2017 年臺灣國際科學展覽會 優勝作品專輯

- 作品編號 030018
- 参展科別 化學
- 作品名稱 Artificial Photosynthesis -Formic Acid Generated from Carbon Dioxide by Using Photocatalyst-
- 得獎獎項 三等獎
- 國 家 Japan
- 就讀學校 Ichikawa Gakuen Ichikawa High School
- 作者姓名 HUIYI WU

Seika Shiba

作者照片

1. Introduction

Reduction of carbon dioxide is desired as an environmental problem of global warming. The study of generation of formic acid from carbon dioxide was performed under irradiation of ultra violet to photocatalyst. Ta₂O₅ could reduce carbon dioxide, but the band gap of Ta₂O₅ was 4.0 voltage. In this research, it was found that tantalum oxide / tantalum plate responds to visible radiation. Therefore, the reason of visible light response was examined. It was studied to make efficient tantalum oxide / tantalum plate.

2. Experimental

2.1. Synthesis of Ta₂O₅ and Ta₃N₅ film electrode

By burning tantalum plate in air by electric furnace, oxygen and nitrogen by cylindrical electric furnace, changing the time and temperature (600, 800, 1000 °C), different thickness of Ta_2O_5 and Ta_3N_5 film was made easily on the surface of tantalum.

2.2 Two electrode system

Light from xenon lamp was irradiated to Ta₂O₅ in 0.1mol/L Na₂SO₄. Voltage and electric current were measured with Pt counter electrode. Current density-voltage curve was made and energy conversion efficiency was calculated.

2.3 Three electrode system

Fig.1. Cylindrical electric furnace

Fig.2. Xenon lamp

The electric potential of the conduction band of photocatalyst was checked by using potentiostat, and wavelength dependence was checked using visible light LED (violet, blue, green and red).

2.4. Generation of Formic Acid

Ultra violet was irradiated to photocatalyst with silver as the counter electrode in 0.1 mol/L Na₂SO₄ saturated with CO₂. Formic acid was measured by HPLC (column ODS-80Ts 4.6 mm I.D. ×25 cm, eluent water/acetonitrile (98/2) $\pm 0.1\%$ phosphoric acid, flow velocity 1mL/min, detector 235nm UV).

3. Results and Discussion

3.1. Synthesis of Ta₂O₅ and Ta₃N₅ film electrode

 Ta_2O_5 and Ta_3N_5 film electrode was made by burning tantalum plate in air by electric furnace, oxygen and nitrogen by cylindrical electric furnace (fig.3 ~Fig.7).

Fig.3. In air at 600° C (Ta plate) for 10, 20 and 30 min.

Fig.4. In air at 800°C (Ta plate) for 2, 5, 7, 9 and 12 min.

0.5

0.4 Ē

0.2

0.1

0.0

n

5

Thickness/ 0.3

Fig.10.

Fig.5. In air at 1000°C (Ta plate) for 1, 2, 3,5 and 7 min. Fig.6. In N₂ at 800°C for 15 and 90 min. Fig.7. In O₂ at 600°C 5 min.

In N₂, Ta₃N₅ was synthesized at 800 degrees Celsius.

15

Heating time/ min

Heating time and thickness of thin film

20

• 600°C in O₂

25

30

10

▲ 600°C in air

The film thickness became thick by burning more and high temperature. The film thickness in the oxygen increased fast compared with in air. The film was black when thin, but it became white gradually as the thickness increased. (Fig.3 \sim Fig.5 Fig.8) $_{\circ}$

The thickness increased slowly in nitrogen compared with air (Fig.9), and the film became thick quickly in the oxygen (Fig.10).

It was found out that the plate baked during 600 $^{\circ}$ C for 10 minutes (Fig.13), during 800 $^{\circ}$ C for 7 minutes (Fig.14) and during 1000 $^{\circ}$ C for 5 minutes (Fig.16) were fine in air.

The most shown optical response during all the photocatalyst was the one baked during 600 degree oxygen for 5 minutes.

(2) Current density-voltage curve

Xe lamp (100 mW/cm²) was applied and the current density and the voltage were measured. The electric power density was 0.02 mW/cm^2 by using film plate which was burned at 600 °C for 5 minutes in O₂ (Fig17).

The energy conversion efficiency of Ta₂O₅/Ta in O₂ was 0.02%.

3.3. Three-Electrode System and Wavelength Dependence

Optical response current was measured by a potentiostat in 0.1mol/L

 Na_2SO_4 and Ag/AgCl reference electrode. It was measuresd for 30 seconds at light on –off, by changed electric potential. (1) Conduction band

It was confirmed that semiconductor was n type, because the oxidation current with optical response flowed at nobleness (+) electric potential.

It was found out that conduction band of Ta₂O₅/Ta was at - 1.1V vs. Ag/AgCl (Fig.18,19) and conduction band of Ta₃N₅/Ta was at - 0.5 V vs. Ag/AgCl (Fig.20). Therefore, this showed that Ta₂O₅/Ta could reduce carbon dioxide.

(2) Visible light response

 Ta_2O_5/Ta responded to ultraviolet rays and visible light at two electrode system with Pt counter electrode. By irradiation from violet LED (3.1 eV), blue LED (2.6 eV), green LED (2.4 eV) and red LED (1.9 eV), oxidation current was measured at 0 V vs. Ag/AgCl using potensiostat.

However, the bandgap of Ta_2O_5 was 4.0 eV and it was impossible for Ta_2O_5 to respond to visible light. However, impurity were doped during Ta_2O_5/Ta .

First, nitrogen in the air expected to be doped. The band gap was 2.1eV for Ta₃N₅ and 2.5eV for TaON. Ta₂O₅/Ta burned in oxygen, which wasn't include nitrogen, also responded to visible light. Therefore, it was thought that the impurity doped to Ta₂O₅/Ta wasn't nitrogen The purity of tantalum plate was 99.98 % as table 1, and included small amount of other metals. The biggest amount of

impurity was 0.01 % of tungsten. It was considered that the cause of visible light response was tungsten doped to Ta₂O₅/Ta.

Table 1. Chemical composition of tantalum plate (%)							
Nb	Fe	Ti	W	Si	Ni	Mo	Та
< 0.001	< 0.001	< 0.001	< 0.01	< 0.001	< 0.001	< 0.001	99.98

3.4. Generation of formic acid

Ultra violet was irradiated to Ta₂O₅/Ta burned at 600 °C for 5 minutes in O₂ with silver wire at pipe tee as the counter electrode in 0.1mol/L Na₂SO₄ saturated with CO₂. Formic acid was measured by HPLC (column ODS-80Ts 4.6 mm I.D. ×25 cm, eluent water/acetonitrile (98/2) +0.1% phosphoric acid, flow velocity 1mL/min,).

Fig.23. Irradiation to

Ta2O5/Ta.

Fig.22. Silver wire

and pipe tee

Formic acid was absorbed under 240 nm (fig.24). Wavelength of UV detector was selected at 225 nm and 235 nm. The pike of formic acid was

recorded at 10 seconds later for 3 minutes. At 225 nm, it was recorded at shoulder of another pike (fig. 25). So, it was recorded at a single pike at 235 nm (fig. 26).

 Start of 0.1 mol/L Na_5O4+CO2
 Fig.
 2.8 × 10⁻³ mol/L HCOOH
 Fig.
 After 140 min. at 0.1 mol/L Na_5O4+CO2

 235 nm
 at 0.1 mol/L Na_5O4+CO2
 235 nm
 235 nm
 235 nm

Fig.26. HPLC detected at 235 nm

The generation of formic acid from experiment was evaluated 2.2×10^4 mol/L. Theoretical value was calculated 4.8×10^7 mol and from 11 µA and 140 minutes and reaction of formic acid generation CO₂+2H⁺+2e⁻→HCOOH. The concentration was 4.8×10^3 mol/L by volume of 0.1 mL. Generation rate was 4.5 %.

4. Conclusion

1) By burning tantalum, changing the time and temperature, different thickness Ta₂O₅/Ta, Ta₃N₅/Ta was made easily.

2) The biggest short-circuit current and open voltage was seen by irradiating light to Ta_2O_5 made in 600 °C O_2 for 5 minutes, and the conversion efficiency was 0.02%.

3) The conduction band of Ta_2O_5/Ta was in the level which can reduce carbon dioxide and generate formic acid.

4) Ta₂O₅/Ta responded to ultraviolet rays and visible light. However the reason of light response is that there are impurities doped inside.

5) By irradiating xenon lamp to Ta₂O₅/Ta, and by using a silver wire, formic acid was generated from carbon dioxide.

5. Future Prospects

1) Make W doped Ta₂O₅ and backup my consideration of visible light response.

2) Develop the conversion efficiency of photocatalyst by doping various metals and gases.

3) Generate formic acid from sun light after developing the conversion efficiency of photocatalyst.

4) Zirconium is less expensive than tantalum. Therefore, use zirconium instead of tantalum, to make the cost lower.

6. Acknowledgements

We are greatly indebted to Yutaka Amao professor and Tomoko Yoshida professor (Osaka city university Research Center for Artificial Photosynthesis), for information that Ag was suitable for co-catalyst of Ta_2O_5 .

7. References

1) Johokiko co.,Ltd, Artificial photosynthesis latest technology for practical use \sim hydrogen utilization \cdot organic synthesis \cdot energy \cdot reduction of CO₂ \sim (2013).

2) https://m-repo.lib.meiji.ac.jp/dspace/bitstream/10291/17465/1/izawa_2015_rikou.pdf

3) Nilako Co. (Alpac Co.) Inspection certificate of Ta.

4) Ming Yang, Xianli Huang, Zhaosheng Li, Tao Yu, Zhigang Zou, Mater. Chem. Phys. 2010, 121, 506–510.

5) N. Yamamoto, T. Yoshida, S. Yagi, Z. Like, T. Mizutani, S. Ogawa, H. Nameki, H. Yoshida e-J. Surf. Sci. Nanotech., 12

(2014) 263-268. The influence of the preparing method of a Ag/Ga₂O₅ catalyst on its activity for photocatalytic reduction of CO₂ with water.

【評語】030018

Carbon Dioxide by Using Photocatalyst-Artificial Photosynthesis

The candidate delivers a report about using Ta_2O_5 and Ta_3N_5 as the active materials for reduction of CO_2 to formic acid. In the design, Ta_2O_5 and Ta_3N_5 have been prepared from a Ta plate. Although theoretically Ta_2O_5 should only be responsive to UV light, the candidate discovered that the material prepared by her method is also responsive to visible region. She also successfully demonstrated the possible if making formic acid by reduction of CO_2 through an electrochemical process. The candidate has received perfect training and has excellent performance. I should express congratulation to her and her methors.