中華房間第42個中小學科學問題自

國中-數學科

科 別:數學科

組 別:國中組

作品名稱:面積切割

關鍵詞:鑲嵌法、對稱法、篩檢法

編 號:030414

學校名稱:

臺北市立士林國民中學

作者姓名:

蘇家霈、江婕瑋、陳薏文、任芸慧

指導老師:

面積切割

一、研究動機:

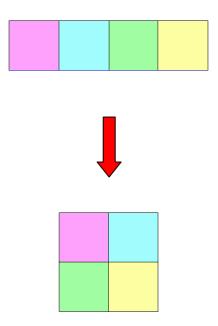
二年級下學期教到『生活中的平面圖形』這個單元時,老師在習作 2-1 中補充『希臘十字切割』以及『對稱法』的圖形。下課後,阿霈在觀察面積切割方式,發現:1、2、4、5均可切割平鋪為正方形,為何獨獨沒有3?於是阿霈去找數學老師討論,老師回答:「這是個很有趣的問題,上學期我們學過的『商高定理』,也涉獵了面積切割的問題,你不妨找幾個同學一起去深入探討一番。」隔天阿霈和幾個朋友閒聊時,談到這個問題,小文:「是不是每個數目均可切割成正方形?方法都一樣嗎?」<u>婕瑋</u>觀察完說道:「我覺得這些圖形各有獨特的拼切方式,會不會拼切的方法都不一樣?」,小慧頓時靈光一現:「我們何不實作來探討這個問題?」

二、研究目的:利用面積的切割探索幾何的特質。

三、文獻探討:

- 1. 商高定理 第三冊第一章第四節
- 2. 面積切割 第四冊第二章 生活中的平面圖形
- 3. 篩檢法 第一冊第二章第一節 質數篩檢法
- 四、研究設備器材;The Geometer's Sketchpad

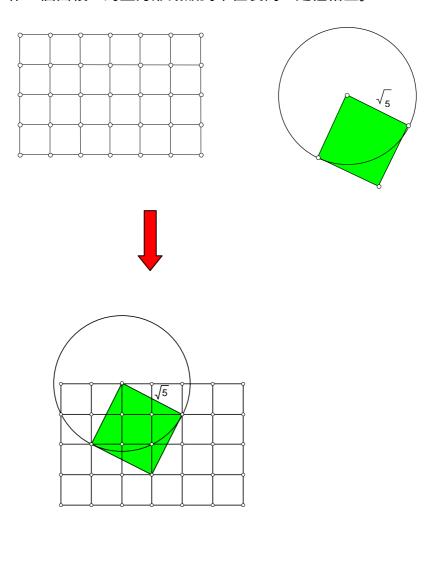
五、研究過程或方法:

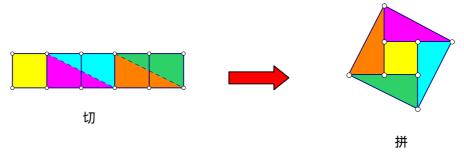

(一)面積2~6正方形拼切

1. 面積 2 的正方形

將 2 表達成 $4 \times \frac{1}{2}$ 將兩正方形的對角線相連,使其分割成 4 個全等的等腰 直角三角形, 最後以各直角邊旋轉排列即可拼成一面積 2 的正方形。

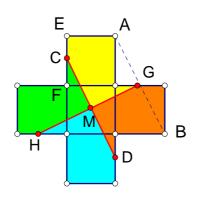
2. 面積 4 的正方形

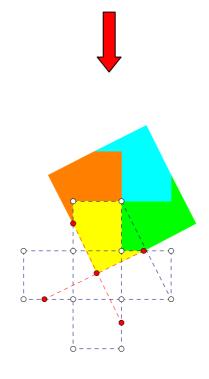



將 4 表達成 2²,將四個正方形組合排列即可拼成一面積 4 的正方形。

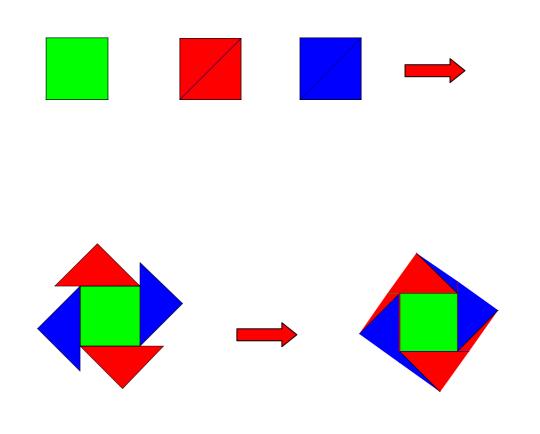
3. 面積 5 的正方形

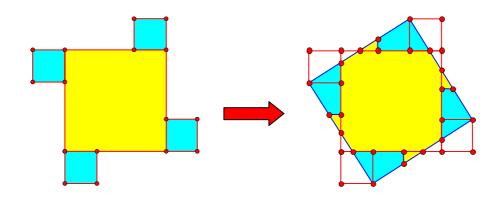
《方法一》 鑲嵌法


作一個面積 5 的正方形鑲嵌到單位長為 1 之框格上。



《方法二》希臘十字切割

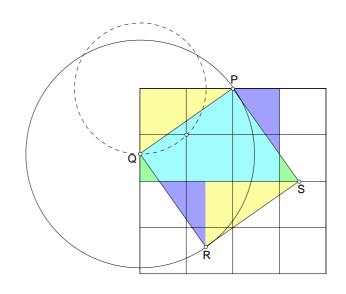

作一面積為 5 之十字形(如下圖),在 \overline{EF} 上任取一點 C,過 C 點 作一直線平行 \overline{AB} 交圖形於 D 點,過 \overline{CD} 中點 M 作 \overline{GH} 垂直 \overline{CD} 交圖形於 G、H 兩點,以圖中黃色區域為基準,將藍、綠、橙區域平移 至相對位置,則可拼成一正方形。


4. 面積3的正方形

由上面 2、4、5 單位面積的切割方式 鑲嵌法及希臘十字切割 ,似 乎不能讓我們馬上對單位面積 3 作切拼,但在建中網站上,提供了下面的方法:

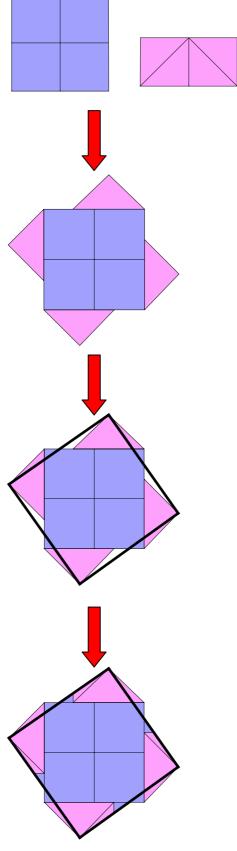
將 3 表達成 $1+4\times\frac{1}{2}$ 將兩正方形的對角線相連,使其分割成 4 個全等的等腰直角三角形 對稱圖形,最後以各直角邊連線並旋轉排列即可拼成一面積 3 的正方形。

根據這個想法,我們也找到另外一個對稱法



5. 面積6的正方形

現在面積 2~5 的正方形已經都找到方法可以切拼,那麼面積為 6 的正方形呢?


《方法一》鑲嵌法

作一個邊長為 $\sqrt{6}$ 的正方形,鑲嵌到框格上,找到切割方法。(如 圖所示)

《方法二》對稱法

因為
$$6=2^2+4\times\frac{1}{2}$$
 ,

(二)2~6 切拼成正方形方法

根據以上的經驗,我們得到些有用的切拼方法,並且觀察出各種切拼方法與使用刀數之關係如下:

- 1. 鑲嵌法:鑲嵌法有兩種,如
 - (1)5 2刀
 - (2)6 3刀
- 2. 希臘十字切割:2刀
- 3. 對稱法:對稱法亦有兩種,如
 - (1) 3 6刀
 - (2) $a^2 + 4b^2$ 4 π

我們將試著以這些切拼方法來探討 1~100 的切拼及較少刀數。

(三)根據前面的經驗方法,探索面積1-100切割的較少刀數

每種切割方法我們將提供兩個表格:

第一個表格中的紅色數字表該切割可篩檢出的數字

第二個表格為篩檢後剩餘的數字

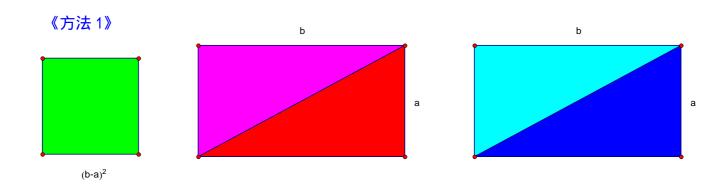
任意 n 平方單位的矩形,可分為下列幾種形式表達:

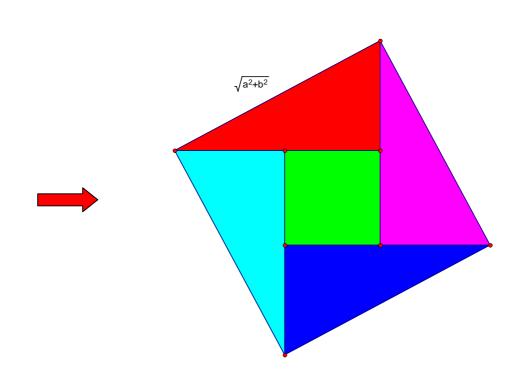
1. a^2

是完全平方數,可直接拼為正方形。

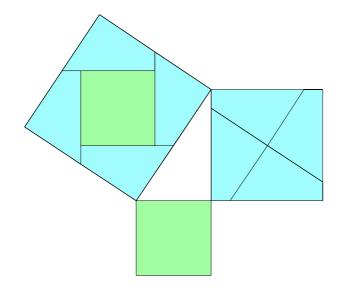
定義切割刀數:0刀

12	2 ²	3 ²	4 ²	5 ²	6 ²	7 ²	8 ²	9 ²	10 ²
1	4	9	16	25	36	49	64	81	100


剩下數字列表


	2	3		5	6	7	8		10
11	12	13	14	15		17	18	19	20
21	22	23	24		26	27	28	29	30
31	32	33	34	35		37	38	39	40
41	42	43	44	45	46	47	48		50
51	52	53	54	55	56	57	58	59	60
61	62	63		65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	

2. $a^2 + b^2$

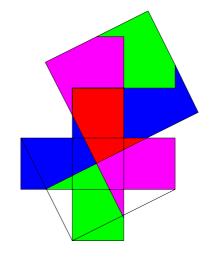

兩平方和,利用商高定理可將之拼成一大正方形。

切割刀數:2刀

《方法 2》

b^2	1 ²	2 ²	3 ²	4 ²	5 ²	6 ²	7 ²	8 ²	92
1 ²	2	5	10	17	26	37	50	65	82
2 ²		8	13	20	29	40	53	68	85
3 ²			18	25	34	45	58	73	90
4 ²				32	41	52	65	80	97
5 ²					50	61	74	89	106
6 ²						72	85	100	117
7 ²							98	113	130
8 ²								128	145
9 ²									162

剩下數字列表


		3			6	7			
11	12		14	15				19	
21	22	23	24			27	28		30
31		33		35			38	39	
	42	43	44		46	47	48		
51			54	55	56	57		59	60
	62	63			66	67		69	70
71				75	76	77	78	79	
		83	84		86	87	88		
91	92	93	94	95	96			99	

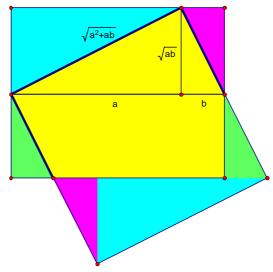
3. $5a^2$

利用希臘十字切割,可將十字形的5塊等面積正方形切拼正

切割刀數:2刀

方形

5×1 ²	5×2^2	5×3^2	5×4^2
5	20	45	80


剩下數字列表

		3			6	7			
11	12		14	15				19	
21	22	23	24			27	28		30
31		33		35			38	39	
	42	43	44		46	47	48		
51			54	55	56	57		59	60
	62	63			66	67		69	70
71				75	76	77	78	79	
		83	84		86	87	88		
91	92	93	94	95	96			99	

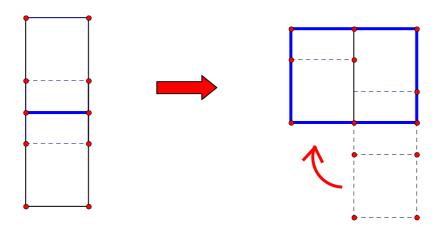
4. $a^2 + ab$ (a>b)

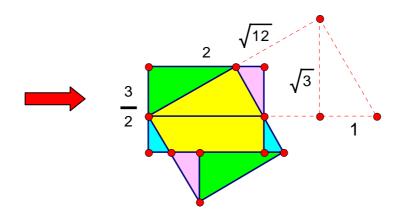
利用邊長,做出要的面積,再把原圖形一一切補過來。

切割刀數:3刀

a^2	1 ²	2 ²	32	4 ²	5 ²	6 ²	7 ²	82	9 ²
1	2	6	12	20	30	42	56	72	90
2		8	15	24	35	48	63	80	99
3			18	28	40	54	70	88	108
4				32	45	60	77	96	117
5					50	66	84	104	126
6						72	91	112	135
7							98	120	144
8								128	153
9									162

剩下數字列表


		3				7			
11			14					19	
21	22	23				27			
31		33					38	39	
		43	44		46	47			
51				55		57		59	
	62					67		69	
71				75	76		78	79	
		83			86	87			
	92	93	94	95					


4. 鑲嵌 a² + ab (a>b) 放大 2 倍

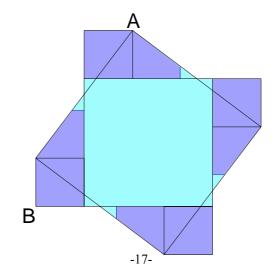
有一些數字用其他的方法都頗為複雜,因此將這數先放大, 找到可行的方法後再調整回原來的比例。這裡是利用 a^2+ab 的原理,做出面積 2 倍的圖形,最後再縮小為 $\frac{1}{2}$

切割刀數:4刀

例如面積為3時

3	7	14	21	22	27
33	39	44	51	55	57
69	75	76	78	92	95

剩下數字列表


11							19	
		23						
31						38		
		43		46	47			
							59	
	62				67			
71							79	
		83		86	87			
		93	94					

6. $a^2 + 4b^2$

中間一塊正方形,再加上四邊各一塊等面積正方形所成的圖

形,其切割線為兩正方形之相異頂點連線。

切割刀數:4刀

$\begin{array}{ c c } & & & \\ & & & \\ & 4 \times b^2 & & \\ & & & \end{array}$	1 ²	2 ²	3 ²	4 ²	5 ²	6 ²	7 ²	8 ²	9 ²
4×1^2	5	8	13	20	29	40	53	68	85
4×2^2	17	20	33	32	41	52	65	80	97
4×3^2	37	40	45	52	61	72	85	100	
4×4^2	65	68	73	80	89				

剩下數字列表

11							19	
		23						
31						38		
		43		46	47			
							59	
	62				67			
71							79	
		83		86	87			
		93	94					

7. $(a^2+b^2)+c^2$

先利用 a^2+b^2 (商高定理)做出一正方形,再將此正方形與 c^2 作成大正方形即可。

切割刀數:4刀

3	6	7	9	10	11	12	13	14	16
17	18	19	20	21	22	24	25	26	27
29	30	32	33	34	35	36	37	38	40
41	42	43	44	45	46	48	49	50	51
52	53	54	56	57	58	59	61	62	64
65	66	67	68	69	70	72	73	74	75
76	77	78	80	81	82	83	84	85	86
88	89	90	91	93	94	96	97	98	99

100

剩下數字列表

	23				
31					
			47		
71				79	
			87		

8. $(5a^2)+b^2$

先利用 $5a^2$ (十字切割法)做出一正方形,再將此正方形與 b^2 作成大正方形即可。

切割刀數:4刀

b^2 $5a^2$	12	2 ²	3^2	4 ²	5 ²	6 ²	7 ²	8 ²	9^2
5	5	9	14	21	30	41	54	69	96

20	21	24	29	36	45	56	69	84	101
45	46	49	54	61	70	81	94	89	126
80	81	84	89	96	105	116	129	144	161

剩下數字列表

	23				
31					
			47		
71				79	
			87		

9. 鑲嵌 a² + ab (a>b) 放大 3倍

利用 $a^2 + ab$ 的原理,做出面積 3 倍的圖形,最後再縮小為 $\frac{1}{3}$

切割刀數:5刀

例如面積為87時

⇒ 放大三倍 $9 \times 87 = 9 \times 3 \times 29 = 27(27 + 2)$

11	38	46	62	87	93

剩下數字列表

	23				
31					
			47		
71				79	

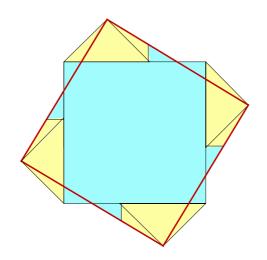
10.
$$(a^2 + ab) + c^2$$
 (a>b)

先利用 $a^2 + ab$ (鑲嵌法)做出一正方形,再將此正方形與 c^2 作成大正方形即可。

切割刀數:5刀

例如面積為 31 時 31 = 30 + 1 = 5(5 + 1) + 1

31	71	79
----	----	----


剩下數目列表

	23				
			47		

11. $a^2 + 2b^2$

中間一塊正方形,再加上四邊各一塊同面積的等腰直角三角形別組成,其切割線為等腰直角三角形之頂點兩兩相連。

切割刀數:6刀

a^2 $2 \times b^2$	1 ²	2 ²	3 ²	4 ²	5 ²	6 ²	7 ²	8 ²	9 ²
2×1^2	3	6	11	18	27	38	51	66	83
2×2^2	9	12	25	24	33	44	57	72	89
2×3^2	19	22	27	34	43	54	67	82	99
2×4^2	33	36	41	48	57	68	81	96	
2×5^2	51	54	59	66	75	86	99		
2×6^2	73	76	81	88	97				
2×7^2	99								

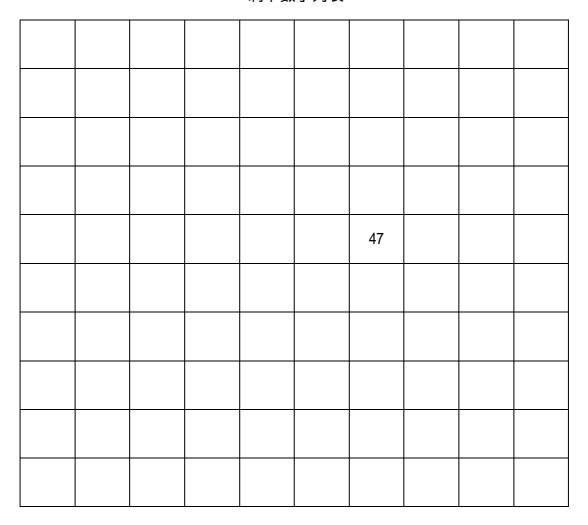
剩下數字列表

	23				
			47		

12. 鑲嵌 a² + ab (a>b) 放大 4倍

利用 $a^2 + ab$ 的原理,做出面積4倍的圖形,最後再縮小為 $\frac{1}{4}$ 。

切割刀數:6刀


例如面積為23時

⇒ 放大四倍 $16 \times 23 = 16(16 + 7)$

		1
19	23	31
19	25	31

剩下數字列表

下列我們試著以三種切拼方式篩檢 47

13.
$$(a^2+b^2)+4c^2$$

先利用 $a^2 + b^2$ (鑲嵌法)做出一正方形,再將此正方形與 $4c^2$ 作成大正方形即可。

切割刀數:6刀

14.
$$(5a^2) + 4b^2$$

先利用 $5a^2$ (十字切割法)做出一正方形,再將此正方形與 $4b^2$ 作成大正方形即可。

切割刀數:6刀

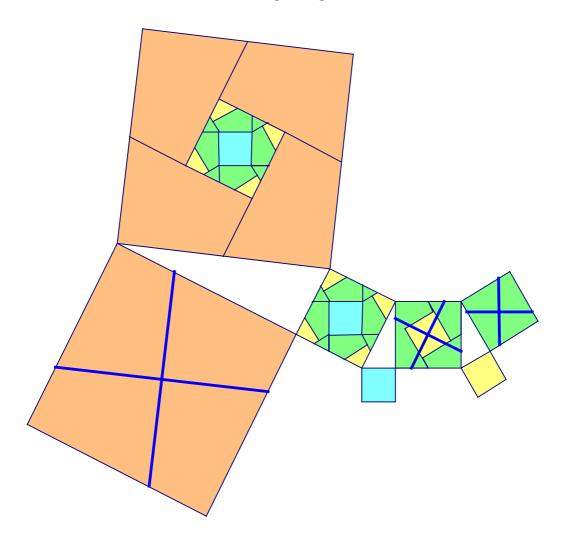
15.
$$(a^2 + 4b^2) + c^2$$

先利用 $a^2 + ab$ (鑲嵌法)做出一正方形,再將此正方形與 c^2 作成大正方形即可。

切割刀數:6刀

六、討論

由上列各種方法篩檢後,仍剩下的數字為 47。這個數不能用上列方法處理,因此我們嘗試把之前的方法加以組合,再從這些方法中找出最少切割刀數,或是延伸之前的範圍,繼續推論下去:


面積 47 的正方形

經討論後,我們將 47 表達成 $(a^2+b^2+c^2)+d^2$

其切割刀數→4刀+2刀=6刀

$$47=6^2+3^2+1^2+1^2$$

- 1. 利用商高定理將面積為1和9的兩小正方形組成一面積為10的正方形
- 2. 將面積為 10 和 1 的兩正方形再組成一面積為 11 的正方形
- 3. 最後將面積為 11 和 36 的兩正方形組成一面積為 47 的大正方形即可

七、結論:

我們想要找到切割刀數最少的方法,因此在篩檢的過程中均由最簡單的圖形開始

篩,漸次複雜。

結構	切割方式	較少刀數	1~100 數字
a^2	不用切割	0	1.4.9.16.25.36.49.64.81.100
	利用商高定理,將兩正方形		2.5.8.10.13.17.18.20.
	合併,其中一個被兩刀分割		25.26.29.32.34.37.40.41.
	成4塊等面積圖形,再依序		45.50.52.53.58.61.65.68.72.
	拼入大正方形		73.74.80.82.85.89.90.97.98
$5a^2$	將 5 塊同面積的正方形排成		
	十字形,切兩刀使其分成4		無
	塊,再重新排列即可。		
$a^2 + ab$ $(a > b)$	邊長的平方=面積	3	6.12.15.20.24.28.30.32.
	利用此原理做出邊長再利		35.42.48.54.56.60.63.66.
	用它做正方形。		70.77.84.88.91.96.99
a ² + ab (a > b) 放大 2 倍	先放大 2 倍,利用 $a^2 + ab$ 的	4	03.07.14.21.22.27.33.39.44.
	原理找到可行的方法後,再		51.55.57.69.75.76.78.92.95
	調整回原來的比例。		01.00.01.00.10.10.10.02.00
$a^2 + 4b^2$	中間一塊正方形,再加上四		
	邊各一塊等面積正方形所		37.89
	成的圖形。		
$(a^2+b^2)+c^2$	利用商高定理,將 a^2 及 b^2 合	4	11.19.43.46.59.67.74.83.86.93.94
	併成一正方形,再將此圖形		
	與 c ² 合併。		
$(5a^2) + b^2$	先把 5a² 做十字切割,再將		
	做成的正方形利用商高定	4	無
	理合併。		
a ² + ab (a > b) 放大 3 倍	先放大 3 倍,利用 $a^2 + ab$ 找		
	到較好的方法後,再調整回	5	87.
	原圖的比例。		
$(a^2 + ab) + c^2 (a > b)$	 做出邊長為 $\sqrt{a^2+ab}$ 正方	5	
	W山透皮河 γα +αυ 止力		31.71.79
	形,再將此圖與 c^2 合併。		
	中間一塊正方形,再加上四	6	
	邊各一塊等面積的等腰直		無
	角三角形所成的圖。		

a ² + ab (a > b) 放大 4 倍	先放大 4 倍 , 利用 $a^2 + ab$ 找 到 切 割 線 數 較 少 的 方 法 後 , 再調整回原圖的比例。		23
$(5a^2) + 4b^2$	先做十字切割,再將所成正 方形與 $4b^2$ 合併。	6	無
$(a^2 + 4b^2) + c^2$	做出面積為 $a^2 + 4b^2$ 的正方形, 再將此圖與 c^2 作成大正方形即可。	6	無
$((a^2+b^2)+c^2)+d^2$	重複利用商高定理,合併 a^2 、 b^2 、 c^2 、 d^2 成一大正 方形	6	47

以上為我們不斷討論、嘗試所得到的較少刀數,但結果是否為最少刀數尚待各位求證。

八、參考資料及其他:

參考網站

 $http://www.math.ntnu.edu.tw/\sim\!cyc/_private/gspst/90107/700.htm$

參考書籍

- 1. 數學教學方法 九章出版社
- 2. 面積關係幫您解題 九章出版社
- 3. 算得巧 凡異出版社