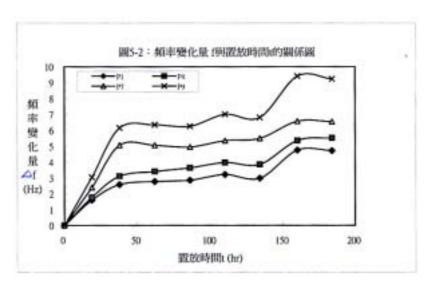


(二)由〈表 4-1〉中,我們也發現:不同頻率琴鍵所對應的共鳴管長度 $X_{\!\scriptscriptstyle L}$,並不完 全如〈公式三〉所示: $X_{\!\scriptscriptstyle L}\!=\!\frac{1}{4}\lambda$;而是 $X_{\!\scriptscriptstyle L}$ 〈 $\frac{1}{4}\lambda$ 。亦即聲波駐波波腹並不在管 口上,而是在管口上方 Δ h 處,如〈圖 J〉所示。我們稱 Δ h 爲修正長度,管 長 $X_{\!\scriptscriptstyle L}$ 與修正長度 Δ h 間的關係,應如下所示:

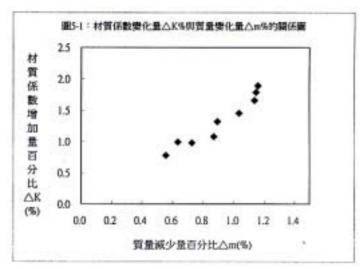
$$\chi_1 = \frac{1}{4}\lambda - \Delta h$$
 ----- 〈公式四〉

- (三) 將〈表 4-1〉中,不同頻率 f 與所對應修正長度 Δ h 的關係畫成 f- Δ h 圖,如〈圖 4-1b〉所示,可以發現頻率 f 對修正長度 Δ h 的影響並不明顯。
- (四) 將琴鍵擺放位置與共鳴管間的距離 S 作改變後,所測得的修正長度 Δh ,如 \langle 表 4-2 \rangle 所示。將 \langle 表 4-2 \rangle 中的 S 與 Δh 畫成的 S- Δh 關係圖,如 \langle 圖 4-2 \rangle 所示,可以發現 S 對修正長度 Δh 的影響也不明顯。

(五)將琴鍵的振動頻率,擺放位置與管口的距離 S 固定,測量不同管徑 D 共鳴管的修正長度 Δh ,其結果如〈表 4-3〉所示。將表中的 Δh 與 D 畫成關係圖,如〈圖 4-3〉所示,可以看出 Δh 隨著 D 而增加,而且 Δh -D 的函數關係近似一條通過原點的直線,即 Δh 與 D 成正比,其方程式爲:


因此〈公式四〉可進一步表示為:

$$X_1 = \frac{1}{4}\lambda - 0.374D$$
-----〈公式四-A〉


- (六)高中物理中有關共鳴空氣柱的介紹,皆未提到我們實驗所歸納出〈公式四〉及〈公式四-A〉中的修正長度項 Δh ,經過多方蒐集資料,最後在〈參考資料十、十一〉中找到相關的研究報告,其內容顯示:
 - 1. 參考資料十: $\Delta h=0.61r(r 爲半徑)=0.305D$ 。
 - 2. 參考資料十一: Δh 的理論値為 0.3D,實驗値為 0.4D。 參考資料的研究結果與我們的發現很相近。在參考資料中並未說明或推 導此修正長度的來由,這一部分還有待我們進一步的研究、了解。

五、木琴頻率穩定度的探討

(一)將不同長度的琴鍵,在室內置放 184 小時後,所測得各項物理量的變化,如〈表 5-1〉所示,由表中可以看出置放後的頻率 fi 皆比原始頻率 fi 來的大,其增加 的幅度約爲原始頻率 f 的 0.5~1.2%

- (二)由〈表 5-1〉可以看出琴鍵置放後的 $\frac{H}{L^2}$ 值減少了。依照〈公式二〉,在相同材質的條件下: $f \propto \frac{H}{L^2}$,因此 $\frac{H}{L^2}$ 值減少,應該造成頻率 f 下降,而非上升,可見置放後的頻率升高的原因,絕不會是琴鍵形狀變化所造成。
- (Ξ) \langle 表 5-1 \rangle 顯示琴鍵的材質係數 K,經過置放後增加了。由 $f=K\frac{H}{L^2}$ 以及置放後頻率 f 增加情形,我們認爲置放後琴鍵頻率 f 增加的原因,是由於材質係數 K 增加所造成。

(五)琴鍵的頻率 f、頻率變化量 Δ f 隨置放時間 t 的變化情形如〈表 5-2a、5-2b〉所示。將各琴鍵的頻率變化量 Δ f 與置放時間整理成〈表 5-2b〉,並將 Δ f 與 t 畫成關係圖,如〈圖 5-2〉所示,由圖中可以看出琴鍵在置放 40 小時以內,頻率

急遽增加,40小時後,頻率漸趨穩定。依此推論:將原材置放40小時之後, 再來推估與裁切琴鍵長度,如此裁切而成的琴鍵頻率,較不易隨時間改變,有 較佳的穩定性。

捌、結論

一、 木琴的發音頻率與琴鍵的長度、厚度有關,與琴鍵寬度無關。長度 L 愈短,厚度 H 愈厚,琴鍵的發音頻率 f 愈大。由實驗歸納出的關係式爲:

$$f = K \times H/L^2$$

- 二、 由實驗歸納出頻率 f 與長度 L 的關係式,可以很準確地推估出產生標準頻率的 琴鍵長度,依此長度,可以裁切出音高準確的木琴琴鍵。
- 三、 木琴的響度會隨琴鍵支撐位置不同而改變,最大響度的支撐位置與琴鍵端點的 距離約爲全長的 9/40。
- 四、 琴鍵所對應的共鳴管長度與琴鍵產生的聲波波長 λ 、共鳴管內直徑 D 有關,與琴鍵距管口位置無關。其關係式爲:

共鳴管空氣柱長度=
$$\frac{1}{4}\lambda$$
-0.374*D*

五、 新裁切的花梨木條,在室溫下置放,可能因爲水分或揮發物質的蒸發造成材質 上的改變,導致振動頻率升高。須待原材置放達穩定狀態,才能裁切出頻率穩 定的琴鍵。

玖、參考資料

- 一、 林明瑞.高中基礎物理.南一書局.p123.2001 年
- 二、 褚德三.高中基礎物理.龍騰文化事業公司.p96.2002 年
- 三、 管傑雄等.高中基礎物理.三民書局.p87.2001 年
- 四、 陳文典.高中基礎物理.康熙出版社.p125.2002 年
- 五、 陳文典.高中基礎物理教師手冊.康熙出版社.p128.2002 年
- 六、 林明瑞.高中物質科學物理篇下冊.南一書局.p246.2002 年
- 七、 林明瑞.高中物理上冊.南一書局.p4.2001 年
- 八、 林明瑞.高中物理實驗上冊.p1.南一書局.2001 年
- 九、 Bucur V. Acoustic of Wood. CRC press. Inc. p.52. 1995.
- + http://carini.physics.indiana.edu./P105S98/Standing-waves-in-pipes.html(2002/5/24)
- +-- \ http://faculty.millikin.edu/~jaskill.nsm.faculty.mu/musicexp8.html (2002/5/24)